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Pattern Recognition Pipeline 

n  Classification 
§  Statistical classifiers 

§  Bayesian classifier 
§  Gaussian classifier 

§  Polynomial classifiers 
§  Non-Parametric classifiers 

§  k-Nearest-Neighbor density estimation 
§  Parzen windows 
§  Artificial neural networks 

§  Radial basis function networks 
§  Multilayer perceptron 

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	



Learning Training samples 
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General ANN Layout and Operation 

n  In general an ANN operates as a function             . 
n  There can be multiple layers, some of which may be 

hidden.  

n  A widely used form of composition is: 
n     is often referred to as an activation function. 
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Multilayer Perceptron (MLP) 

n  A multilayer perceptron is another widely used type of 
Artificial Neural Network. 

n  It is a feed forward network (i.e. connections between 
processing elements do not form any directed cycles, 
it has a tree structure) of simple processing elements 
which simply perform a kind of thresholding operation. 

n  In a single layer perceptron (the earliest type of ANN) 
the inputs are fed directly to the outputs, i.e. only two 
layers in total. 

n  MLPs have at least one hidden layer. 
n  This enables them to solve linearly non-separable 

problems. 
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Different ANN Layouts  

MLP 
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Perceptron 

n  The term perceptron refers to the type of processing 
performed at the nodes of a MLP ANN.  

n  A perceptron is a processing element, a neuron of 
an ANN, which performs the following operation:  
 If the sum of the weighted inputs to the node are 
above some threshold value then the neuron fires 
and takes the activated value  (typically 1), 
otherwise it gives the deactivated value (typically -1 
or 0).  

n  This type of neurons are also known as McCulloch-
Pitts neurons or threshold neurons. 
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Schematic Representation of an MLP 

n  Unlike the RBFN where each neuron computes a 
radial basis function, in MLPs the key functionality 
lies in the treatment of the input and output of each 
node. 
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MLP Variables 

n  Let us define the following variables: 

  

€ 

xn : the nth input to the network

wjk
<m>: the weight connecting the output of the jth node 

       at layer m-1 to the input of the kth node at layer m

net j
<m>:the combination (or processing) of the inputs at 

        the jth  node at layer m

yj
<m>:the output of the jth  node at layer m

dk :the desired output of the kth  output neuron
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An MLP Node – a Perceptron 

n  Each node k at layer m has: 
1.  as input a weighted sum            of the outputs        

of all the previous layer nodes 

2.  an output         which is a sigmoid function of the 
input. 
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Perceptron and Biology 

n  The functionality of a perceptron can be directly 
linked to the operation of a neuron in a biological 
system. 
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An MLP Node - continued 

n  So the input to the kth node of the hidden mth layer is: 

 where Nm-1 is the number of nodes at layer m-1. 
n  Each processing element is simply performing a 

sigmoid function. 

n  Thus, the output of the kth node of the hidden mth 

layer is: 
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The Sigmoid Function of an MLP 

n  The previous sigmoid function,                  , is known 
as the logistic function. 

n  It can be thought of as a smoothed version of a step 
function that goes from 0 to 1. At t=0, f(t)=0.5. € 

f t( ) =
1

1+ e− t

n  The derivative of the 
logistic function is: 

€ 

df t( )
dt

= f (t)(1− f (t))
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The Operation of an MLP Node 

n  If the combination of the input            is above 
some threshold value, then the kth processing 
element at layer m returns 1, else it returns 0. 

n  The neuron fires.  
n  A sigmoid function is used instead of a step 

function, because it is differentiable and then we 
can use, as we will soon see, gradient descent to 
train the network. 

n  An MLP remark: Generally, it is unclear how many 
nodes are needed in the hidden layer to achieve 
optimal performance of the MLP. We usually just try 
different number of nodes in the hidden layer. 

netk
<m>
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MLP and Classification 

n  MLPs like RBFNs are used in computing discriminant 
functions. 

n  Recall that, a discriminant function for class Ωκ is a 
polynomial that evaluates to 1 if the feature vector      
belongs to that class. Otherwise it evaluates to zero. 

n  The input to an MLP used for classification is a feature 
vector     and the output is a discriminant vector    
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A Simple MLP Setup 

n  Consider an MLP with a single 
hidden layer. 

n  For each perceptron j in layer 1 
we have: 
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n  For each perceptron k in layer 2 we have: 
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Training = estimate 
the weights�
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Training 

n  Let           be a K-dimensional (for K distinct classes) 
binary discriminant vector, such that all its elements 
are 0, except the element κ, to which the input 
feature vector     is assigned. 

n  The training set is composed of N pairs of training 
samples of the form: 

 where              is the discriminant vector that 
selects the class Ωκ(l) to which the sample      
belongs. 
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Least Squares Estimator 

n  Goal: Estimate the weights       .  
n  We know which discriminant vector         we should 

be getting for each of N our training samples. 

n  We want to set up the weights in such a way that we 
minimize the mismatch between the correct 
discriminant vector          and the one estimated by 
the MLP,          . 

n  We can use the sum of squared errors over all the 
samples as a performance measurement for the 
MLP: 
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Least Squares Estimator -continued 

n  Thus, we want our MLP to satisfy the following 
objective function: 

 where the vector      is a vector that combines all 
the         and          in a single concatenated form. 

n  A standard approach for this type of optimization of  
objective function is the gradient descent method.  
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Gradient Descent 
n  Recall that the gradient points to the direction of 

largest increase, so we have to move in the opposite 
direction from where the gradient is pointing. 

n  Recall also that gradient descent has three limitations:  
1.  It can only find a local minimum. So it works fine only if the 

function is unimodal. 
2.  Its performance depends on the initialization. 
3.  It may take a while to converge to a minimum. 
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Gradient Descent - continued 

n  The MLP objective function is: 

n  The estimation of       is done with a gradient 
descent method as follows: 
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k=0 
Initialize wk 
while wk is not a minimizing parm 

 compute gradient Dk  at point wk  
 compute step sk, sk=-ηkDk 
 wk+l = wk + sk  
 k=k+1 

end 

Gradient Descent Algorithm - refresh 

n  The size of the step depends on 
§  The magnitude of the gradient 

§  The value of the scalar ηk 
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Key Factor: Derivative Computation 

 
n  The estimation of       is done with a gradient 

descent method as follows: 
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Second Layer Weights  

n  Step 1: Computation of                  , i.e. considering 
only the weights of the 2nd layer. 

n  Using the chain rule: 

n  We can evaluate each term separately. 
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Partial Derivatives 

n  From the chain rule we have: 

n  The 2nd term evaluates to: 

 add and subtract 1 to the numerator of the 1st 
term. 
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Partial Derivatives - continued 

n  From the chain rule we have : 

n  The 3rd term evaluates to: 

n  Combining the 3 partial derivative terms together: 
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First Layer Weights  

n  Step 2: Computation of                  , i.e. considering 
only the weights of the 1st layer. 

n  Using the chain rule: 

n  We can evaluate each term separately, starting from 
the 2nd term. As before, we get: 
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Partial Derivatives Again 

n  From the chain rule we have : 

n  The 3rd term evaluates to: 

n  The only term that is still missing is the first term of 
the chain rule application: 
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A Difficult Partial Derivative 

n  The computation of            is not obvious, because  
is in a hidden layer.  

n  It is not observable.  
n  It took researchers 10 years to find a way to 

compute this derivative. 

n  The main idea behind its computation: 

 

n  This means that we use the observed output and 
sum over over all possible nodes in the hidden 
layer. 
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Traditional ANN Description 

n  In terms of more traditional ANN description, at the 
perceptron level, perceptrons are trained by a 
simple learning algorithm which is usually called the 
delta rule.  

n  It calculates the errors between the estimated 
output         and the expected sample output data,  

n  The delta rule uses this error to create an 
adjustment to the weights, thus implementing a 
form of gradient descent. 

n  One of the most popular terms for this type of 
training of an MLP is called back-propagation.  
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Back-Propagation 

n  In back-propagation the output values         are compared 
with the correct answer to compute the value of some 
predefined error-function.  

n  By various techniques the error is then fed back through 
the network.  

n  Using this information, the algorithm adjusts the weights of 
each connection in order to reduce the value of the error 
function by some small amount. 

n  After repeating this process for a sufficiently large number 
of training cycles the network will usually converge to some 
state where the error of the calculations is small.  

n  In this case one says that the network has learned a certain 
target function.  
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n  Back-propagation algorithm 

n  It adjusts the weights of the NN in order to 
minimize the average squared error. 

Function 
signals 
Forward Step 
 
Error signals 
Backward 
Step 

Graph Representaion of Back-Propagation 
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n  Sensible stopping criterions: 

§  Average squared error change:  Back-propagation is 
considered to have converged when the absolute rate of 
change in the average squared error per epoch is sufficiently 
small (in the range [0.1, 0.01]). 

§  Generalization based criterion: After each epoch the NN is 
tested for generalization. If the generalization performance 
is adequate then stop. 

§  Epoch is one run through the entire training set (or its 
subpart that is used for training). 

Stopping Back-Propagation 
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n An ANN generalizes well if the I/O 
mapping computed by the network is 
nearly correct for new data (test set). 

n Factors that influence generalization: 
§  the size of the training set. 
§  the architecture of the NN. 
§  the complexity of the problem at hand. 

n Overfitting (overtraining): when  the NN 
learns too many I/O examples it may 
end up memorizing the training data. 

Generalization 
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Graphical Representation of Overfitting 
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ANN Examples 

n  Alvinn: CMUs neural network that learned to drive a 
van from camera inputs. 

n  NETtalk: a network that learned to pronounce 
English text. 

n  Recognition of hand-written zip codes. 

n  Lots of applications in financial time series analysis. 
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NETtalk 

n  It was developed by Sejnowski & Rosenberg in 1987. 

n  The task was to learn to pronounce English text from 
examples. 

n  Training data was 1024 words from a side-by-side 
English/phoneme source. 

n  Input: 7 consecutive characters from written text 
presented in a moving window that scans text. 

n  Output: phoneme code giving the pronunciation of 
the letter at the center of the input window. 

n  Network topology: 7x29 inputs nodes (26 chars + 
punctuation marks), 80 hidden units and 26 output 
units (phoneme code). Sigmoid units in hidden and 
output layer.  
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NETtalk Performance 

n  Perfromance of NETtalk: 
§  95% accuracy on training set after 50 epochs of training by 

full gradient descent.  
§  78% accuracy on a set-aside test set. 

n  Dectalk in comparison is a rule based expert system, 
based on a decade of analysis by linguists. 

n  Dectalk outperformed NETtalk.  

n  Keep in mind, NETtalk learns from examples alone 
and was constructed with little knowledge of the 
task. 
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ALVINN 

Automated driving at 70 mph on a public 
highway 
 

Camera  
image 

30x32 pixels 
as inputs 

30 outputs 
for steering 

30x32 weights 
into one out of 
four hidden 
units 

5 hidden 
layers 
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Remarks on MLPs and Biology 

n  Multilayer perceptron are biologically inspired: 
§  independent nodes 
§  change of connection weights resembles synaptic plasticity 
§  parallel processing 

n  On the other hand, back-propagation MLPs lack 
brain-like structure and require varying synapses 
(inhibitory and excitatory). 

n  Not yet clear what is biological plausible because 
biological knowledge changes over time. 
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MLPs and Function Approximations 

n  Some researchers, e.g. Trappenberg, claim that 
multilayer networks can approximate any function 
arbitrarily well. 

n  However, this universal function approximation 
theory assumes, unrealistically, infinite resources. 

n  Furthermore, MLPs cannot capture all functions, i.e. 
partial recursive functions which are often used in  
modeling the computational properties of human 
language. 

n  There is no guarantee that MLPs have the 
generalization ability from limited data as humans do. 
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General Remarks on MLPs 

n  MLPs tolerate noise during processing and in input. 
n  They tolerate damage (loss of nodes). 
n  Input normalization often improves the MLP 

performance. 
n  Rule of thumb: the number of training examples 

should be at least five to ten times the number of 
hidden nodes of the network.  

n  An MLP classifier (using the logistic function) 
aproximates the a-posteriori class probabilities, 
provided that the size of the training set is large 
enough. 
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