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Regression

Exercise 1 The goal of this exercise is robust regression line fitting for N measurements
(xi, yi). Thus, you should estimate parameters a, b for a line axi + b that best
explains your observations yi. Here we employ the Huber norm to make the
estimate more robust to outliers compared to simple least-square regression:

(a, b) = arg min
a,b

D(a, b) = arg min
a,b

N∑
i=1

φHuber (yi − axi − b) (1)

The parameters (a, b) are determined using iterative numerical optimization. The
Huber norm is defined as

φHuber (z) =

{
z2 if |z| ≤M

M(2|z| −M) if |z| > M
(2)

(a) Calculate the gradient of the cost function w.r.t. a and b. The gradient is
necessary for many iterative numerical optimization techniques.
Hint: You need to calculate the derivative of the Huber norm.

(b) Show that the Huber norm is convex. Use the first-order convexity condition
for differentiable functions f(x)

f(z) ≥ f(x) + f ′(x)(z − x)

Start by proving convexity for g(x) = x2 and h(x) = M(2|x| −M). Then,
treat the special cases that occur due to the piece-wise definition of the
Huber norm. For this exercise, focus only on positive values x, z,M .

(c) Download the provided measurements from the exercise homepage. Mini-
mize the Huber norm using MATLAB. You do not need the Classification
Toolbox. Use the MATLAB function fminunc.

(d) Compare the robust line fitting to a ordinary least-square approach. Find
situations where the robust approach is superior. Show that due to convex-
ity, the optimum is always found.

Exercise 2 A training set of N independent samples with feature vectors ai ∈ RD and target
variables bi ∈ R is given. A linear model with the parameter x ∈ RD is assumed
to estimate the target variable from the feature b = xTa.



Ridge regression is least-squares linear regression with L2-norm regularization. It
is defined by the optimization problem

x∗ = argmin
x
‖Ax− b‖22 + λ ‖x‖22 , (3)

with the design matrix A ∈ RN×D,A(i, j) = ai(j) and the target vector b ∈
RD, b(i) = bi.

(a) Derive the solution of the ridge regression optimization problem.

(b) What is the effect of the regularization?

(c) Ridge regression can be motivated by Maximum A Posteriori (MAP) esti-
mation. In MAP estimation, the a posteriori probability of the parameters
after observing the training data is maximized x∗ = argmaxx p (x|A, b).
The assumption of Gaussian noise p (b|x,a) = N

(
b|xTa, β−1

)
and a Gaus-

sian prior for the parameters p (x) = N (x|0, α−1I) is made. Show that
MAP estimation in this setting is equivalent to ridge regression.


