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Pattern Recognition Pipeline 

n  The goal of analog to digital conversion is to gather 
sensed data      and change it to a representation 
that is amenable to further digital processing. 

A/D Pre-processing Feature Extraction 
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Need for A/D Conversion 

n  Continuous range of     values 
n  Continuous range of amplitude          values. 
n  We can only store a finite amount of values 

n    in a finite number of bits (discrete values). 
n  Goal: Find a discrete representation such that the 

original analog signal can be accurately reconstructed. € 
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On Accuracy 

n  We want to have the analog signal accurately 
reconstructed. 

n  What is accurate? 
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On Accuracy 

n  We want to have the analog signal accurately 
reconstructed. 

n  What is accurate? Ideally no loss of information. 

n  Sometimes in order to get better speeds we accept 
some minimal information loss. 

n  We often have to face trade-offs: 

n  voice recording where you skip letters, or pauses 
n  digital images with aliasing effects 

n  movies with blocky look 
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The two Aspects of A/D Conversion 

n  The function         must be represented by a vector      
or by a sequence of numbers using a finite number 
of values. 

n  For higher dimensional signals, like an image, the 
input function             must be represented by a 
vector    or by a sequence of numbers at distinct 
locations        . At each such location there is only a 
finite number of values that can be stored.    

n  In the context of pictures: 
§  How many pixels do I need? (How many (i,j) locations?) 

§  How many bits per pixel? 
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2.  representing the amplitude values by a finite 

number of natural numbers: 
 quantization 

A/D Conversion Steps 

n  The A/D conversion (coding) involves: 
1. measuring the amplitude values (or function values) 

at a finite number of positions: 

 sampling, 
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Sampling Issues 

n  We could have different sampling steps along the 
sampling axis, but in most cases we assume 

  Regular (equidistant) sampling. 
n  Even under regular sampling, one must decide: 
 
 
 

€ 

t
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" f (t)

²  Where do we take the 
samples along the analog 
signal so that we can 
properly reconstruct the 
original function.  

²  In other words: What is the 
sampling interval dt or dx? 
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Quantization Issues 

n  Along the vertical axis we also have continuous values 
that we can only store using a finite number of natural 
numbers. 

n  Typical image options: 
§  8 -16 bits per pixel for grayscale images 
§  8 -16 bits per color channel (R,G,B) per pixel for color images 
§  1 bit per pixel for black/white images 
§  special encoding per application 

n  Unlike sampling, quantization intervals are often not 
equidistant. 

n  In the case of non-uniform quantization, the behavior of 
the quantizer is decided by the characteristic function, 
which relates the input continuous values to their 
discrete representation. 
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A/D Analysis Tools 

n  Important questions: 
1.  How do we decide the sampling rate? 
2.  How do we derive the characteristic function of the quantizer? 
3.  How can these affect my pattern recognition system? 

n  In order to fulfill the necessary performance 
guarantees (accurate reconstruction) we need to 
use the appropriate tools. 

n  Sampling Tool: Fourier Analysis 
 Fourier Analysis allows us to study signals as a collection of periodic 
signals. This periodicity (frequency) then guides the sampling rate. 

n  Quantization Tool: Probability Theory 
 Study previous behavior of the signal. High probability values use 
dense quantization. Lower probability values use sparse quantization. 
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Fourier Analysis 

n  Based on the Fourier series. 

n  The original theory showed how any periodic 
function can be decomposed to a set of sines and 
cosines. 

n  The theory was generalized for non-periodic 
functions. 

n  Through the Fourier analysis we have a technique of 
decomposing complex patterns into a collection of 
simpler patterns. 
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Signal Decomposition Example 

Plot courtesy of http://www.doctronics.co.uk/signals.htm 
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Fourier Transform 
n  How do we find the underlying sines and cosines of a 

function f(x)? 

n  In other words how do we get the Fourier series of f(x)?  
n  Using the Fourier Transform: 

 where           is the signal in the frequency domain and     is 
the frequency of the sinusoidal wave. 

 Note: the signal must be absolutely integrable, 
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F (ω) = FT{ f (x)} = f (x)e− jωx
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∫ dx
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∫ dx <∞

n  Given         , how do we get the original signal f(x) back?   

€ 

F (ω) 
n  Using the Inverse Fourier Transform: 
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f (x) = FT−1{F (ω)} =
1
2π

F (ω)e jxω

−∞

∞

∫ dω
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Fourier Series 

n  A periodic function f(x) has the Fourier series 

 
 where       is the periodicity of the signal and      are the 
Fourier coefficients. 

 
 

 Note: Though both equations have         , the Fourier 

coefficients ak have a band-limited integral, which can be 

evaluated. Thus ak becomes a function of ω.  
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The Importance of Nyquist Sampling Thrm  

n  This theorem provides a theoretical sampling rate at 
which we will incur (under certain conditions) no 
loss of information. 

n  High sampling rate leads to too much data. 
n  Low sampling rate leads to loss of information. 
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Band-Limited Function 

n  A function f(x) is band-limited in the frequency 
range              , if               for                       
where       is the boundary frequency. 

n  What is so special about frequency band limited 
functions? 
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(−Bx,Bx )   

€ 

F (ω) = 0

€ 

ω >ω0 = 2πBx

€ 

ω0

n  They are restricted to a finite range of frequencies. 
n  Band limited => finite number of sin and cos terms  

      => finite number of coefficients 

  => signal can be reconstructed from a limited 
number of discrete samples. 
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Example of a Band-Limited Signal 

Plot courtesy of http://www.doctronics.co.uk/signals.htm 
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Nyquist Sampling Theorem 

n  Let f(x) be a band-limited function in the frequency 
range              . 

n  Then f(x) is completely determined by the samples 
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(−Bx,Bx )

  

€ 

fk = f (k Δx)    where k = 0,±1,±2,…
 if the sampling interval is chosen as 
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Δx ≤ 1
2Bx

=
π
ω0

€ 

f (x) = fk
k=−∞

∞

∑ sin(2πBx (x − kΔx))
2πBx (x − kΔx)

= fk
k=−∞

∞

∑ sinc(2πBx (x − kΔx))

n  The original signal f(x) can be reconstructed without 
any error using the following interpolation 
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Main Idea of Proof 

n  Goal: To show that by using the sampling rate 
recommended by Nyquist’s sampling theorem, we 
incur no information loss. 

n  We want to show that the f(x) we reconstruct from 
the samples       is identical to the original band-
limited signal. 

n  We will use the Fourier Transform, the Inverse 
Fourier Transform and the Fourier Series to prove 
the theorem. 

n  Recall that for a band-limited signal               for 
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fk

  

€ 

F (ω) = 0

€ 

ω >ω0 = 2πBx



 Seite 20  Seite 20 

Step 1  

n  If we had the Fourier Transform of the 
reconstructed signal,         , we could compute f(x) 
via the Inverse Fourier Transform, as follows: 
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F (ω)

  

€ 

f (x) = FT−1{F (ω)} =
1
2π

F (ω)e jxω

−ω0
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∫ dω

n  Problem: We don't have         .   
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n  If we treat f(x) as a periodic signal with period     , 
we can get           using the Fourier Series 
representation.  
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n  Rewrite this equation so that it looks like an Inverse 
Fourier Transform (                        ). 
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f (x) = FT−1{F (ω)} =
1
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F (ω)e jxω
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Step 2 

n  In order to use the Fourier Series representation we 
need the Fourier coefficients. 
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Step 2 - continued 
n  The Fourier series coefficients are now: 
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n  But according to the Inv. FT,                           . Thus:   
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n  The Nyquist Sampling theorem recommends a 
sampling rate of                           . If we use such 
a sampling rate:  

€ 

Δx ≤ 1
2Bx( ) = π ω0

€ 

ak = Δx f −k Δx( )
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Step 3 

n  Take the      and put them back in the Fourier series 
and hopefully we get the Fourier Series to look like 
an interpolation formula. 
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F (ω) = Δx f (−k Δx)
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n  Via a variable substitution we get: 
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F (ω) = Δx f (k Δx)
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∞

∑ e− jkωΔx
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Step 4 

n  Now we have an estimate of the Fourier Transform 
that we obtained directly from our discrete samples. 

n  We are ready to use the Inverse Fourier Transform to 
see which signal we reconstruct from these samples.  
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Step 4 - continued 

n  We can then evaluate the integral 
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n  Recall that                          . Hence  
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sinθ =
1
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e jθ − e− jθ( )
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f (x) =
Δx
2π

 f (k Δx)
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Step 4 – last part 

n  If we have                   and               and 

€ 

fk = f (k Δx)

€ 

Δx =
1
2Bx

€ 

ω0 = 2πBx

€ 

f (x) =  f (k Δx)
k=−∞

∞

∑ Δx
π

sin(ω0(x − kΔx))
(x − kΔx)

€ 

f (x) =  fk
k=−∞

∞

∑ sin(2πBx (x − kΔx))
2πBx (x − kΔx)

n  Thus, if we use the Nyquist sampling rate, we can 
reconstruct the original signal by interpolating the 
discrete samples.  
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On the Nyquist Samping Theorem 

n  So, the precise reconstruction of f(x) requires: 
§  an sampling interval                

§  an infinite number of samples. 

n  In practice we are usually dealing with limited time, so 
we typically prefilter the signal and choose              . 

n  Theorem: There is no function (in L2), which is both 
band-limited and time-limited (except for the identity 
function).  

n  The smaller the function in the spatio-temporal domain, 
the larger it is in the frequency domain and vice versa. 

€ 

Δx =
1
2Bx
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Δx <
1
2Bx
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Impact of Nyquist Sampling Theorem 

Undersampling: Sampling with a sampling frequency which is lower 
than twice the highest frequency of the sampled signal. 
The high frequency waveform is perceived (is aliased) as a lower-
frequency waveform.  
Plots courtesy of http://music.columbia.edu/cmc/musicandcomputers/chapter2/02_03.php and 
http://de.wikipedia.org/wiki/Alias-Effekt 
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Impact of Nyquist Sampling Theorem (2) 

Oversampling: Sampling with a sampling frequency which is much 
higher than twice the highest frequency of the sampled signal. 
It avoids aliasing, improves resolution and reduces noise.  
Plot courtesy of http://cp.literature.agilent.com/litweb/pdf/ads2003a/adshbapp/adshbapp.html 
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Impact of Nyquist Sampling Theorem (3) 

An example of how the 
captured signal (in blue) 
will look like compared 
to the original one (in 
red) as we increase the 
Nyquist sampling 
interval. 

Plots courtesy of Francois Malan 
http://francoismalan.com/
2012/07/anti-alias-moire-nikon-
d800e/ 
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Temporal vs. Frequency Domain  

n  Compromise between accuracy of representation (high 
prec., many samples, small intervals) storage requirements 
(little storage, few samples, large intervals). 
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Sampling in 2D 

n  We need to sample in each direction. 

n              is coded as         where 

n  We typically set                     and                    
resulting in                    . 

n  Such a sampling setup results in a uniform sampling 
grid. 
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f (x,y)

€ 

f j ,k

  

€ 

f j ,k = f (x0 + Δx,y0 + Δy)   
where   j = 0,1,…,Mx −1     k = 0,1,…,My −1

€ 

x0 = y0 = 0

€ 

Δx = Δy =1

€ 

f j ,k = f ( j,k)
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Uniform Sampling Grids 

n  There are 3 uniform sampling grids on a plane: 

1.  Square grid 

2.  Hexagon grid 

3.  Triangle-based grid 
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Sound Frequency Fun  

n  If you want to get a better feeling of the frequency 
components of sound signals, you may want to 
download the following Windows software: 

http://www.zeitnitz.de/Christian/scope_de 
 

n  It uses the sound captured from your PC’s 
microphone as input to a sound oscilloscope, which 
let’s you visualize the sound-wave captured by your 
microphone.  

Thanks to Felix Furtmayr for suggesting this tool. 


