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Pattern Recognition Pipeline A
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B The goal of analog to digital conversion is to gather
sensed data f’ and change it to a representation
that is amenable to further digital processing.
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Need for A/D Conversion i
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Continuous range of 7 values

Continuous range of amplitude f (¢) values.

We can only store a finite amount of values
in a finite number of bits (discrete values).

Goal: Find a discrete representation such that the
original analog signal can be accurately reconstructed.



On Accuracy A

m We want to have the analog signal accurately
reconstructed.

m What is accurate?



On Accuracy A

m We want to have the analog signal accurately
reconstructed.

m What is accurate? Ideally no loss of information.

B Sometimes in order to get better speeds we accept
some minimal information loss.

m We often have to face trade-offs:

B voice recording where you skip letters, or pauses
m digital images with aliasing effects

B movies with blocky look



The two Aspects of A/D Conversion A

m The function f'(#) must be represented by a vector ]7
or by a sequence of numbers using a finite number
of values.

B For higher dimensional signals, like an image, the
input function f'(x,y) must be represented by a
vectorf or by a sequence of numbers at distinct
locations (i,j). At each such location there is only a
finite number of values that can be stored.

B In the context of pictures:

= How many pixels do I need? (How many (i) locations?)

= How many bits per pixel?
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A/D Conversion Steps A

m The A/D conversion (coding) involves:

1. measuring the amplitude values (or function values)
at a finite number of positions:

Sampling, f,(l“)/
/T”} |

2. representing the amplitude values by a finite
number of natural numbers:

\

/

quantization
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Sampling Issues A

m We could have different sampling steps along the
sampling axis, but in most cases we assume
Regular (equidistant) sampling.
B Even under regular sampling, one must decide:

< Where do we take the
samples along the analog f'(t)/
signal so that we can "
properly reconstruct the /
original function. N

< In other words: What is the

sampling interval dr or dx? Tt




Quantization Issues N

B Along the vertical axis we also have continuous values
that we can only store using a finite number of natural
numbers.

B Typical image options:

= 8 -16 bits per pixel for grayscale images
= 8 -16 bits per color channel (R,G,B) per pixel for color images

= 1 bit per pixel for black/white images
= special encoding per application

m Unlike sampling, quantization intervals are often not
equidistant.

B In the case of non-uniform quantization, the behavior of
the quantizer is decided by the characteristic function,
which relates the input continuous values to their
discrete representation.



A/D Analysis Tools N

m Important questions:

1. How do we decide the sampling rate?
2. How do we derive the characteristic function of the quantizer?
3. How can these affect my pattern recognition system?

m In order to fulfill the necessary performance
guarantees (accurate reconstruction) we need to
use the appropriate tools.

m Sampling Tool: Fourier Analysis

Fourier Analysis allows us to study signals as a collection of periodic
signals. This periodicity (frequency) then guides the sampling rate.

B Quantization Tool: Probability Theory

Study previous behavior of the signal. High probability values use
dense quantization. Lower probability values use sparse quantization.
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Fourier Analysis b

B Based on the Fourier series.

m The original theory showed how any periodic
function can be decomposed to a set of sines and
cosines.

B The theory was generalized for non-periodic
functions.

B Through the Fourier analysis we have a technique of
decomposing complex patterns into a collection of
simpler patterns.



Signal Decomposition Example
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Plot courtesy of http://www.doctronics.co.uk/signals.htm
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Fourier Transform A

m How do we find the underlying sines and cosines of a
function f(x)?

B In other words how do we get the Fourier series of f(x)?
m Using the Fourier Transform:

F@) =FT{f(0)} = [ f(x)e " dx

where 7 (w) is the signal in the frequency domain and w is
the frequency of the sinusoidal wave.

Note: the signal must be absolutely integrable, f|f(x)|dx < 00

m Given F(w), how do we get the original signalf(x) back?
m Using the Inverse Fourier Transform

f(x)=FT {f(w)}—— f Flw)e"™ dw
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Fourier Series A

B A periodic function f(x) has the Fourier series

© 2nj( kw )

f((j)) = Eake 0

k= —00

where o, is the periodicity of the signal and a, are the
Fourier coefficients.

Note: Though both equations have ‘F(w), the Fourier
coefficients a, have a band-limited integral, which can be

evaluated. Thus a, becomes a function of w.



The Importance of Nyquist Sampling Thrm Al

B This theorem provides a theoretical sampling rate at
which we will incur (under certain conditions) no
loss of information.

J(x)

S
Ll

X
m High sampling rate leads to too much data.

m Low sampling rate leads to loss of information.



Band-Limited Function i

m A function f(x) is band-limited in the frequency
range (-B_,B.), if F(w)=0 for |w|>w,=27B,
where o, is the boundary frequency.

m What is so special about frequency band limited
functions?

B They are restricted to a finite range of frequencies.
B Band limited => finite number of sin and cos terms
=> finite number of coefficients

=> signal can be reconstructed from a limited
number of discrete samples.



Example of a Band-Limited Signal
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Plot courtesy of http://www.doctronics.co.uk/signals.htm




Nyquist Sampling Theorem N

m Let f(x) be a band-limited function in the frequency
range (-B_,B)).

m Then f(x) is completely determined by the samples
fi=f(kAx) wherek=0,x1,+2,. ..

iIf the sampling interval is chosen as

Axsl=n

2B, w,

X

m The original signal f(x) can be reconstructed without
any error using the following interpolation

O, Sin2aB, (x - kAx))
J(x) = ,wa 2B (x - k)

- i f.sincQaB_(x — kAx))

k:—OO
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Main Idea of Proof i

B Goal: To show that by using the sampling rate
recommended by Nyquist’s sampling theorem, we
incur no information loss.

m We want to show that the f(x) we reconstruct from
the samples f, is identical to the original band-
limited signal.

B We will use the Fourier Transform, the Inverse

Fourier Transform and the Fourier Series to prove
the theorem.

B Recall that for a band-limited signal F(w)=0 for
w|>w, =27B,



Step 1 A

m If we had the Fourier Transform of the

reconstructed signal, JF(®) , we could compute f(x)
via the Inverse Fourier Transform, as follows:

@)
f(x)=FT{ F(w)} = %lf (w)e™ dw
7T oy
m Problem: We don't have F(w).

m If we treat f(x) as a periodic signal with period w,,

we can get ‘F(w) using the Fourier Series
representation.



Step 2 A

m In order to use the Fourier Series representation we
need the Fourier coefficients.

a, = —ff(w)e

2w, *

B Rewrite this equation so that it looks like an Inverse
Fourier Transform (/@=rFrcren-o_f Fow™do),

a, =

a)e@gzw())
7w J ff( )
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Step 2 - continued N

B The Fourier series coefficients are now:

w, jw(—kn

"o )da)

a, =—— w)e
S f F()
B But according to the Inv. FT,f(x)=2im F(w)e™dw . Thus:
JU
T kr ~
ak } _f(__)
W @

B The Nyquist Sampling theorem recommends a

i 1 _TT
sampllng rate of AXS%ZBX) A)O . If we use such
a sampling rate:

a, = Ax f (—k Ax)



Step 3 A

m Take the 4, and put them back in the Fourier series
and hopefully we get the Fourier Series to look like
an interpolation formula.

For- Sael®

k= —00

Flw)= Y Axf(-k Ax)e™ ™™

k=—OO

m Via a variable substitution we get:

Flw)= Y Axf(k Ax)e ™

k=—OO
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Step Z. A

B Now we have an estimate of the Fourier Transform
that we obtained directly from our discrete samples.

m We are ready to use the Inverse Fourier Transform to
see which signal we reconstruct from these samples.

f(x)=— f Flw)e™dw = — f ( Y Axf(k Ax)e” J’W’M) o da

—wo —a)o k=—o0

f)=—= 2Axf<k A [ e e do

k——OO —0)0

f(x)=5- 2Axf<k A e

k——OO —(UO
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Step 4 - continued N

m We can then evaluate the integral

0o

jo(x-kAx) (%o
f= 32 Ax)[ ‘ }

2 j(x — kAx)
00 A.x 1 eja)o (x—kAx) _ e—jwo (x—kAx)
foy= >  — f(k AX)(—.)(
k;_w 27T J (x — kAx)
m Recall that sin¢9=i.(.ef‘9 -¢). Hence
2j

N Ax 2sin(w,(x — kAx))
)= ) o flkAn==""

k=—OO




Step 4 - last part N

1
m If we have f, = f(kAx) and Ax=§ and w, =2xB,

Ax sin(w,(x — kAx))
T (x — kAx)

fx)=") f(kAx)

k= —00

sin(2nB_(x — kAx))
27B_(x — kAx)

f(x)= ifk

k=—OO

B Thus, if we use the Nyquist sampling rate, we can
reconstruct the original signal by interpolating the
discrete samples.



On the Nyquist Samping Theorem A

m So, the precise reconstrucltion of f(x) requires:

_ L Ax =
an sampling interval 2B

= an infinite number of samples.

m In practice we are usually dealing with limited timei, SO
we typically prefilter the signal and choose Ax <

2B’

m Theorem: There is no function (in L,), which is both
band-limited and time-limited (except for the identity
function).

m The smaller the function in the spatio-temporal domain,
the larger it is in the frequency domain and vice versa.
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Impact of Nyquist Sampling Theorem A

. Abtastzeitpunkte
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Signal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Zeit in Vielfachen der Periodendauer des Ausgangssignals

Undersampling: Sampling with a sampling frequency which is lower
than twice the highest frequency of the sampled signal.

The high frequency waveform is perceived (is aliased) as a lower-

frequency waveform.

Plots courtesy of http://music.columbia.edu/cmc/musicandcomputers/chapter2/02 03.php and
http://de.wikipedia.org/wiki/Alias-Effekt




Impact of Nyquist Sampling Theorem (2) A

Oversampling
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Order=3, Qversample=1 Qrder=3, Qversample=2
Number of samples=({3+1)*1=4 Number of samples={3+1)*2=8

For each period of the input tone, the simulator will take x number
of samples, determined by the values for Order and Qversample.

Oversampling: Sampling with a sampling frequency which is much
higher than twice the highest frequency of the sampled signal.

It avoids aliasing, improves resolution and reduces noise.
Plot courtesy of http://cp.literature.agilent.com/litweb/pdf/ads2003a/adshbapp/adshbapp.html




Impact of Nyquist Sampling Theorem (3) A
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Temporal vs. Frequency Domain A

‘f (t) F(w)

| t

= ||

m Compromise between accuracy of representation (high
prec., many samples, small intervals) storage requirements

(little storage, few samples, large intervals).




Sampling in 2D A

B We need to sample in each direction.

m f(x,y) iscodedas f, where

Jiw=J(xo+Ax,y,+Ay)
where j=0,1,....M_ -1 k=O,1,...,My—1

m We typically set x,=y,=0 and Ax=Ay =1
resulting in f;, = f(J,k).

B Such a sampling setup results in a uniform sampling
grid.
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Uniform Sampling Grids A

B There are 3 uniform sampling grids on a plane:

1

1. Square grid

2. Hexagon grid

3. Triangle-based grid
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Sound Frequency Fun N

m If you want to get a better feeling of the frequency
components of sound signals, you may want to
download the following Windows software:

http://www.zeitnitz.de/Christian/scope de

m Jt uses the sound captured from your PC’s

microphone as input to a sound oscilloscope, which
let’s you visualize the sound-wave captured by your
microphone.

Thanks to Felix Furtmayr for suggesting this tool.



