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Optimization Algorithms A

B Solving optimization problems is a key component
of pattern recognition.

B Many of the optimization problems are quite
complex. Deriving an analytic solution is not trivial.

B An alternative is to use an algorithm to (iteratively)
compute an (approximate) solution to the
optimization problem.

m A widely used optimization algorithm is gradient
descent (also known as steepest descent).

B A closely related algorithm for simultaneous solution
of multiple parameters is coordinate descent.



Main Idea of Gradient Descent i

m In order to find a local minimum of a function one
can take steps proportional to the negative of the
gradient of the function at the current point.

m Given a real valued function f(x)& R, which is
differentiable at a point x. &€ R", then at point X
the function f(Xx) decreases the fastest in the
direction of the negative gradient —Vf()_c’j) at ch ,
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Gradient Descent i

m Thus if one “takes a small step s ” on f(X) at point X,
in the direction of the negative gradient —Vf()_c’j) ,
(s)he moves closer to the local minimum of the
function f(x).

s=—17Vf(5c’j)
xj+1 =7€j—77vf(7€j)

m Hence, one can start with an initial guess X, for a
local minimum of a function and follow a sequence of
such steps x,,X,X,,...,X;,X;,,... togradually reach
the local minimum.



[llustration of Gradient Descent i
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Illustration of Gradient Descent 2 i
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Gradient Descent Algorithm A

k=0
Initialize x,
while x, is not a minimum
compute gradient D, at point x,
compute step s, s, =-n,D,
Xis) = X + Sy
k=k+1
end

B The size of the step depends on
= The magnitude of the gradient

= The value of the scalar 7,
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Gradient Descent and Global Minimum i

B Gradient descent converges to the closest local minimum.

m [t computes the global minimum of a function only for
unimodal functions.

m For functions with multiple minima, there is no guarantee
that gradient descent will converge to the global minimum.

m A solution (still no guarantee): Run gradient descent
multiple times starting from distinct initial points.
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Remarks on Gradient Descent i

m Picking an appropriate x, is crucial, but also problem-
dependent.

B The stopping criteria are not clearly defined.

m For solving maximization problems, one can simply step In
the direction of the gradient Vf(?cj) .

m A well-known problematic behavior of gradient descent is its
“zig-zagging” track in functions with very flat local minima
(maxima), that approximate plateaus.
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Examples of Zig-Zagging Behavior A
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Plot of the Rosenbrock function, which has
a very narrow and flat valley that contains
the minimum. It takes many small steps, 1
with localized zig-zagging behavior to
eventually converge to the minimum.

Plots courtesy of Wikipedia, http://en.wikipedia.org/wiki/Gradient descent
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Coordinate Descent )

m [t is closely related to gradient descent.

m [t is designed for optimization problems where
multiple parameters of the same optimization function
must be simultaneously searched for the optimal

solution. A , ~
X =argmin f(x)

B Main idea: Apply gradient descent in one coordinate
axis at a time. In other words, first search for x;, then
search for x,, then for x5 and so on. For example ,
during the (k+1)th iteration:

k+1 k+1 k+1 k+1

. k k k
X, =argmin f (X, ,X,  seeis X Vo X 3K i e X))
Y



Coordinate Descent -

B In coordinate descent,
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continued A

unlike gradient descent,

instead of descending along the direction of the
gradient, one moves along a coordinate direction.

B In coordinate descent
one cycles through the
different coordinate
directions.

B At each iteration one
descents once through
each coordinate
direction.
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Plot courtesy of Wikipedia, http://en.wikipedia.org/wiki/Coordinate descent
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Coordinate Descent — continued 2 i

B Coordinate descent has similar convergence
properties as gradient descent.

B Jt can also get stuck in local minima.

B However, it is easy to implement and sometimes
faster to compute. No gradient computation.

m Drawback: No convergence proof.

B A well-known problem of coordinate descent is that it
may stop descending for non-smooth functions.
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Non-Smooth Functions and Coord. Descent A,

X=32+3 12,y =-3/2+3 12

Plot courtesy of Wikipedia, http://en.wikipedia.org/wiki/Coordinate descent
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Resources A)

1. Some of the material on gradient descent is adapted from the slides by P. Smyth
http://www.ics.uci.edu/~smyth/courses/cs175/slides5b gradient search.ppt




