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Purpose

To examine the possibility for glaucoma classification
using an automated nerve fiber layer segmentation on
circular OCT B-scans.

Data

Figure 1: Circular OCT B-Scan from glaucoma patient. Crop out of 768x496 image.

Circular B-scans from 204 subjects : Centered at
optic disk, diameter 3.4mm, 512 or 768 A-scans with
depth resolution of 3.87µm/pixel. Spectral domain OCT
system: Spectralis HRA+OCT, Heidelberg Engineering.
Subject age 46.0±24.0 years.

Varying image quality: Distribution see Fig. 2. No
images were excluded due to quality reasons.

Diagnosis by experts: Based on a complete oph-
thalmologic examination (criteria see [1] D1039 or [2]).
Separation into Normal (N, 132 subjects) and Glau-
coma (G, 72 subjects) group. This leads to a two-class
classification problem.
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Figure 2: Quality distribution in the dataset. (a) Modified (adapted to Spectralis RAW
data) quality index of Stein et. al. [3] (b) Standard deviation in top background region
(vitreous body).

Method

An automated retinal nerve fiber layer (RNFL) seg-
mentation algorithm developed at our department was
used to obtain RNFL thickness profiles. A sketch of the
algorithm is displayed in Fig. 3.

In addition to the automated segmentation all outcomes
were corrected manually by an expert in this field (see
example Fig. 4 and 5).

The following features were generated out of the RNFL
thickness profiles:
•The minimum, maximum and mean were calculated

for: All profile values, the one-third largest and the
one-third smallest ones.

•The thickness profiles (768 and 512 A-Scans) were re-
duced to 128 values by averaging neighbors. This vec-
tor was further compressed to five values using princi-
pal component analysis.

This results in 14 features. No anamnesis or OCT sys-
tem output parameters (compared to [4, 5]) were in-
cluded to the feature vector.

The classification experiments were carried out on
the automatically generated thickness profiles as well
as on the manually corrected ones.

Figure 3: Segmentation Algorithm. The terms in the final energy minimization stage
are: G(x) gradient along A-Scan, N (x) sum of pixel distance to left and right neighbor,
D(x) distance to mean height between two blood vessels. A preliminary evaluation of
the algorithm on the dataset (comparison to manual correction by expert) showed a
mean absolute error of 3.7µm ± 3.6 per A-Scan on the dataset.
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Figure 4: Segmentation examples. OCT B-Scans with segmentation boundaries.
Blue: inner nerve fiber layer boundary. Yellow: outer nerve fiber layer boundary. Red:
manual corrections. (a) Glaucoma patient. Low quality: Quality index 2.31, Black
STD: 0.076. (b) Normal. Very low quality. Quality index 1.61, Black STD: 0.158.
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Figure 5: Thickness profile examples. Blue: result of automated segmentation. Red:
manual corrections. (a) and (b) correspond to image examples of Fig. 4

Age-distribution was equal in all age decades:
Achieved by random exclusion. 61 N and 61 G patients
left in each experiment.

Support Vector Machine classifier. 10 fold crossvali-
dation. 20 repetitions of each experiment to capture the
variation of the different random exclusions. Averaging
of the results.

Results

The area under the ROC is 94.4% using the auto-
mated segmentation. For a specificity of 90.0% a sen-
sitivity of 89.7% is achieved. Using the manually cor-
rected segmentations the area under the ROC is 95.7%.
For a specificity of 90.0% a sensitivity of 92.6% is
achieved in this case.
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Figure 6: ROC curves of classification results.

Conclusion

1.A pure automated segmentation nearly reaches
the result of the manually corrected segmenta-
tions.

2.The features presented are extracted from the
RNFL thickness profile of a single circular OCT B-
Scan. They are useful glaucoma indicators that
allow classification with a high accuracy of 94.4%
ROC area.
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