
Dr. Elli Angelopoulou 
Lehrstuhl für Mustererkennung (Informatik 5) 
Friedrich-Alexander-Universität Erlangen-Nürnberg 

Optimization Algorithms 
Gradient Descent, Coordinate Descent 



 Seite 2 

Page 2 

Optimization Algorithms 

n  Solving optimization problems is a key component 
of pattern recognition. 

n  Many of the optimization problems are quite 
complex. Deriving an analytic solution is not trivial. 

n  An alternative is to use an algorithm to (iteratively) 
compute an (approximate) solution to the 
optimization problem. 

n  A widely used optimization algorithm is gradient 
descent (also known as steepest descent). 

n  A closely related algorithm for simultaneous solution 
of multiple parameters is coordinate descent.  
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Main Idea of Gradient Descent 

n  In order to find a local minimum of a function one 
can take steps proportional to the negative of the 
gradient of the function at the current point. 

n  Given a real valued function              , which is 
differentiable at a point              , then at point      , 
the function          decreases the fastest in the 
direction of the negative gradient              at      ,             
where   
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Gradient Descent 

n  Thus if one “takes a small step s ” on         at point         
in the direction of the negative gradient               , 
(s)he moves closer to the local minimum of the 
function        .  

n  Hence, one can start with an initial  guess      for a 
local minimum of a function and follow a sequence of 
such steps                                 to gradually reach 
the local minimum.             
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Illustration of Gradient Descent 
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Illustration of Gradient Descent 2 
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Illustration of Gradient Descent 3 

Direction of largest 
decrease  (steepest 
descent) = direction of 
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Illustration of Gradient Descent 4 
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k=0 
Initialize xk 
while xk is not a minimum 

 compute gradient Dk  at point xk  
 compute step sk, sk=-ηkDk 
 xk+l = xk + sk  
 k=k+1 

end 

Gradient Descent Algorithm 

n  The size of the step depends on 
§  The magnitude of the gradient 

§  The value of the scalar ηk 
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Gradient Descent and Global Minimum 

n  Gradient descent converges to the closest local minimum. 
n  It computes the global minimum of a function only for 

unimodal functions.  

n  For functions with multiple minima, there is no guarantee 
that gradient descent will converge to the global minimum. 

n  A solution (still no guarantee): Run gradient descent 
multiple times starting from distinct initial points. 
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Remarks on Gradient Descent 

n  Picking an appropriate xo is crucial, but also problem-
dependent.  

n  The stopping criteria are not clearly defined. 

n  For solving maximization problems, one can simply step in 
the direction of the gradient               .  

n  A well-known problematic behavior of gradient descent is its 
“zig-zagging” track in functions with very flat local minima 
(maxima), that approximate plateaus.  
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Examples of Zig-Zagging Behavior 

Plots courtesy of Wikipedia, http://en.wikipedia.org/wiki/Gradient_descent  

Plot of the Rosenbrock function, which has 
a very narrow and flat valley that contains 
the minimum. It takes many small steps, 
with localized zig-zagging behavior to 
eventually converge to the minimum. 
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Coordinate Descent 

n  It is closely related to gradient descent. 
n  It is designed for optimization problems where 

multiple parameters of the same optimization function 
must be simultaneously searched for the optimal 
solution. 

n  Main idea: Apply gradient descent in one coordinate 
axis at a time. In other words, first search for x1, then 
search for x2, then for x3 and so on. For example , 
during the (k+1)th iteration:  
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Coordinate Descent - continued 

n  In coordinate descent, unlike gradient descent, 
instead of descending along the direction of the 
gradient, one moves along a coordinate direction. 

n  In coordinate descent 
one cycles through the 
different coordinate 
directions. 

n  At each iteration one 
descents once through 
each coordinate 
direction. Plot courtesy of Wikipedia, http://en.wikipedia.org/wiki/Coordinate_descent  
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Coordinate Descent – continued 2 

n  Coordinate descent has similar convergence 
properties as gradient descent. 

n  It can also get stuck in local minima. 
n  However, it is easy to implement and sometimes 

faster to compute. No gradient computation. 

n  Drawback: No convergence proof. 
n  A well-known problem of coordinate descent is that it 

may stop descending for non-smooth functions. 
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Non-Smooth Functions and Coord. Descent 

Plot courtesy of Wikipedia, http://en.wikipedia.org/wiki/Coordinate_descent  



 Seite 17 

Page 17 

Resources 
1.  Some of the material on gradient descent is adapted from the slides by P. Smyth 

http://www.ics.uci.edu/~smyth/courses/cs175/slides5b_gradient_search.ppt 


