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Pattern Recognition Pipeline 

  The goal of analog to digital conversion is to gather 
sensed data      and change it to a representation 
that is amenable to further digital processing. 
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Need for A/D Conversion 

  Continuous range of     values 

  Continuous range of amplitude          values. 

  We can only store a finite amount of values 

    in a finite number of bits (discrete values). 

  Goal: Find a discrete representation such that the 
original analog signal can be accurately reconstructed. € 

′ f (t)
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On Accuracy 

  We want to have the analog signal accurately 
reconstructed. 

  What is accurate? 
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On Accuracy 

  We want to have the analog signal accurately 
reconstructed. 

  What is accurate? Ideally no loss of information. 

  Sometimes in order to get better speeds we accept 
some minimal information loss. 

  We often have to face trade-offs: 

  voice recording where you skip letters 

  digital images with aliasing effects 

  movies with blocky look 
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The two Aspects of A/D Conversion 

  The function         must be represented by a vector      
or by a sequence of numbers using a finite number 
of values. 

  For higher dimensional signals, like an image, the 
input function             must be represented by a 
vector    or by a sequence of numbers at distinct 
locations        . At each such location there is only a 
finite number of values that can be stored.    

  In the context of pictures: 
  How many pixels do I need? (How many (i,j) locations?) 

  How many bits per pixel? 
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2.  representing the amplitude values by a finite 
number of natural numbers: 

 quantization 

A/D Conversion Steps 

  The A/D conversion (coding) involves: 

1.  measuring the amplitude values (or function 
values) at a finite number of positions: 

 sampling, 

€ 

t
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Sampling Issues 

  We could have different sampling steps along the 
sampling axis, but in most cases we assume 

  Regular (equidistant) sampling. 

  Even under regular sampling, one must decide: 

€ 

t

€ 

′ f (t)

  Where do we take the 
samples along the analog 
signal so that we can 
properly reconstruct the 
original function.  

  In other words: What is the 
sampling interval dt or dx? 
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Quantization Issues 

  Along the vertical axis we also have continuous values 
that we can only store using a finite number of natural 
numbers. 

  Typical image options: 
  8 -16 bits per pixel for grayscale images 
  8 -16 bits per color channel (R,G,B) per pixel for color images 
  1 bit per pixel for black/white images 
  special encoding per application 

  Unlike sampling, quantization intervals are often not 
equidistant. 

  In the case of non-uniform quantization, the behavior of 
the quantizer is decided by the characteristic function, 
which relates the input continuous values to their 
discrete representation. 



 Seite 10  Seite 10 

A/D Analysis Tools 

  Important questions: 
1.  How do we decide the sampling rate? 
2.  How do we derive the characteristic function of the quantizer? 
3.  How can these affect my pattern recognition system? 

  In order to fulfill the necessary performance 
guarantees (accurate reconstruction) we need to 
use the appropriate tools. 

  Sampling Tool: Fourier Analysis 
 Fourier Analysis allows us to study signals as a collection of periodic 
signals. This periodicity then guides the sampling rate. 

  Quantization Tool: Probability Theory 
 Study previous behavior of the signal. High probability values use 
dense quantization. Lower probability values use sparse quantization. 



 Seite 11  Seite 11 

Fourier Analysis 

  Based on the Fourier series. 

  The original theory showed how any periodic 
function can be decomposed to a set of sines and 
cosines. 

  The theory was generalized for non-periodic 
functions. 

  Through the Fourier analysis we have a technique of 
decomposing complex patterns into a collection of 
simpler patterns. 
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Signal Decomposition Example 

Plot courtesy of http://www.doctronics.co.uk/signals.htm 
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Fourier Transform 
  How do we find the underlying sines and cosines of a 

function f(x)? 

  In other words how do we get the Fourier series of f(x)? 
  Using the Fourier Transform: 

 where           is the signal in the frequency domain and     is 
the frequency of the sinusoidal wave. 

 Note: the signal must be absolutely integrable, 

  

€ 

F (ω) = FT{ f (x)} = f (x)e− jωx
−∞

∞

∫ dx

  

€ 

F (ω)

€ 

ω

€ 

f (x)
−∞

∞

∫ dx <∞

  Given         , how do we get the original signal f(x) back?   

€ 

F (ω)
  Using the Inverse Fourier Transform: 

  

€ 

f (x) = FT−1{F (ω)} =
1
2π

F (ω)e jxω

−∞

∞

∫ dω
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Fourier Series 

  A periodic function f(x) has the Fourier series 

 where       is the periodicity of the signal and      are the 
Fourier coefficients. 

 Note: Though both equations have         , the Fourier 

coefficients ak have a band-limited integral, which can be 

evaluated. Thus ak becomes a function of ω.  

  

€ 

F (ω) = ak
k=−∞

∞

∑ e
2πj kω

2ω0

 

 
 

 

 
 

€ 

ω0

€ 

ak

  

€ 

ak =
1
2ω0

F (ω)e
−2πj kω

2ω0

 

 
 

 

 
 

dω
−ω0

ω0

∫
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F (ω)
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The Importance of Nyquist Sampling Thrm  

  This theorem provides a theoretical sampling rate at 
which we will incur (under certain conditions) no 
loss of information. 

  High sampling rate leads to too much data. 

  Low sampling rate leads to loss of information. 
€ 

x

€ 

f (x)
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Band-Limited Function 

  A function f(x) is band-limited in the frequency 
range              , if               for                       
where       is the boundary frequency. 

  What is so special about frequency band limited 
functions? 

€ 

(−Bx,Bx )   

€ 

F (ω) = 0

€ 

ω >ω0 = 2πBx

€ 

ω0

  They are restricted to a finite range of frequencies. 

  Band limited => finite number of sin and cos terms  

      => finite number of coefficients 

  => signal can be reconstructed from a limited 
number of discrete samples. 
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Example of a Band-Limited Signal 

Plot courtesy of http://www.doctronics.co.uk/signals.htm 
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Nyquist Sampling Theorem 

  Let f(x) be a band-limited function in the frequency 
range              . 

  Then f(x) is completely determined by the samples 

€ 

(−Bx,Bx )

  

€ 

fk = f (k Δx)    where k = 0,±1,±2,…
 if the sampling interval is chosen as 

€ 

Δx ≤ 1
2Bx

=
π
ω0

€ 

f (x) = fk
k=−∞

∞

∑ sin(2πBx (x − kΔx))
2πBx (x − kΔx)

= fk
k=−∞

∞

∑ sinc(2πBx (x − kΔx))

  The original signal f(x) can be reconstructed without 
any error using the following interpolation 
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Main Idea of Proof 

  Goal: To show that by using the sampling rate 
recommended by Nyquist’s sampling theorem, we 
incur no information loss. 

  We want to show that the f(x) we reconstruct from 
the samples       is identical to the original band-
limited signal. 

  We will use the Fourier Transform, the Inverse 
Fourier Transform and the Fourier Series to prove 
the theorem. 

  Recall that for a band-limited signal               for 

€ 

fk

  

€ 

F (ω) = 0

€ 

ω >ω0 = 2πBx



 Seite 20  Seite 20 

Step 1  

  If we had the Fourier Transform of the 

reconstructed signal,         , we could compute f(x) 
via the Inverse Fourier Transform, as follows: 

  

€ 

F (ω)

  

€ 

f (x) = FT−1{F (ω)} =
1
2π

F (ω)e jxω

−ω0

ω0

∫ dω

  Problem: We don't have         .     

€ 

F (ω)

  If we treat f(x) as a periodic signal with period     , 
we can get           using the Fourier Series 
representation.  

  

€ 

F (ω)

€ 

ω0
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  Rewrite this equation so that it looks like an Inverse 
Fourier Transform (                        ).   

€ 

f (x) = FT−1{F (ω)} =
1
2π

F (ω)e jxω

−∞

∞

∫ dω

Step 2 

  In order to use the Fourier Series representation we 
need the Fourier coefficients. 

  

€ 

ak =
1
2ω0

F (ω)e
−2πj kω

2ω0

 

 
 

 

 
 

dω
−ω0

ω0

∫
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ak =
π

2πω0

F (ω)e
jω −2πk

2ω0
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dω
−ω0

ω0

∫
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Step 2 - continued 

  The Fourier series coefficients are now: 

  

€ 

ak =
1
2π

π
ω0

F (ω)e
jω −kπ

ω0

 

 
 

 

 
 

dω
−ω0

ω0

∫

  But according to the Inv. FT,                           . Thus:   
  

€ 

f (x) =
1
2π

F (ω)e jωxdω
−∞

∞

∫

€ 

ak =
π
ω0

f − kπ
ω0

 

 
 

 

 
 

  The Nyquist Sampling theorem recommends a 
sampling rate of                           . If we use such 
a sampling rate:  

€ 

Δx ≤ 1
2Bx( ) = π ω0

€ 

ak = Δx f −k Δx( )
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Step 3 

  Take the      and put them back in the Fourier series 
and hopefully we get the Fourier Series to look like 
an interpolation formula. 

€ 

ak

  

€ 

F (ω) = ak
k=−∞

∞

∑ e
2πj kω

2ω0

 

 
 

 

 
 

  

€ 

F (ω) = Δx f (−k Δx)
k=−∞

∞

∑ e jkωΔx

  Via a variable substitution we get: 

  

€ 

F (ω) = Δx f (k Δx)
k=−∞

∞

∑ e− jkωΔx
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Step 4 

  Now we have an estimate of the Fourier Transform 
that we obtained directly from our discrete samples. 

  We are ready to use the Inverse Fourier Transform to 
see which signal we reconstruct from these samples.  

  

€ 

f (x) =
1

2π
F (ω)e jxω

−ω0

ω0

∫ dω =
1

2π
Δx f (k Δx)

k=−∞

∞

∑ e− jkωΔx
 

 
 

 

 
 e jxω

−ω0

ω0

∫ dω

€ 

f (x) =
1

2π
Δx f (k Δx)

k=−∞

∞

∑ e− jkωΔxe jxω

−ω0

ω0

∫ dω

€ 

f (x) =
1

2π
Δx f (k Δx)

k=−∞

∞

∑ e jω(x−kΔx )

−ω0

ω0

∫ dω
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Step 4 - continued 

  We can then evaluate the integral 

€ 

f (x) =
Δx
2π

 f (k Δx)
k=−∞

∞

∑ e jω(x−kΔx )

j(x − kΔx)
 

 
 

 

 
 
−ω0

ω0

€ 

f (x) =
Δx
2π

 f (k Δx)
k=−∞

∞

∑ 1
j

 

 
 
 

 
 
e jω 0 (x−kΔx ) − e− jω0 (x−kΔx )

(x − kΔx)
 

 
 

 

 
 

  Recall that                          . Hence  

€ 

sinθ =
1
2 j

e jθ − e− jθ( )

€ 

f (x) =
Δx
2π

 f (k Δx)
k=−∞

∞

∑ 2sin(ω0(x − kΔx))
(x − kΔx)
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Step 4 – last part 

  If we have                   and               and 

€ 

fk = f (k Δx)

€ 

Δx =
1
2Bx

€ 

ω0 = 2πBx

€ 

f (x) =  f (k Δx)
k=−∞

∞

∑ Δx
π

sin(ω0(x − kΔx))
(x − kΔx)

€ 

f (x) =  fk
k=−∞

∞

∑ sin(2πBx (x − kΔx))
2πBx (x − kΔx)

  Thus, if we use the Nyquist sampling rate, we can 
reconstruct the original signal by interpolating the 
discrete samples.  
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On the Nyquist Samping Theorem 

  So, the precise reconstruction of f(x) requires: 

  an sampling interval                

  an infinite number of samples. 

  In practice we are usually dealing with limited time, so 
we typically prefilter the signal and choose              . 

  Theorem: There is no function (in L2), which is both 
band-limited and time-limited (except for the identity 
function).  

  The smaller the function in the spatio-temporal domain, 
the larger it is in the frequency domain and vice versa. 

€ 

Δx =
1
2Bx

€ 

Δx <
1
2Bx
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Temporal vs. Frequency Domain  

  Compromise between accuracy of representation (high 
prec., many samples, small intervals) storage requirements 
(little storage, few samples, large intervals). 
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Sampling in 2D 

  We need to sample in each direction. 

              is coded as         where 

  We typically set                     and                    
resulting in                    . 

  Such a sampling setup results in a uniform sampling 
grid. 

€ 

f (x,y)

€ 

f j ,k

  

€ 

f j ,k = f (x0 + Δx,y0 + Δy)   
where   j = 0,1,…,Mx −1     k = 0,1,…,My −1

€ 

x0 = y0 = 0

€ 

Δx = Δy =1

€ 

f j ,k = f ( j,k)
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Uniform Sampling Grids 

  There are 3 uniform sampling grids on a plane: 

1.  Square grid 

2.  Hexagon grid 

3.  Triangle-based grid 


