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Geometric Features 

  We examined features that can be extracted directly from 
images: 
  Edges 
  Textons 
  Color 

  We also examined the extraction of higher level features that 
correspond to specific shapes. 
  Lines 
  Circles 
  Ellipses 

  Hough Transforms are well-suited for this last set of features. 
They can also be used for arbitrary shapes (Generalized Hough 
Transform) but this typically requires a considerable amount of 
pre-processing. 

  Is there a better way to find curves of arbitrary shapes? 
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Deformable Contours 

  Deformable contours are also known as active 
contours or snakes.  

  Goal: find a contour that best approximates the 
perimeter of an object. 

  One can visualize it as a rubber band of arbitrary 
shape that is capable of deforming during time, in 
order to get as close as possible to the target contour. 
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Deformable Contour Example 

Initialization Iteration 2 Iteration 4 Iteration 7 Iteration 9 

Iteration 11 

Iteration 22 

Iteration 13 Iteration 16 Iteration 18 Iteration 20 

Iteration 24 Iteration 26 Iteration 28 Iteration 30 



 Page 5  Page 5 

Elli Angelopoulou Deformable Contours 

Main Idea of Deformable Contours 

  The image information (usually edges) guide an 
elastic band that is sensitive to the intensity gradient 
(or some other image feature).  

  The band is initially located near the image contour of 
interest. 

  The rubber band is deformed, pulled, by the edges 
(or other image information) to fit the target contour.  

  The edge-based deformable contours explicitly use 
the intensity gradient of the image, unlike the Hough 
transform which is often based on only the existence 
of edge points. 
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Procedure 
1.  A contour (open or closed) is placed near the image 

contour of interest.  

  The initial placement can be done manually or be the 
output of some other algorithm. 

  “Seeding” the snake (step 1) can be critical in the 
success of finding the contour. 

2.  During an iterative process, the active contour is 
attracted towards the target contour by various forces 
that control the shape and location of the snake within 
the image. 

3.  The active contour deformation ends either when it 
becomes relatively stable (stops to evolve), or after a 
fixed number of iterations.  
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“Pulling” Concept 

  How is this band attracted to the target contour? 

  We have to describe the forces that act on the contour 
to deform it. 

  Different deformable contour models use different 
forces. 

  We will cover the more classical formulation which is: 

  Based on intensity gradients  
  Given as a sum of 3 forces. 
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“Pulling” Forces 

  The 3-forces active contour model uses the 
following three deformation-guiding forces: 

1.  A continuity term (force),         which encourages 
continuity of the contour. 

2.  A smoothness term (force),         which encourages 
smoothness in the contour. 

3.  An edge attraction term (force),         which pulls 
the contour towards the closest image edge. 

                     are called internal energy terms. 

         is called  external energy term. 

€ 

Econt

€ 

Ecurv

€ 

Eimg

€ 

Econt  and Ecurv

€ 

Eimg
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Internal vs. External Energy Terms 

  The internal energy terms are user defined functions 
that are associated with which properties or 
characteristics the resulting active contour should 
have. 

  They are typically used in determining the following 
attributes of the curve: 
  Stiffness or rigidity 
  Smoothness 
  Uniform spread of control points on the contour.  

  The external energy term is user-defined and is the 
one that explicitly uses the image information to 
deform the curve. 
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Parametric Representation 

  The contour itself is a given in parametric form 

 where          and          are the coordinates along 
the contour and s is the arc length 
€ 

c(s) = (x(s),y(s))

€ 

x(s)

€ 

y(s)

€ 

s∈ [0,1]
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Energy Functional 

  The contour          is deformed using the sum of the 
three forces 

  How? We construct an energy functional which 
measures the appropriateness of the contour. 

 where                 control the relative influence of the 
corresponding energy terms and can vary along       . 

  Good solutions correspond to minima of the functional. 

  Goal: minimize this functional with respect to the 
contour parameter s. 

€ 

α,β and γ

  

€ 

E = α(s)Econt + β(s)Ecurv + γ(s)Eimg( )∫ ds

€ 

c(s)

€ 

Econt ,Ecurv,Eimg

€ 

c(s)
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Continuity Term 

  The continuity term,         , encourages continuity of 
the contour and is defined as: 

  It is based on the 1st derivative. For a continuous 
curve we want to minimize        . 

  The 1st derivative corresponds to the slope of the 
tangent to the curve. 

  In an arc-length parameterization (as in this case), 
the tangent vector is always a unit vector. 

  Thus, in this form it is mainly a check for continuity. 

€ 

Econt

€ 

Econt =
dc
ds

2

€ 

Econt
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Continuity Term- Discrete Case 

  In the discrete world the contour is replaced by a 
chain of N image points on the curve, 

  The first derivative is then approximated by a finite 
difference: 

  Thus, this term tries to minimize the distance 
between the points. It supports more compact 
contours. 

  

€ 

p1, p2,…, pN

  

€ 

Econt = pi − pi−1
2   where  i = 2,3,…,N

€ 

Econt = (xi − xi−1)
2 + (yi − yi−1)

2
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Continuity Term – A Better Approximation 

  As defined,         can cause the formation of clusters.  

  Thus, a better form is: 

  When                          then                           . 
However if we don't have such outliers, i.e. for smaller 
distances, this new          encourages the formation of 
equally spaced chains of points. 

€ 

Econt = d − pi − pi−1( )
2
  where   d = 1

N −1
pi − pi−1

i= 2

N

∑€ 

Econt

€ 

Econt = pi − pi−1
2   

€ 

pi − pi−1 >> d   

€ 

Econt ≈ pi − pi−1
2   

€ 

Econt
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Continuity Term - Comments 

  In the absence of other influences, the continuity 
energy term coerces: 
  an open deformable contour into a straight line and  
  a closed deformable contour into a circle.  
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Smoothness Term 

  The smoothness term,         , encourages smoothness 
of the contour and is defined as: 

  It is based on the 2nd derivative, which is a measure of 
curvature.  

  We  want to avoid oscillations => Penalize high 
curvature. 

  Thus, for a smooth curve we want to minimize         .  

  It is also a form of an internal energy function. In this 
case, it enforces a particular shape preference 
(smooth shapes). 

€ 

Ecurv

€ 

Ecurv =
d2c
ds2

2

€ 

Ecurv
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Smoothness Term- Discrete Case 

  Since the contour is replaced by a chain of N image 
points on the curve,                   , the second 
derivative is again approximated by a finite 
difference: 

  

€ 

p1, p2,…, pN

  

€ 

Ecurv = pi+1 − 2pi + pi−1
2   where  i = 2,3,…,N −1

€ 

Ecurv = (xi+1 − 2xi + xi−1)
2 + (yi+1 − 2yi + yi−1)

2
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Edge Attraction Term 

  The edge attraction term,         , attracts (pulls) the 
contour towards an edge-defined target contour and 
is defined as: 

 where        is the spatial gradient of the intensity 
image I, computed at each contour point.  

  At large gradient vectors (i.e. close to the image 
edges) we obtain very small (negative)         values. 

  It is a form of an external energy function. 

€ 

Eimg

€ 

Eimg = − ∇I

€ 

∇I

€ 

Eimg



 Page 19  Page 19 

Elli Angelopoulou Deformable Contours 

Energy Functional- Revisit 

  Recall that in order to deform a curve          so that it 
closely matches the target curve, we minimize the 
energy functional:  

        is minimal when each of the three forces is 
minimal, which means: 
  Econt forces a compact curve (prefers lines and circles) 
  Ecurv avoids oscillations (ridges). 
  Eimg is small when the active contour is close to the edge. 

  

€ 

E = α(s)Econt + β(s)Ecurv + γ(s)Eimg( )∫ ds
€ 

c(s)

  

€ 

E
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Energy Functional- Discrete case 

  Since the contour is replaced by a chain of N image 
points on the curve,                  we need a discrete 
approximation to the energy functional: 

 where 

  Typical values for the weighting parameters are: 

  

€ 

E = α iEcont + β iEcurv + γ iEimg
i=1

N

∑

€ 

α i,β i,γ i ≥ 0

  

€ 

p1, p2,…, pN

€ 

α i = βi = γ i =1,  or   α i = βi =1 and γ i =1.2
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Last Step: Minimization 

  So computing an active contour involves setting up 
an energy functional like 

 and minimizing it. 

  There are many different ways to solve this 
optimization problem. 

  One of the most efficient methods (when applicable) 
for solving optimization problems is greedy 
algorithms (looks at locally optimal solution and that 
leads to a globally optimal solution). 

  

€ 

E = α iEcont + β iEcurv + γ iEimg
i=1

N

∑
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Greedy Algorithm 

1.   Greedy Minimization: Move each point pi within a small 
neighborhood to the point that minimizes the functional. Do 
computations over a small neighborhood: 3x3 or 5x5. 
Compute the energy at each location in the neighborhood and 
pick the smallest one. Call this smallest one pi’. 

2.   Corner Elimination: Look for corners among all the pi’ and 
adjust βi to smooth them out. Corners, if present should have 
the largest curvature values. If a point pj’ has the largest Ecurv 
value, then set βj=0. This way we neglect the contribution of  
Ecurv at point pj’  and let the other terms move the contour. 

3.  Go back to step 1, until a predefined number of points 
reaches a local minimum. 
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Greedy Algorithm Details 

  Econt, Ecurv and Eimg must be normalized. 

  For Econt and Ecurv  we divide by the largest value in 
the neighborhood in which the point can move.  

  For Eimg, let M and m be the maximum and 
minimum values of         over the neighborhood. We 
then normalize by: 

€ 

∇I

€ 

Eimg = −
∇I −m
M −m
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Greedy Algorithm - Comments 

  Typically the number of iterations until convergence 
is proportional to the number of points on the 
contour, e.g. 4* (# points).  

  It has low computational requirements O(MN). 

  It works well when the initial contour is close to the 
target contour. 

  There is no guarantee of convergence to the global 
minimum. 
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Snake Algorithm 

Let f be the minimum fraction of points that must 
move in each iteration before convergence, i.e. if 
fewer than f points points moved, then the deformable 
contour has stabilized to its final shape. 

While a fraction greater than f of snake points move in 
an iteration: 

  1. For each i =1 to N 

  a. compute E for each point in the 3x3 neighborh. 

  b. find the location in the neighborh. Where 

      E is min. and move pi at that location. 
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Snake Algorithm -continued 

2. For each i =1 to N 

  a. compute 

  b. find max k and all locations where k>threshold 

  c. let pj be the point with max k 

  d. set βj= 0 

  3. update average distance d, d_bar. 

Return the chain of points pi that represent the 
deformable contour. 

€ 

k = pi+1 − 2pi + pi−1
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Further Implementation Details 

  Ignore irrelevant corners: Point pi is considered a 
corner if and only if: a) Ecurv is locally maximum and 
b)      is sufficiently large. 

  Gaussian smoothing: To ensure that the snake 
gets attracted to a pixel with high intensity gradient, 
blur the image with a Gaussian with a large σ. If 
part of the snake finds part of the target contour, it 
will pull the other parts of the snake to continue on 
the contour. Reduce the blurring, i.e. σ, as the 
number of iterations increase. 

€ 

∇I
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Revisit  the Example 
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Advantages 

  Active contours are autonomous and self-adapting 
in their search for a minimal energy state. 

  They can be easily manipulated using external 
image forces. 

  They have a general framework that can be adapted 
to the application at hand.  

  They can be used to track dynamic objects in 
temporal as well as the spatial dimensions. 

  The framework allows user interaction/correction 
during evolution. 
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Drawbacks 

  They can often get stuck in local minima states. 

  Their performance is often sensitive to their 
initialization. 

  They often overlook minute features in the process 
of minimizing the energy over the entire path of 
their contours. 

  Their accuracy is governed by the convergence 
criteria used in the energy minimization technique. 
higher accuracies require tighter convergence 
criteria and hence, longer computation times. 



 Page 31  Page 31 

Elli Angelopoulou Deformable Contours 

Image Sources 

1.  Movies on active contours are courtesy of. C. Xu and J. Prince http://www.iacl.ece.jhu.edu/static/gvf/ 
2.  The and-drawn parametric curve is courtesy of G. Bebis, 

http://www.cse.unr.edu/~bebis/CS791E/Notes/DeformableContours.pdf 
3.  The image of the parametric curve, together with the parameter space is courtesy of sgi, 

http://techpubs.sgi.com/library/dynaweb_docs/0650/SGI_Developer/books/Perf_PG/sgi_html/figures/parametric.curve.gif 


