
Analog to Digital Conversion: 
Quantization 
from the Perspective of  Pattern Recognition  

Dr. Elli Angelopoulou 
Lehrstuhl für Mustererkennung (Informatik 5) 
Friedrich-Alexander-Universität Erlangen-Nürnberg 



 Seite 2  Seite 2 

Pattern Recognition Pipeline 

n  The goal of analog to digital conversion is to gather 
sensed data      and change it to a representation 
that is amenable to further digital processing. 
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Need for A/D Conversion 

n  Continuous range of     values 
n  Continuous range of amplitude          values. 
n  We can only store a finite amount of values 

n  in a finite number of bits (discrete values). 
n  Goal: Find a discrete representation such that the 

original analog signal can be accurately reconstructed. € 
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2.  representing the amplitude values by a finite 

number of natural numbers: 
 quantization 

A/D Conversion Steps 

n  The A/D conversion (coding) involves: 
1. measuring the amplitude values (or function values) 

at a finite number of positions: 

 sampling, 
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Quantization 

n  The number of quantization steps is defined by the number 
of bits we use to represent the value of the function. 
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Bits 

n  Two key questions: 
1.  How many bits? 
2.  How do we use these bits? 

n  When we use B bits, we get 2B quantized levels. 
n  Examples: 

§  most intensity images: B = 8-12, 256 – 4,096 different gray values. 
§  medical images: B = 10 - 16, 1024 – 65,536 different gray values. 
§  most color images: B = 24-36, 8-12 for each color channel, at least 

16 million colors.  

n  Typical data sizes for a 1024 x 1024 (1 MP) image: 
§  at 8 bits => 1MB/img => a movie at 30fps creates 30MB/sec 
§  at 12 bits => almost 1.6 MB/img => at 30 fps we get 47MB/sec 
§  at 24 bits => 3.1 MB/img => at 30 fps we get 93MB/sec 

=> a 5 minute movie needs 27GB. 
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Audio vs. Video Data Rates 

Type 

  
Audio, understandable 
Audio, MPEG encoded 

  Audio, CD quality 
 
 

Video, MPEG-2 
Video, NTSC 
Video, HDTV 

Specifications 

  
1 channel, 8kHz @ 8 bits 

CD equivalence 
2 channels, 44.1kHz @16 bits 

 
 

   640 × 480, 24 bits/pixel 
   640 × 480, 24 bits/pixel 

  1280 × 720, 24 bits/pixel 

Data Rate 

 
64 kbit/sec 

384 kbit/sec 
1.4 Mbit/sec 

 
 
0.42 MB/sec 

27 MB/sec 
81 MB/sec 
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Quantization Error 

n  Quantization Error: The error we make when we 
approximate a real value      by a discrete value     : 
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Signal-to-Noise Ratio (SNR) 

n  There exists a standardized way of expressing the 
noise in a system or sensor that is associated with 
quantization. It is called the Signal-to-Noise Ratio. 

n  SNR is a general measure that is used for different 
types (sources) of noise.  

n  In Engineering SNR is a power ratio: 

n  Within the context of pattern recognition, because of 
the uncertainty involved in the input signal, SNR is 
the ratio of the expected signal over the expected 
quantization noise.  

€ 

SNR =
Psignal
Pnoise

€ 

SNR =
E{ " f 2}
E{n2}
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Signal-to-Noise Ratio (SNR) - continued 
n  The Signal-to-Noise Ratio is defined as: 
 

 where the quantization noise n is                  .   

n  The expected value E{} is defined as:  

 where     is a random variable, and         is the 
probability density function (pdf) of   , which tells us 
how often different values of     occur.  

n  So, similar information on      can guide us on how 
many bits to use. 
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SNR and logarithmic scale 

n  Because input signals can have a wide dynamic 
range, SNR is usually expressed in terms of the 
logarithmic decibel scale:  

€ 

SNRdB = r =10log10
E{ " f 2}
E{n2}

=10log10( " r )

n  Do we want a small or a large SNR? Why? 
      Large is better. 
      We want over 30dB SNR.  

 42dB is considered “impressive” for SLR cameras. 
 In computer vision we often use sensors with 60dB.  
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Does One Bit Make a Difference? 

n  Important question: How many bits should one use 
when quantizing a particular family of functions/
signals (i.e. medical images, or remote sensing data 
etc.)? 

n  Does one additional bit make a difference? 

n  Under certain assumptions (see next slide), the SNR 
is directly proportional to the number of bits used 
for quantization: 

n  This means that 1 extra bit can increase the SNR by 
6dB. 

€ 

SNRdb = r = 6B − 7.2
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Assumptions 

1.  On average we have white noise. 

2.  We have a signal with               .  

3.  The error (noise) is uniformly distributed. 
4.  The signal values lie in a limited range: 

If we have a normal distribution, then  
   about 68% of the values lie within 1 σ of the mean, 
   about 95% of the values lie within 2 σ of the mean, 
   about 99.7% of the values lie within 3 σ of the mean, 
   about 99.99% of the values lie within 4 σ of the mean. 
So if the values of       follow a normal distribution, 
assumption 4 is reasonable. 

E{n} = 0 and E{nnT} =σ 2I
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E{ " f } = 0
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Assumptions 1 and 3 

n  We have uniformly distributed white noise,             . 
 Let s be the quantization step (quantization interval). 
 Then p(n) will be of the form: 

 
 
 
 
 

 The width of the pdf has to be s and centered around 
the value 0 (since               ), and the integral of the 
pdf has to sum up to 1 by definition.  
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SNR Denominator 

n  Recall that 

n  What is           ?   
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SNR = " r =
E{ " f 2}
E{n2}
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n  The definition of expected value is                         .  

n  Thus, 

€ 

E{n2} = s
2

12

€ 

E{x} = xp(x)dx
−∞

∞

∫

€ 

E{n2} = n2p(n)dn
−∞

∞

∫

€ 

= n2p(n)dn
− s2

s
2

∫ =
1
s

n2dn
− s2

s
2

∫

€ 

=
1
s
1
3
n3[ ]

− s2

s
2 =

1
s
1
3
s3

8
− −

s3

8
# 

$ 
% 

& 

' 
( 

# 

$ 
% 

& 

' 
( =

s2

12

(1) 



 Seite 16  Seite 16 

Assumption 2 

n  We have a signal with               . 
n  According to the definition of standard deviation: 

n  However, by assumption 2, we get 
€ 

E{ " f } = 0

€ 

σ # f = E{ # f 2}− E{ # f }( )2

€ 

σ # f 
2 = E{ # f 2} (2) 
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σ # f = E{ # f 2}
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Assumption 4 

n  The signal values lie in the range: 

n  So the length of the interval of the      values is   

n  When we use B bits to store these        values, we 
have 2B quantization levels. 

n  Assuming equidistant quantization, each 
quantization step, s, is 
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Assumption Combination 
n  So far, by exploiting the 4 assumptions we have shown: 

n  From (1) and (3): 

n  Recall that SNR is defined as  

€ 

E{n2} =
26σ # f 
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Mapping 

n  Using SNR as a criterion, we know how many bits to 
use, but how do we use them? 

n  To which discrete value do we map a continuous 
interval? 

a2 a3 a4 

f’max	



b1 b2 b3 bL 

a1 aL+1 

f’min	



f’j	



fj	
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Good Mapping 

n  How can I tell whether my mapping is good? 
n  What is a possible objective function, a criterion to 

judge the quality of the mapping?  

n  Error measure (error that occurs when mapping f’ to bv) 

€ 

ε = # f − bv( )2 p( # f )d # f 
av

av+1

∫
v=1

L

∑

n  By weighing the error by the probability density of f’, 
values that have a higher probability of occurring have a 
higher impact on the error term. 

n  The optimal quantization characteristics are defined by 
the values av , bv which minimize the error ε. 
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Optimal Quantization Characteristics 
n  Optimal discrete value: 

n  Optimal threshold level: 
€ 
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Use the middle value 
as a threshold 
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Pulse Code Modulation 

n  A linear quantization characteristic  function (with 
equally spaced quantization levels) is an optimal 
quantization if and only if the signal amplitudes are 
equally distributed. 

n  Coding using the methods introduced so far is called 
Pulse Code Modulation. 

n  Other coding methods, depending on the application 
are: 
§  Coding with a minimal number of bits 
§  Error detection and correction 
§  Run-length encoding 
§  Chain code 



 Seite 23  Seite 23 

Vector Quantization 

n  So far, we have considered the quantization of real valued 
functions, i.e.          .  

n  There exist signals where we have to deal with vector 
valued functions,               (e.g. color images with RGB 
values). 

n  The quantization of vectors to discrete vectors is called 
vector quantization. 

n  Vector quantization is the process of mapping N-
dimensional vectors in the vector space       into a finite set 
of vectors                           , where          .  

n  Each vector      is called a code vector or a codeword.  
n  The set of all the codewords,    , is called a codebook.  € 
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Codebook Design  

n  There exist many vector quantization methods. 
n  We are just going to present one method which is 

based on mean values. 

n  Another one is based on computing nearest 
neighbor regions, aka Voronoi regions. 
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Using the Mean Vectors 
n  For each cluster in the training data compute the mean 

vector    .  

n  Each mean vector     becomes the code vector or 
codeword,    . 

n  All the mean vectors define the so-called code book,   . 

n  Given an arbitrary input vector      find the nearest  
code vector                                 . 

n  Store the offset to the closest mean    . There is a 
finite number of bits that can be used for the offset. 

n  Use your favorite distance metric, e.g. Euclidean, 
Manhattan, etc. We often use the Euclidean distance. 
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Computing the Codebook 

n  k-means algorithm 
n  k:# of code vectors 
n  Input: M data vectors 

1. Randomly assign the vectors                  to k clusters. 
2. Compute the mean vector     for each cluster.  
3. Reassign each vector                  to the cluster with 

the nearest mean vector     . 
4. Repeat 2. and 3. until no further changes occur 

n  Output: code book 
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Linde-Buzo-Gray Algorithm 

n  The Linde-Buzo-Gray (LBG) algorithm is a widely-used 
vector quantization algorithm which is very similar to 
the k-means algorithm. 

n  Main idea. Start with a single code vector. At each 
iteration, each code vector is split into two new vectors. 

1.  Initial state: compute the mean of the training data. 
2.  Initial estimation #1: code book of size 2. 
3.  Final estimation for code book of size 2, after training data 

reassignment. 

4.  Initial estimation #2: code book of size 4. 
5.  Final estimation for code book of size 4, after training data 

reassignment. … 


