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Pattern Recognition Pipeline A
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B The goal of analog to digital conversion is to gather
sensed data f’ and change it to a representation
that is amenable to further digital processing.
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Need for A/D Conversion I
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Continuous range of 7 values

Continuous range of amplitude f’(t) values.

We can only store a finite amount of values
in a finite number of bits (discrete values).

Goal: Find a discrete representation such that the
original analog signal can be accurately reconstructed.



On Accuracy A

B We want to have the analog signal accurately
reconstructed.

m What is accurate?



On Accuracy A

B We want to have the analog signal accurately
reconstructed.

m What is accurate? Ideally no loss of information.

B Sometimes in order to get better speeds we accept
some minimal information loss.

m We often have to face trade-offs:

B Vvoice recording where you skip letters
m digital images with aliasing effects
B movies with blocky look



The two Aspects of A/D Conversion N

m The function f'(#) must be represented by a vector f
or by a sequence of numbers using a finite number
of values.

B For higher dimensional signals, like an image, the
input function f'(x,y) must be represented by a
vector f or by a sequence of numbers at distinct
locations (i,j). At each such location there is only a
finite number of values that can be stored.

B In the context of pictures:

= How many pixels do I need? (How many (i,j) locations?)

= How many bits per pixel?
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A/D Conversion Steps A

m The A/D conversion (coding) involves:

1. measuring the amplitude values (or function
values) at a finite number of positions:

Sampling, f’(t)A

2. representing the amplitude values by a finite
number of natural numbers:

quantization



Sampling Issues
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A

B We could have different sampling steps along the

sampling axis, but in most cases we assume
Regular (equidistant) sampling.

B Even under regular sampling, one must decide:

< Where do we take the
samples along the analog
signal so that we can
properly reconstruct the
original function.

< In other words: What is the
sampling interval dr or dx?
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Quantization Issues A

m Along the vertical axis we also have continuous values
that we can only store using a finite number of natural
numbers.

B Typical image options:

= 8 -16 bits per pixel for grayscale images
= 8 -16 bits per color channel (R,G,B) per pixel for color images

= 1 bit per pixel for black/white images
= special encoding per application

B Unlike sampling, quantization intervals are often not
equidistant.

B In the case of non-uniform quantization, the behavior of
the quantizer is decided by the characteristic function,
which relates the input continuous values to their
discrete representation.



A/D Analysis Tools A

B Important questions:

1. How do we decide the sampling rate?
2. How do we derive the characteristic function of the quantizer?
3. How can these affect my pattern recognition system?

m In order to fulfill the necessary performance
guarantees (accurate reconstruction) we need to

use the appropriate tools.
m Sampling Tool: Fourier Analysis

Fourier Analysis allows us to study signals as a collection of periodic
signals. This periodicity then guides the sampling rate.

B Quantization Tool: Probability Theory

Study previous behavior of the signal. High probability values use
dense quantization. Lower probability values use sparse quantization.
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Fourier Analysis A

B Based on the Fourier series.

B The original theory showed how any periodic
function can be decomposed to a set of sines and
cosines.

B The theory was generalized for non-periodic
functions.

B Through the Fourier analysis we have a technique of
decomposing complex patterns into a collection of
simpler patterns.



Sighal Decomposition Example

A
v i [fundamenmlfrequenay v i //—fundamenmldr&i Hth
N\ harmonice
Are harmonic / \
! |
— - l', — -
" _"‘_---/. rd ll'.\_/",--‘\"--—/""n\ _"."I
fundamental + 3rd harmonic
Y4 gL Y ' o /—fundamenml + Brd, 5th,
fo N _ i [ Tth harmonice
/ \ th harmonic |/ .
| |
/\ JAN /"\ AN /<_ - '1 -
T W N T | e
! ! lI f
Y / \ I
\ i / I". N~ |

Plot courtesy of http://www.doctronics.co.uk/signals.htm
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Fourier Transform A
B How do we find the underlying sines and cosines of a
function f(x)?

m In other words how do we get the Fourier series of f(x)?
m Using the Fourier Transform:

F(w)=FT{f(x)} = [ f(x)e " dx

where ‘F(w) is the signal in the frequency domain and w is
the frequency of the sinusoidal wave.

Note: the signal must be absolutely integrable, f\f(x)\dx <

m Given F(w), how do we get the original signalf(x) back?
B Using the Inverse Fourier Transform:

F) =FT Y F @)} = [ Fle do
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Fourier Series A

B A periodic function f{x) has the Fourier series

where w, is the periodicity of the signal and a, are the
Fourier coefficients.

Note: Though both equations have ‘F(w), the Fourier

coefficients a, have a band-limited integral, which can be

evaluated. Thus a, becomes a function of w.



The Importance of Nyquist Sampling Thrm  ~d

B This theorem provides a theoretical sampling rate at

which we will incur (under certain conditions) no
loss of information.

J(x)

>
X

m High sampling rate leads to too much data.
B Low sampling rate leads to loss of information.
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Band-Limited Function I

m A function f(x) is band-limited in the frequency
range (-B_,B.), if F(w)=0 for |w|>w,=27B,
where @, is the boundary frequency.

B What is so special about frequency band limited
functions?

B They are restricted to a finite range of frequencies.
B Band limited => finite number of sin and cos terms
=> finite number of coefficients

=> signal can be reconstructed from a limited
number of discrete samples.



Example of a Band-Limited Signal
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Nyquist Sampling Theorem )

m Let f(x) be a band-limited function in the frequency
range (-B_,B.).

®m Then f(x) is completely determined by the samples
f.=f(kAx) wherek=0,x1,£2,...

If the sampling interval is chosen as

Ar< o
2B, o,
®m The original signal f(x) can be reconstructed without

any error using the following interpolation

O, sin(2aB, (x - kAx))
J(x) = ,;_wf 2B (x - k)

= i f,sincQaB_(x — kAx))

k=—OO
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Main Idea of Proof A

m Goal: To show that by using the sampling rate
recommended by Nyquist’'s sampling theorem, we
incur no information loss.

m We want to show that the f(x) we reconstruct from
the samples f, is identical to the original band-
limited signal.

m We will use the Fourier Transform, the Inverse
Fourier Transform and the Fourier Series to prove
the theorem.

B Recall that for a band-limited signal F(w)=0 for
w|>w, =27B,



Step 1 A

m If we had the Fourier Transform of the

reconstructed signal, (@), we could compute f(x)
via the Inverse Fourier Transform, as follows:
-1 1 @ X
fX)=FT"{F(w)}=— | Flwe™dw
e

m Problem: We don't have F(w).

m If we treat f(x) as a periodic signal with period w,,

we can get F(w) using the Fourier Series
representation.



Step 2 A

B In order to use the Fourier Series representation we
need the Fourier coefficients.

R

ak_—ff(w)e

2w, *

B Rewrite this equation so that it looks like an Inverse
Fourier Transform (/@-Fr'Fen -5 [ Foeraw),

we@sz)
4= o ff( )
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Step 2 - continued N
B The Fourier series coefficients are now:
—km
| A fw(—)
a, = —— w)e ““dw
Y W, _‘!);f( )
m But according to the Inv. FT, f(x)=2ijf(w)ef“’xcza) . Thus:
JU
T ki ”
ak i _f(__)
W W

B The Nyquist Sampling theorem recommends a

i 1 _TT
samplmg rate of Axs%sz) A)O . If we use such
a sampling rate:

a, = Ax f(-k Ax)



Step 3 A

B Take the 4, and put them back in the Fourier series
and hopefully we get the Fourier Series to look like
an interpolation formula.

For- Sael®

k=—OO

Flw)= Y Axf(-k Ax)e” ™

k=—OO

®m Via a variable substitution we get:

Flw)= Y Ax f(k Ax)e ™

k=—OO
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Step 2 A

B Now we have an estimate of the Fourier Transform
that we obtained directly from our discrete samples.

B We are ready to use the Inverse Fourier Transform to
see which signal we reconstruct from these samples.

f(x)=— f Fw)e™ dw = — f ( N Ax f(k Ax)e” Jk"m) 0 da

T o, T o\ k=0

fx) == 2Axf<k A [ e e o

f(x) = EAxf(k Ax) [ e 404

k——OO —(1)0
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Step 4 - continued N

m We can then evaluate the integral

jo(x-kAx) %o

o Ax e
fo=Y R v

0 1 joo(x=kAx) _— jog(x—kAx)
o Sl

27T

J

k=—OO

m Recall that sin0=i(e~"9 —e‘fe). Hence

2]

o Ax 2sin(w, (x - kAx))
fo="y S (kA oA

k=—OO




Step 4 - last part N

1
m If we have f, = f(kAx) and Ax=§ and w, =2xB,

X

Ax sin(w,(x — kAx))

f)="Y f(kAx)

pa T (x—kAx)
&, sinQaB, (x - kAY))
J(x) = k;f 2B (x - k)

B Thus, if we use the Nyquist sampling rate, we can
reconstruct the original signal by interpolating the
discrete samples.



On the Nyquist Samping Theorem A

B SO, the precise reconstruction of f(x) requires:
1

= an sampling interval Ax = B

X

= an infinite number of samples.

m In practice we are usually dealing with limited timel, SO

we typically prefilter the signal and choose Ax< 2B

B Theorem: There is no function (in L,), which is both
band-limited and time-limited (except for the identity

function).

B The smaller the function in the spatio-temporal domain,
the larger it is in the frequency domain and vice versa.
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Temporal vs. Frequency Domain A

|f (t) tF(w)
| :f >u,'

A

AN I

B Compromise between accuracy of representation (high
prec., many samples, small intervals) storage requirements
(little storage, few samples, large intervals).




Sampling in 2D A

B We need to sample in each direction.

m f(x,y) iscoded as f., where

Jix=J(xg+Ax,y, +Ay)
where j=0,1,...M -1 k =O,1,...,My -1

m We typically set x,=y,=0 and Ax=Ay =1
resulting in f,, = f(J.k).

B Such a sampling setup results in a uniform sampling
grid.
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Uniform Sampling Grids A

B There are 3 uniform sampling grids on a plane:

}.'

1. Square grid

2. Hexagon grid

3. Triangle-based grid




