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Images over Time A\

m So far we have analyzed either single images, or multiple images
acquired simultaneously. We have only captured stationary
information about a scene.

B As time passes:

= objects in the scene may move
= the camera may move

either way, there is motion.

B In computer vision when use the term Motion to refer to images
taken over time.

m In the presence of motion:

= some objects will move while others will not

= different objects move in different directions

= there may be rigid as well as non-rigid motion
= there may be occlusion.

B What can we tell about images acquired over time? (i.e. movie).
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Motion )

B There are two main goals within the topic of motion analysis:

= Detect which objects are moving and in which direction.
= Extract shape information if possible.

m Motion analysis typically involves:
= Motion detection.

= Moving-object detection and location (tracking).
= Derivation of 3D object properties.

B The information extracted from such an analysis can be used in
the following applications:
= Track object behavior
= Correct for camera jitter (stabilization)
= Align images (mosaics)
= 3D shape reconstruction
= Special effects
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Tracking Rigid Objects A

Algorithm 3

(Simon Baker et al., Carnegie Mellon University)
Simon Baker is now at Microsoft Research
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Tracking Non-Rigid Objects A

(Dorin Comaniciu et al., Siemens Corporate Research)
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Face Tracking - Initialization A

(Simon Baker et al., Carnegie Mellon University)
Simon Baker is now at Microsoft Research
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Face Tracking A

(Simon Baker et al., Carnegie Mellon University)
Simon Baker is now at Microsoft Research
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Structure from Motion )

First the unknown camera motion and calibration is recovered. Then through the use of feature-
based correspondence over multiple scenes, the 3D geometry of the scene is recovered. (David Nister, University of Kentucky)
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Structure from Motion - Final Result A

Elli Angelopoulou (David Nister, University of Kentucky) Motion
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Behavior Analysis A

Result

(Michal Irani et al.,, Weizmann Institute of Science)
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Motion Analysis Basics A

m What visual information can be extracted from the spatial and
temporal changes that occur in an image sequence?

B Image sequence: a series of N images (frames) acquired at
discrete time instants ¢, =1, + (k Ot) , where Ot is a fixed time
interval and £=0,1,.. N-1,

m Ot is typically 1/24th sec, 1/30th of a second. This means that
the apparent displacement (movement) between frames is at
most a few pixels. This observation simplifies the
correspondence problem (at the expense of accuracy).
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Image Differencing A

m Assuming the illumination conditions do not vary, image changes
are caused by a relative motion between the camera and the
scene.

® Simple motion example: | = e—
I(r-1) 1(?)

B Idea: Subtract images. If there is a difference, then there is
motion. Accordingly, no change means stationary part.

M(t)=1(t-1)-1(¢)

B In the previous example: | == ==

M(1)

m Either the line moved to the right, or the camera moved to the
left. We are interested in relative motion.

Elli Angelopoulou Motion



Page 13

Does Differencing Suffice? A

Stationary sphere under changing
Spinning sphere of uniform color. illumination direction. There is no motion

Motion exists but is undetected. field but the imagcﬁ)?ave Clighged.
(a)
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Aperture Problem N

I(t-1)
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Aperture Problem - continued N

(1)
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Aperture Problem - continued N

I(t-1)
1)
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Aperture Problem - continued N
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Aperture Problem - continued N
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Aperture Problem - continued N
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Aperture Problem - continued N
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Motion Recovery A

m When dealing with image sequences over time, given the
constraints in image capture, motion analysis can be
summarized as follows:

1. Between I(,) and I(f,,;) we observe a change in intensity
at a pixel p.

2. We associate this change with motion.

3. We try to infer which motion in 3D caused this motion in 2D.
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Background Subtraction N

m First we must estimate where motion occurs.

m If we have a relatively stationary (or slowly changing
background) we can remove it from the image.

B Subtract the last two images:

1 if [ G j))-1,))|<¢
d(l,])= t+1( .]) t( ])‘
0O otherwise

®m Or compute a cumulative background image:

-1
B, = (Walt + EwiBti)/wc
i=1

®m and then subtract:
d(i,j) ={
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Background Subtraction Example A

BG

Differencing Ihreshiald

Output Masks
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Optical Flow A

m Optical Flow: The apparent (observed) motion
of the image brightness pattern.

m It is a collection of 2D velocity vectors, each of
them describing the velocity by which the
brightness pattern moved.

m It is a 2D vector field on the image.
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Motion Field A

B The projection of the motion of the points in
the scene.

m [t is a collection of 2D vectors, each vector
being the projection of the 3D velocity of a
scene point on the image plane.

m It is a 2D array of 2D vectors representing
the motion in 3D.

m It is induced by the relative motion between
the viewing camera and the observed scene.
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Motion Field A

B Image velocity of a point moving in the scene and
its projection on the image plane
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Optical Flow ¢ Motion Field N

Barber’s Pole lllusion
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Velocity Basics N

B For motion on a straight line, the velocity is simply
distance traveled per unit time:

veds/ _|dx/ dy
dt dt’ /dt

m If a point is moving on a circle (consider for
example a nail stuck on a wheel), then the best way

to describe its speed, is by how many degrees it
travels per unit time, i.e. its angular velocity:

=49,
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Angular Velocity A

A
)

m In 3D angular velocity is a pseudo-vector. < 9

B It now has not only a magnitude, but also a direction.
m The magnitude is the angular speed, ||=|F||sin®&
and the direction describes the axis of rotation: .

(7 x u) B i|sin@ _
‘2

L =

r o

= . . O N
where 7 is the linear vector connecting the position

of the particle with the origin of the rotation, U is the
linear momentum vector and 7 is a vector parallel to
the axis of rotation.
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Motion Field Basics A

m Let P=(X,Y,Z) point in scene and p=(x,y,f) its projection.

p="P(f/Z) (1)
B Assume that P moved relative to the camera in such a way that
both translation and rotation may be involved.

B The relative motion between the point P and the camera can be
described as: ~ ~ =
V=-T-0xP (2)

where T is the pure translation part of the motion of Pand o is
the angular velocity.

= Then: V.=-T -0 Z+wY
V,=-T. -0 X+wZ (3)
V.=-T -0ofY+o0X
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Motion Field Basics 2 A

B The motion field is the projection of the 3D motion of P on the
image plane. The same projective relationship p=P(f/Z) applies
for the velocities too. So, by taking the time derivative of eq. (1)

. [zv-vP
V=Ff = : (4)

B By combining equations (3) and (4).

IT'x-T a)x
Vo= o Xf—wf+a)y+wxy

Z J f2
Ty-T W X

v, = 24 yf+a)xf—a)zx— 2, O

Z J /
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Motion Field Basics 3 N
B The translational components of the motion field are:
T sz -T.f
Vv, =
/Z
T, I'y-1.f
v, = ~

B The rotational components of the motion field are:

2
wx‘xy _ a)yx

f f

w Xy .y
_ _ _ Y X
v, =40, f —w_x +

y
/ /
m Note that the rotational component of the motion field does not
convey any information about depth.
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Pure Translation N
m In the case of pure translation we have:
o _Tx-Tf
) Z (5)
I'y-T1f
v, = ~

m Consider first the case where there is a change in depth also,
i.e. T =0 . Let us define a point p,=(x,, ¥,) such that:

T
x0=f?x27;f=x0TZ
Z (6)

1
)’0=f?:Tyf=)’0Tz

<
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Pure Translation 2 A

B By combining egs. (5) and (6):

T
vV, = (x—xo)EZ

T
_ _ <
Vy o (y Y()) Z
B This shows that the length of v(p) is proportional to the distance

between p and p, and inversely proportional to the depth of the
3D point P.

B The motion field of a pure translation when there is a change in
depth is radial, i.e. all vectors emanate/radiate from a common
origin, the point p,, which is known as the vanishing point of the
translation direction. It is the intersection of the ray parallel to
the translation vector with the image plane.
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Focus of Expansion A

mIf 7 <0 (i.e. Zis decreasing, object moves towards
the camera) the vectors point away from p,and p,
is the focus of expansion.

i/

\‘\./‘/’/7

i
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Focus of Contraction A

mIf 7 >0 (i.e. Zis increasing, object moves away
from the camera) the vectors point away towards p,
and p, is the focus of contraction.

\JY

S

TR
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Parallel Motion Field A

m In the special case that 7' =0 eq. (5) becomes

m All the motion field vectors are parallel to each other.

B The length of v(p) is inversely proportional to the depth of
the 3D point P.
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Optical Flow Estimation N

B We compute the optical flow and we assume that it is
almost equivalent to the motion field

(¢
./' .\ .
o—> (0] o
v o
It It+1

B How to estimate pixel motion from image I, to image I, ;?

= Find pixel correspondences: Given a pixel in I, look for nearby pixels of the
same appearance (e.g. color) in I, ;.

B There are 2 main strategies for computing the Optical Flow:

= Differential Methods: motion is computed at every pixel; these techniques are
based on time derivatives and thus require small 8t.

= Matching/Prediction Methods: motion is estimated only on selected features;
these methods make predictions about possible positions in the next frame.
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Assumptions A

1. Assumption 1: The image brightness is continuous and
differentiable. (This is a key assumption in differential
methods).

2. Assumption 2: The image brightness value (more
properly the image irradiance E) of objects doesn't

change over &t, in other words,

dE
= -0
dt
This last assumption is known as the image brightness

constancy assumption.

3. Assumption 3: Points do not move very far. It is also
known as the small motion assumption.
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Differential Method A

B For each image point (x,y) at time t we have a value
E(x(t),y(t),t), so (by the chain rule):

dE(x(t) y(1), t) oENdx
ox\dt

Gradlent based
edge detector

B Thus, this last equation can be written more compactly as:

CZ—E=GXVX+Gyvy+Et=O
5
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Differential Method 2 A

m In vector form we have:

Image Brightness
Constancy Equation

m We can compute G and E, directly from the image.

m How is the optical flow vector v that we obtain from
the Image Brightness Constancy Equation related to
the motion field vector V?

G'V+E, =0
G'v=-E,
G'v E

‘GH Motion
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Differential Method 3 A

G'v E,
m \We can compute ——=-—
Gl lal

B But this is not the motion field. Rather, what we
compute is: o G'v
G
which is the component of the motion field V in the
direction of the spatial image gradient.

B So with the Image Brightness Constancy Equation,
there is only sufficient information to determine the
velocity in the direction parallel to the image gradient.
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Error Analysis A

B Besides this limitation, how accurate is the estimate
that we get?
B Let Av be the difference between the true v, and the
one estimated through the image's optical flow.
Av| =
B Let’s use information from the image formation
process.

Vn _vl’l

B Additional Assumption: Lambertian Surface
E = pL7
where p is the albedo, L the direction and intenisty
of illumination and n the surface normal.
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Error Analysis - continued A

B Under the Lambertian assumption
dE/ _ o7T(dn
/dt‘pL ( ndt)

m If we assume distant light sources and a distant
camera position, then only a rotation will cause a
change in image irradiance, E.

T — -
d%t = pL (a)x n)
® By incorporating the previous equations:
G'V+E, = pL (& x ii)
G'v+E, pL(®xn)
el el
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Error Analysis - continued A
B We estimate: ﬁn = — E,
|G
B So the difference between what we measure and the
true v, is: 7( )
L (owxn
M

m This means that |Av|=0 only:

= under pure translation or
= under rigid motion where the illuminant direction is parallel to w.

B Av decreases as the magnitude of G increases.
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Implementation of the Differential Method A

B There exist a large number of differential techniques:

= Jteratively solve for the image brightness constancy equation.

= Solve a system of partial differential equations (sometimes
iteratively).

= Use 2nd or higher order derivatives of image brightness, E.
= Use a least squares method.
= Variational approaches

m We will focus on the Least Squares Method. It tends
to be more stable (Iterative methods may converge
to the wrong solution and are sensitive to
discontinuities; Higher order derivatives are noisy due
to the approximations used in computing them;
Variational methods are too complex to briefly cover).
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Least Squares Method N

B Assume that over a small NxN patch Q, i.e. 5x5
region, all the pixels move with the same velocity.

1. Compute the spatial and temporal derivatives, i.e.
G and E, for each of the N2 pixels.

E,is a derivative over time, so one can use the
same approximations as in edge detection, but over
the time domain. For example, once can use Sobel
-1 0 1
H=(-2 0 2
-1 0 1
but this time the horizontal axis it t.

Elli Angelopoulou
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Least Squares Method - continued N

2. We want to find a value v that keeps G"V + E, close
to O for all the N2 pixels.

_ — 2
Minimize the functional: JfIv]= E(GTV + Ez)

PEQ
One way to do this is by solving an over-constrained
linear system:

ATAv=ATb=v=(A"A)"'ATb

G - [ T v is the optical
“(p) E.(p) flow at the
¢ E center of the
A _ G(pz) | b _ _ ;(:pz) NN patch Q
= . ﬁzljzan ‘ b is an N2
G(py2)| matrix E,(p,.)| vector
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Least Squares Algorithm A

1. Smooth spatially with a Gaussian of 0 = 1.5
2. Smooth temporally with a Gaussian of o = 1.5

3. Perform edge detection in the spatial domain. In
other words, compute the spatial gradient G.

4. Perform edge detection in the temporal domain. In
other words, compute the time derivative E,.

5. For each patch Q

= Construct A and b
= Compute v
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Weighted Least Squares A

B There is an expected error in v as we incorporate
spatial and temporal derivatives from pixels farther
away from the center of the patch Q.

m Solution: use a weighted least squares method.

v=(A"WA)'A"Wb
B W is a weight matrix where the weight decreases

with distance from the center of the patch Q.
1

d(p;,c)
where c is the location of the center of the patch Q
and p; is the location of a pixel in the patch Q.
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Low Texture Region - Bad A

— gradients have small magnitude
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Edges Can Be Problematic — Aperture Problem

— large gradients, but all the same
— could cause "“limited-aperture” inaccuracies
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High Textured Region - Good A

— gradients are different, large magnitudes
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Small Motion Assumption A

B Is such a motion small enough?

Elli Angelopoulou Motion



Page 55

Small Motion Assumption A

e — - - gu— e = —

; P \ “

[ A=
\t_,-/ -

<< 3 : -

i *

B Is such a motion small enough?

= Probably not—it's much larger than one pixel

. = How might we solve this problem?
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Reduce the Resolution I
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Coarse to Fine Estimation A

N=1.25 pixels

N=2.5 pixels

Gaussian pyramid of image I, Gaussian pyramid of image I, ,
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oarse to Fine Computation A

'
i
1
[
I
I

=

Compute OF

upsample

Compute OF

Gaussian pyramid of image I, Gaussian pyramid of image I,
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Image Alignment A

Goal: Estimate a single v
translation (transformation)
for the entire image.

The entire image has the same
translation value so the optical
flow values for every pixel is
the same.

This is typically an easier
problem than general motion
estimation.

We can compute it very well
with pyramid-based methods
like the Lucas-Kanade one.
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Mosaicing — input images A

1al
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Mosaicing — Final Result
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Image Sources A

1. The car tracking example is courtesy of S. Baker,
http://www.ri.cmu.edu/research project detail.html?project id=513&menu id=261

The American football tracking sequence is courtesy of D. Comaniciu, http://comaniciu.net/

The face tracking example is courtesy of S. Baker,
http://www.ri.cmu.edu/research project detail.html?project id=448&menu_id=261

The Structure-from-Motion example is courtesy of D. Nister, http://www.vis.uky.edu/~dnister/Research/research.html

The behavior analysis example is courtesy of M. Irani http://www.wisdom.weizmann.ac.il/~vision/BehaviorCorrelation.html
The background subtraction figure is courtesy of D. Parks, http://dparks.wikidot.com/background-subtraction

The spinning barber’s pole is from Wikipedia http://en.wikipedia.org/wiki/Barber's pole

The figures on angular velocity are from Wikipedia http://en.wikipedia.org/wiki/Angular velocity

w
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The mosaicing example is courtesy of M. Irani http://www.wisdom.weizmann.ac.il/~vision/

10. A number of slides in this presentation have been adapted by the presentation of S. Narasimhan,
http://ww.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-16.ppt

Elli Angelopoulou Motion



