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Pattern Recognition Pipeline 

n  The input to our feature extraction/computation is 
the pre-processed image, h = T{f}	



n  In feature extraction we compute a numerical 
characteristic vector           , which facilitates the 
subsequent classification task. 

n  In feature selection we select the best subset of 
features to create a lower dimensional characteristic 
vector                           .  

A/D Pre-processing Feature Extraction 
and Selection Classification f’ f h c Ωκ	
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Motivation 

n  Why should we use features? Why not the entire 
signal? 

1.  Classes may not be as easily separable in the 
original signal space. 
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Motivation 

2.  Curse of dimensionality 
n  It is often the case that when our signal is high-

dimensional, (e.g. fused medical modalities, 
multispectral images, etc.) we may end up having 
too much data. 

n  In high dimensions our intuition and topological/
spatial comprehension fails. 

n  We usually get non-linear behaviors. 
n  The notion of a neighbor is not clearly defined. A 

closely related topic is the employment of a suitable 
distance metric. 



 Seite 5  Seite 5 

Curse of Dimensionality – Nearest Neighbor 

n  In the k-Nearest Neighbor algorithm, given a new sample 
f examine its k nearest neighbors (the k existing samples 
that are most similar to f). Assign to the new sample f the 
class of the majority of the nearest neighbors. 

n  Works fine in low dimensions, i.e. n=2,3,4 

n  But in high dimensions: 

a)  If we are to examine all directions of the neighborhood we 
need to examine 2n samples. 

b) The hyper-structures force one to examine a large 
percentage of the data to compute the neighborhood (not 
uniformly spread data) 
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Curse of Dimensionality - continued 

n  Is it all so bad? Should we even bother then with 
high-dimensional data collection? 

n  There is no such thing as too much data. 

n  There is a bright side: 
a)  much of the data is irrelevant. 
b)  data may be correlated, so the true dimensionality 

of the data may be lower dimensional. 

n  Feature extraction allows for: 
a)  a compressed representation. 
b)  isolating the important/relevant information. 
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Example: Different Color Spaces 

Image courtesy of http://down0day.blogspot.com/2009/06/rgb-cmyk-color-guides-with-print.html  
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Heuristic vs Analytic Feature Extraction 

n  There are two distinct methods for extracting 
features: 

1.  Heuristic methods: Their use is based on 
experience (trial and error), empirical 
measurements, discussion with experts etc. They 
are still based on mathematics. 

2.  Analytic methods: They define an objective 
function for the quality that the resulting features 
should satisfy. Features are computed by solving an 
optimization problem. 
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Heuristic Methods 
n  There are different heuristic feature extraction methods: 
1.  Projection to orthogonal bases 

§  Fourier Transform 
§  Walsh/Hadamard Transform 
§  Haar Transform 

2.  Linear Predictive Coding 
3.  Geometric Moments 
4.  Feature Extraction via Filtering 
5.  Wavelets 
6.  Edges 
7.  Statistics-based 
8.  Color 
9.  Geometric measurements …  
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Orthogonal Basis 

n  Let      be the signal after pre-processing. 
n  Assume, that the vector space of      is spanned by 

the orthonormal vectors                    such that: 

n  Since                     spans the vector space of      we 
can rewrite     as: 

                            where 
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Orthogonal Basis -continued 

n  So the coefficients     and the vectors       can give 
us a representation of the original signal      in 
another form (space) where: 

a) hopefully the classes will be better separated. 
b) the dimensionality of the new orthonormal space 

will be lower than that of    :  
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Information Loss 

n  If            , then there is no information loss 
n  But when             , we incur some information loss 

and then: 

n  Goal: Minimize the information loss. 
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Minimize Information Loss 

n  We want to find the set of coefficients     that 
minimizes the information loss. 

n  How? 
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Choice of Orthogonal Bases 

n  The bases should be at least orthogonal, i.e. 
  
n  We prefer orthonormal bases because: 

§  Computing      is easier. 
§  The feature vector      is often more intuitive. 

n  There are several different options for orthonormal 
basis functions: 
§  Fourier series, 
§  Walsh functions, 
§  Haar functions, 
§  Hermite functions, 
§  Legendre polynomials,… 
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Fourier Basis Functions 

n  The Fourier transform describes a way of 
decomposing a function into a sum of orthogonal 
sinusoidal functions. 

n  The standard basis functions used for the Fourier 
transform are: 

n  As the frequency      varies over the set of all real 
numbers we get an infinite collection of basis 
functions. € 
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Fourier Basis Functions - continued 

n  Recall that: 
n  By using the exponential form of the basis functions 

we can represent both real and complex valued 
functions (signals) by their Fourier transform. 

n  Furthermore, any two basis functions of different 
frequencies are orthogonal to each other. 

n  For example, consider the real case of only the 
cosine terms: 

 because the product of cosines is a cosine function 
itself. 
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cos(2πω1x)cos(2πω2x)dx = 0,   ∫ ∀ω1 ≠ω2
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e2πjωx = cos(2πωx) + j sin(2πωx)
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Fourier Transform 

n  Given a discrete signal      we can project it onto the 
Fourier basis functions           and get the Fourier 
transform: 

n  We can choose specific frequencies as follows: 
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Fourier Transform as a Feature Vector 

n  So we have the following representation based on 
the Fourier transform  

n  If we use: 

n  We get: 
 which looks very similar to our feature vector 
computation of  
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FT as a Feature Vector - continued 

n  Now we have the right format, we have to check if 
the basis vectors are orthogonal (orthonormal). 

n  Since we have a complex basis, we use the 
conjugate transpose when we compute the inner 
product: 

n  Conclusion: We can use the FT and use the Fourier 
coefficients as features.  
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Translation Invariance 

n  The Fourier-derived coefficients have an additional 
property. Their absolute value is invariant to 
translation. 

n  For a shifted signal: 
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Translation Invariance - continued 

n  So we have 

n  And for a shifted signal: 
n  By taking the absolute value: 
 

n  So given a particular signal (or a particular object), 
independent of where the object is located, we get 
the same absolute value of its FT. Easier to detect!!! 

n  But we don't like to deal with complex numbers, so 
we often use: 
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FT Simple Example 
n  The FT tries to represent all images as a summation of “cosine images”.  

n  Images that are pure cosines have very simple FTs. 

n  The dot at the center represents the (0,0) frequency term or average value of the image.  
n  Images usually have a large average value (like 128) and lots of low frequency information 

so FT images usually have a bright blob of components near the center. 
n  Notice that each FT image just has a single component (besides the average (0,0) value), 

represented by 2 bright spots symmetrically placed about the center of the FT image. 
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FT Simple Example 2 
n  The following images are of 2D cosines with both horizontal and 

vertical components. 
n  The left one has 4 cycles horizontally and 16 cycles vertically.  

n  The right one has 32 cycles horizontally and 2 cycles vertically. 

n  For all REAL images, the FT is symmetrical about the origin: the 1st and 
3rd quadrants are the same and the 2nd and 4th quadrants are the same. 
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FT Shift Invariance Example 
n  Almost all the FT images show just the magnitude of the FT. 

n  Notice that we have the same sinusoidal just shifted. The FT is the 
same. 
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FT Rotation Example 

n  The rotated cosine has a complicated FT with strong diagonal 
components and a strong "plus sign" shaped horizontal and vertical 
components. 
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FT Rotation Example -continued 

n  Why the complex effect? 
n  The FT always treats an image as if it were part of a periodically 

replicated array of identical images extending horizontally and vertically 
to infinity. 

n  If we extend this rotated cosine image, we get strong edge effects. 
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FT Rotation Example - windowing 

n  Solution: Windowing 

n  The windowed image is shown in the upper left.  
n  Its FT is shown in the lower left.  

n  The non-windowed FT is shown in the upper right. 
n   The actual, true FT of a rotated cosine is shown in the lower right.  
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More FT Examples 

n  Both suffer from edge effects as evidenced by the strong vertical line 
through the center. 

n  The degraded goofy has significantly reduced high frequencies in the 
horizontal direction. This is due to the fact that the degraded image 
was formed by smoothing only in the horizontal direction. 
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More FT Examples 2 

n  Note the strong periodic component, especially in the vertical 
direction for the bricks image. 

n  In the blocks image there is a bright line going to high frequencies 
perpendicular to the strong edges in the image. Anytime an image 
has a sharp edge the gray values must change very rapidly. It takes 
lots of high frequency power to follow such an edge so there is 
usually such a line in its magnitude spectrum. 
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Even More FT Examples 
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Yet More FT Examples 
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A Pattern Recognition Example 

n  The following slides show a palmprint recognition 
example. 

n  The input signal is a greyscale image of a palm. 
n  After pre-processing, the data is mapped to a feature 

space based on the Fourier Transform. 

n  The example and all the presented images are from 
the paper: 

 Wenxin Li, David Zhang, and Zhuoqun Xu. “Palmprint 
Identification by Fourier Transform.” International 
Journal of Pattern Recognition and Artificial 
Intelligence, Vol. 16, No. 4, 2002, pp. 417-432. 
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PR Pipeline for Palmprint Recognition  
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The Need for Normalization 
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Palmprint Alignment 
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Examples of Palmprint Alignment 
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Fourier Transform of Palmprint Images 
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Examples of the Same Palm 
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Examples of Similar Palms 
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Examples of Distinct Palms 
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Analysis of the Images in FT Space 
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Closest Matches (Nearest Neighbor) 

(a) Input palmprint 
that needs to be 
identified. 
(b)-(f) Candidate 
matches ranked from 
closer to more 
dissimilar one.  
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Palmprint Classification Results 

Number of Subjects 500 (6 palmprints per subject) 
Training data    500 palmprints (1 per subject) 
Test data 2500 palmprints  
Correctly identified 2387 palmprints 
Recognition rate 95.48% 

Average computation time per palmprint is 2 sec. 
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Sources 

1.  FT images are courtesy of John M. Brayer http://www.cs.unm.edu/~brayer/vision/fourier.html 


