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Motivating Examples

1. One-sample significance test
School class A, consisting of 15 pupils has an average grade of 2.5 (sample
mean) and a sample standard deviation of 1.1 in their final exam. Did the
pupils perform significantly different than the nation-wide average of 2.0?

2. Two-sample significance test
Did school class B consisting of 10 pupils with an average grade of 1.5
perform significantly different from school class A (the combined sample
standard deviation of A and B is 1.1)?

18.11.2013 | Klaus Sembritzki | Pattern Recognition Lab (CS 5) | Null Hypothesis Significance Testing 3



Significance Testing

What we want to know
1. Given normally distributed observations y = {yi|i = 1..n}, is the

population mean nonzero?
2. Given normally distributed observations y1 = {y1,i|i = 1..n1},

y2 = {yi|i = 1..n2,i} with equal variance, do the population means differ?

Null Hypothesis Significance Testing (NHST)
Reformulation as a NHST problem (not equivalent to original question)
1. Is it reasonably likely to draw samples as extreme as the observed

y = {yi|i = 1..n} from a normal distribution with zero mean and unknown
variance?

2. Is it reasonably likely to draw samples as different as the observed
y1 = {y1,i|i = 1..n1}, y2 = {y2,i|i = 1..n2,i} from the same normal
distribution?
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Terminology

Null hypothesis
The “boring”, default hypothesis
• The drug has no effects
• Male participants do not differ from female participants

Alternative hypothesis
The exciting, unexpected result that is reported in a scientific publication (a
practice which is sometimes criticized)
• Opposite of the null hypothesis
• No one will believe it unless it is proven

Statistical inference
• The process of proving or disproving something with statistical methods
• In NHST, we prove the alternative hypothesis by disproving the null

hypothesis
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Control of the Type I Error Rate

NHST controls the false positive rate (FPR) of a two-class problem
• Class “n”: Samples for which the null hypothesis is fulfilled
• Class “a”: Samples for which the alternative hypothesis is fulfilled

Given samples yi with class labels yi ∈ {n, a} and a classifier that predicts a
class label ỹi for each sample, the FPR is defined as the probability
P(ỹi = a|yi = n)

• We observe exactly one sample in total and therefore perform only one
test (classification) in total
• Features are not vector valued in this talk, but just scalars
• FPR is typically used to describe the behaviour of a classifier
• The term type I error rate is used instead of FPR in NHST and assigned

the letter α
• Freeze the type I error rate at a small value, typically α = 5 %
• If our sample is classified as “a” despite this small chance of committing a

type I error, we infer that the null hypothesis does not hold (and that the
alternative hypothesis must therefore be correct)
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Student’s t-Distribution

Chi-squared distribution
n∑

i=1

Z 2
i ∼ χ2

n

• Zi ∼ N(0, 1) and independent
• n is called “degrees of freedom” (reason for this naming is explained later)
• n times the probability distribution of the sample variance (sample size n)

of a standard normal random variable with known mean

Student’s t-distribution (signal-to-noise ratio)

T =
Z√
V/n

• Z ∼ N(0, 1) (Z for z-value),
• V ∼ χ2

n (V for variance),
• Z and V are independent.
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Model Equation

Estimate mean and variance of k normal distributions with equal variance
{Yl ∼ N(µl, σ)|l = 1..k} based on a sample of size n = n1 + n2 + ...nk ,
y ∈ Rn with nl samples from class l .

General linear model

Xb = µ = y − ε ε : Statistical error

Xb̂ = µ̂ = y − ε̂ ε̂ : Statistical residual

Least squares solution

ε̂ = y − Xb̂ = µ + ε− XX+(µ + ε)

= (I − XX+)ε ε̂ is a projective mapping of ε
onto an N-k dimensional subspace

ε̂ ⊥ X ε̂ independent of model parameters

Example for k=2

X =
1 −1
1 1
1 1

y =
1.1
1.9
2.1

µ =
1
2
2

The first column of the design matrix X models the intercept.
The second column is -1 for class 1 and 1 for class 2.
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Basu’s Theorem
Reminder: Student’s t-distribution

T =
Z√
V/k

• Z ∼ N(0, 1),
• V ∼ χ2

n,
• Z and V are independent.

Idea: Calculate a t-statistic from b̂ and σ̂
• Convert b̂ into something with a standard normal distribution
• Convert σ̂ into something with a chi-squared distribution

b̂ and σ̂ are independent due to Basu’s theorem: “Any boundedly complete sufficient
statistic is independent of any ancillary statistic.”
• Boundedly complete sufficient: fulfilled, but this talk will not go into detail
• Ancillary: fulfilled, because ε̂ ⊥ X and ε̂ does thus not depend on the model

parameters µl

In other words, the sample mean and the sample standard deviation of a normally
distributed random variable are statistically independent (the normal distribution is the
only probability distribution with this property)
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Variance Estimation and t-Statistic
Σ̂, the probability distribution σ̂ is drawn from

• ε̂, drawn from Ê , results from a projective mapping of ε onto an N-k dimensional
subspace ε̂ = (I − XX+)ε

• Probability density point symmetric around origin⇒ rotate euclidian basis y1, .., yk to
new basis y ′1, .., y

′
k , aligned to image and nullspace of the mapping (see figure)

• Coefficients in new basis still i.i.d.
• ⇒∑n

i Ê2
i = (N − k) · Σ̂2 ∼ χ2

N−k · σ2

B̂, the probability distribution b̂ is drawn from

Var(B̂) = Var(X+(µ + E)) = diag(X+(X+)T ) · σ2

B̂ ∼ N(0,
√

diag(X+(X+)T ) · σ)

t =
b̂√

diag(X+(X+)T ) · σ̂

t is sampled from a Student’s t dis-
tribution with N-k degrees of free-
dom

y1

y2y1+y2=0

y'1

y'2
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Special Design Matrices

One-sample t-test

t =
y − µ0

s/
√

n
df = n − 1

Two-sample t-test

t =
y1 − y2

sy1y2 ·
√

1
n1

+ 1
n2

sy1y2 =

√
(n1 − 1)s2

y1
+ (n2 − 1)s2

y2

n1 + n2 − 2
df = n1 + n2 − 2

Unequal variances
Not considered in this talk
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p-Value

1. Two-tailed one-sample t-test
School class A, consisting of 15 pupils, has an average grade of 2.5 (sample mean) and
a sample standard deviation of 1.1 in their final exam. Did the pupils perform significantly
different than the nation-wide average of 2.0?

• Null hypothesis H0: “The pupils’ grades have the same mean as the nation’s”
• Calculate the one-sample t-statistic of “grade - 2.0” with 14 degrees of freedom
• Reject H0 if the p-value p < α, with p = P(|T | > |t |) and significance level α = 5%

−6 −4 −2 0 2 4 6
t-statistic

0.00
0.05
0.10
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p-Value

1. Right-tailed one-sample t-test
School class A, consisting of 15 pupils, has an average grade of 2.5 (sample mean) and
a sample standard deviation of 1.1 in their final exam. Did the pupils perform significantly
different than the nation-wide average of 2.0?

• Null hypothesis H0: “The pupils’ grades are lower than the nation’s”
• Calculate the one-sample t-statistic of “grade - 2.0” with 14 degrees of freedom
• Reject H0 if the p-value p < α, with p = P(T > t) and significance level α = 5%
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p-Value

1. Left-tailed one-sample t-test
School class A, consisting of 15 pupils, has an average grade of 2.5 (sample mean) and
a sample standard deviation of 1.1 in their final exam. Did the pupils perform significantly
different than the nation-wide average of 2.0?

• Null hypothesis H0: “The pupils’ grades are higher than the nation’s”
• Calculate the one-sample t-statistic of “grade - 2.0” with 14 degrees of freedom
• Reject H0 if the p-value p < α, with p = P(T < t) and significance level α = 5%
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p-Value

2. Two-tailed two-sample significance test
Did school class A, consisting of 15 pupils with an average grade of 2.5,
perform significantly different from school class B, consisting of 10 pupils
with an average grade of 1.5 (the combined sample standard deviation of A
and B is 1.1)?
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Confidence Intervals

Lower (cl) and upper (cu) value of confidence interval

cl = min
c
{c|P (T > t (x − c)) < α/2}

cu = max
c
{c|P (T < t (x − c)) < α/2}

Divide significance levels by 2 because the upper and lower type I error
events are disjoint.

A

B C

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
Disjoint events

A

B C

P(A ∪ B ∪ C) < P(A) + P(B) + P(C)
Overlapping events

Venn diagram of the sample space and associated events
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Confidence Intervals

Lower (cl) and upper (cu) value of confidence interval
cl = min

c
{c|P (T > t (x − c)) < α/2}

cu = max
c
{c|P (T < t (x − c)) < α/2}

Extension: simultaneous and pointwise confidence bands

Source: Wikipedia “Confidence and prediction bands”
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Probability of a Type I Error

• The two-tailed t-test and the confidence intervals have a probability of
exactly α to do a type I error under H0

• The one-tailed test has a probability of at most α to do a type I error
under H0. The maximum type I error is reached if µ = 0.
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Paired Test

If observations are paired, e.g. each patient was measured before and after
treatment, then those observations are no more statistically independent and
a two-sample t-test can not be performed. However, in such a situation a
paired test can be done.

Paired test by pairwise subtraction
Let yb,i be the measurement of the i-th subject before the treatment and ya,i

be the measurement of the same subject after the treatment. Then perform
a one-sample t-test on the differences ya,i − yb,i .
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Nonparametric Tests

If the data is not normally distributed, nonparametric tests can be used
• Mann–Whitney U test
• Kruskal-Wallis non-parametric ANOVA
• Permutation tests
• Wilcoxon signed-rank test (paired test)
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Multiple Comparison Procedures

Consider the following null hypothesis test.

• H0: It is not Christmas today.
• Test statistic: Roll two dice. If both come up six, it is Christmas.

H0 is rejected with a probability of 1/36 ≈ 2.8% < 5%.

The test seems useless for two reasons.
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Multiple Comparison Procedures

Consider the following null hypothesis test.

• H0: It is not Christmas today.
• Test statistic: Roll two dice. If both come up six, it is Christmas.

H0 is rejected with a probability of 1/36 ≈ 2.8% < 5%.

The test seems useless for two reasons.
• It has a low statistical power (probability that the test will reject the null

hypothesis when the alternative hypothesis is true).
This talk will not discuss statistical power.
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Multiple Comparison Procedures

Consider the following null hypothesis test.

• H0: It is not Christmas today.
• Test statistic: Roll two dice. If both come up six, it is Christmas.

H0 is rejected with a probability of 1/36 ≈ 2.8% < 5%.

The test seems useless for two reasons.
• It has a low statistical power (probability that the test will reject the null

hypothesis when the alternative hypothesis is true).
This talk will not discuss statistical power.
• One thinks “So can I just roll the dice multiple times until they show up 6,

and then it is Christmas?”.
The answer to this question is “no”, which is addressed by multiple
comparison procedures.
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Multiple Comparison Procedures

Real-world examples

• Which out of 130 regions of interest inside the brain show activation in an
fMRI experiment using 30 subjects?
• Which out of 100,000 voxels show activation in an fMRI experiment using

30 subjects?
• Which out of 10,000 genes differ in their expression level in 100 different

persons?
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Bonferroni Correction

We perform m null hypothesis tests, V is the number of false positives (type I errors) of
those m tests. The familiywise error rate (FWER) is defined as

FWER = Pr(V ≥ 1)

• Assumption: m possible type I errors mutually exclusive (worst case, see the figure)
• ⇒ FWER, the probability of at least one type I error out of the m observations, is m · α
• ⇒ Threshold not at α, but at α/m

Drawbacks
• Overestimates FWER because it assumes mutually exclusive type I errors
• FWER might not be the desired error measure (see false discovery rate on next slide)

A

B C

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
Disjoint events

A

B C

P(A ∪ B ∪ C) < P(A) + P(B) + P(C)
Overlapping events

Venn diagram of the sample space and associated events
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False Discovery Rate

Definition

FDR = Qe = E[Q] = E

[
V
R

]
where
• V

R is defined to be 0 when R = 0
• V is the number of false positives (type I errors, also called “false discoveries”)
• R is the number of rejected null hypotheses (also called “discoveries”)

FDR control using the Benjamini-Hochberg procedure (BH step-up procedure)

• Order the p-values in increasing order and denote them by P1 . . .Pm

• For a given significance level α, find the largest k such that Pk ≤ k
mα

• Reject (i.e. declare positive discoveries) all H(i) for i = 1, . . . , k

The BH procedure is valid when the m tests are independent, and also in various
scenarios of dependence.
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Thank you for your attention.
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