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Pattern Recognition Pipeline 

  The goal of analog to digital conversion is to gather 
sensed data      and change it to a representation 
that is amenable to further digital processing. 
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Need for A/D Conversion 

  Continuous range of     values 

  Continuous range of amplitude          values. 

  We can only store a finite amount of values 

  in a finite number of bits (discrete values). 

  Goal: Find a discrete representation such that the 
original analog signal can be accurately reconstructed. € 

′ f (t)
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2.  representing the amplitude values by a finite 
number of natural numbers: 

 quantization 

A/D Conversion Steps 

  The A/D conversion (coding) involves: 

1.  measuring the amplitude values (or function 
values) at a finite number of positions: 

 sampling, 
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Quantization 

  The number of quantization steps is defined by the number 
of bits we use to represent the value of the function. 
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Bits 

  Two key questions: 
1.  How many bits? 
2.  How do we use these bits? 

  When we use B bits, we get 2B quantized levels. 

  Examples: 
  most intensity images: B = 8-12, 256 – 4,096 different gray values. 
  medical images: B = 10 - 16, 1024 – 65,536 different gray values. 
  most color images: B = 24-36, 8-12 for each color channel, at least 

16 million colors.  

  Typical data sizes for a 1024 x 1024 (1 MP) image: 
  at 8 bits => 1MB/img => a movie at 30fps creates 30MB/sec 
  at 12 bits => almost 1.6 MB/img => at 30 fps we get 47MB/sec 
  at 24 bits => 3.1 MB/img => at 30 fps we get 93MB/sec 

=> a 5 minute movie needs 27GB. 
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Audio vs. Video Data Rates 

Type 

Audio, understandable 
Audio, MPEG encoded 

  Audio, CD quality 

Video, MPEG-2 
Video, NTSC 
Video, HDTV 

Specifications 

1 channel, 8kHz @ 8 bits 
CD equivalence 

2 channels, 44.1kHz @16 bits 

   640 × 480, 24 bits/pixel 
   640 × 480, 24 bits/pixel 

  1280 × 720, 24 bits/pixel 

Data Rate 

64 kbit/sec 
384 kbit/sec 
1.4 Mbit/sec 

0.42 MB/sec 
27 MB/sec 
81 MB/sec 
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Quantization Error 

  Quantization Error: The error we make when we 
approximate a real value      by a discrete value     : 
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Signal-to-Noise Ratio (SNR) 

  There exists a standardized way of expressing the 
noise in a system or sensor that is associated with 
quantization. It is called the Signal-to-Noise Ratio. 

  SNR is a general measure that is used for different 
types (sources) of noise.  

  In Engineering SNR is a power ratio: 

  Within the context of pattern recognition, because of 
the uncertainty involved in the input signal, SNR is 
the ratio of the expected signal over the expected 
quantization noise.  

€ 

SNR =
Psignal
Pnoise
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SNR =
E{ ′ f 2}
E{n2}
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Signal-to-Noise Ratio (SNR) - continued 

  The Signal-to-Noise Ratio is defined as: 

 where the quantization noise n is                  .   

  The expected value E{} is defined as:  

 where     is a random variable, and         is the 
probability density function (pdf) of   , which tells us 
how often different values of     occur.  

  So, similar information on      can guide us on how 
many bits to use. 
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SNR and logarithmic scale 

  Because input signals can have a wide dynamic 
range, SNR is usually expressed in  terms of the 
logarithmic decibel scale:  

€ 

SNRdB = r =10log10
E{ ′ f 2}
E{n2}

=10log10( ′ r )

  Do we want a small or a large SNR? Why? 
      Large is better. 
      We want over 30dB SNR. Systems with 60dB are 

considered very good.  
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Does One Bit Make a Difference? 

  Important question: How many bits should one use 
when quantizing a particular family of functions/
signals (i.e. medical images, or remote sensing data 
etc.)? 

  Does one additional bit make a difference? 

  Under certain assumptions (see next slide), the SNR 
is directly proportional to the number of bits used 
for quantization: 

  This means that 1 extra bit can increase the SNR by 
6dB. 

€ 

SNRdb = r = 6B − 7.2
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Assumptions 

1.  On average we have white noise. 

2.  We have a signal with               .  

3.  The error (noise) is uniformly distributed. 

4.  The signal values lie in a limited range: 

If we have a normal distribution, then  
   about 68% of the values lie within 1 σ of the mean, 
   about 95% of the values lie within 2 σ of the mean, 
   about 99.7% of the values lie within 3 σ of the mean, 
   about 99.99% of the values lie within 4 σ of the mean. 
So if the values of       follow a normal distribution, 
assumption 4 is reasonable. 
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Assumptions 1 and 3 

  We have uniformly distributed white noise,             . 

 Let s be the quantization step (quantization interval). 

 Then p(n) will be of the form: 

 The width of the pdf has to be s and centered around 
the value 0 (since               ), and the integral of the 
pdf has to sum up to 1 by definition.  
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SNR Denominator 

  Recall that 

  What is           ?   
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SNR = ′ r =
E{ ′ f 2}
E{n2}
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Assumption 2 

  We have a signal with               . 

  According to the definition of standard deviation: 

  However, by assumption 2, we get 
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E{ ′ f } = 0
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Assumption 4 

  The signal values lie in the range: 

  So the length of the interval of the      values is   

  When we use B bits to store these        values, we 
have 2B quantization levels. 

  Assuming equidistant quantization, each 
quantization step, s, is 
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Assumption Combination 

  So far, by exploiting the 4 assumptions we have shown: 

  From (1) and (3): 

  Recall that SNR is defined as  
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Mapping 

  Using SNR as a criterion, we know how many bits to 
use, but how do we use them? 

  To which discrete value do we map a continuous 
interval? 
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Good Mapping 

  How can I tell whether my mapping is good? 

  What is a possible objective function, a criterion to 
judge the quality of the mapping?  

  Error measure (error that occurs when mapping f’ to bv) 
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ε = ′ f − bv( )2 p( ′ f )d ′ f 
av

av+1

∫
v=1

L

∑

  By weighing the error by the probability density of f’, 
values that have a higher probability of occurring have a 
higher impact on the error term. 

  The optimal quantization characteristics are defined by 
the values av , bv which minimize the error ε. 



 Seite 21  Seite 21 

Optimal Quantization Characteristics 

  Optimal discrete value: 

  Optimal threshold level: 
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Pulse Code Modulation 

  A linear quantization characteristic  function (with 
equally spaced quantization levels) is an optimal 
quantization if and only if the signal amplitudes are 
equally distributed. 

  Coding using the methods introduced so far is called 
Pulse Code Modulation. 

  Other coding methods, depending on the application 
are: 
  Coding with a minimal number of bits 
  Error detection and correction 
  Run-length encoding 
  Chain code 
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Vector Quantization 

  So far, we have considered the quantization of real valued 
functions, i.e.          .  

  There exist signals where we have to deal with vector 
valued functions,               (e.g. color images with RGB 
values). 

  The quantization of vectors to discrete vectors is called 
vector quantization. 

  Vector quantization is the process of mapping N-
dimensional vectors in the vector space       into a finite set 
of vectors                           , where          .  

  Each vector      is called a code vector or a codeword.  

  The set of all the codewords,    , is called a codebook.  € 
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Codebook Design  

  There exist many vector quantization methods. 

  We are just going to present one method which is 
based on mean values. 

  Another one is based on computing nearest 
neighbor regions, aka Voronoi regions. 
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Using the Mean Vectors 

  For each cluster in the training data compute the mean 
vector    .  

  Each mean vector     becomes the code vector or 
codeword,    . 

  All the mean vectors define the so-called code book,   . 

  Given an arbitrary input vector      find the nearest  
code vector                                 . 

  Store the offset to the closest mean    . There is a 
finite number of bits that can be used for the offset. 

  Use your favorite distance metric, e.g. Euclidean, 
Manhattan, etc. We often use the Euclidean distance. 
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Computing the Codebook 

  k-means algorithm 

  k:# of code vectors 

  Input: M data vectors 

1.  Randomly assign the vectors                  to k clusters. 

2.  Compute the mean vector     for each cluster.  

3.  Reassign each vector                  to the cluster with 
the nearest mean vector     . 

4.  Repeat 2. and 3. until no further changes occur 

  Output: code book 
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Linde-Buzo-Gray Algorithm 

  The Linde-Buzo-Gray (LBG) algorithm is a widely-used 
vector quantization algorithm which is very similar to 
the k-means algorithm. 

  Main idea. Start with a single code vector. At each 
iteration, each code vector is split into two new vectors. 

1.  Initial state: compute the mean of the training data. 

2.  Initial estimation #1: code book of size 2. 

3.  Final estimation for code book of size 2, after training data 
reassignment. 

4.  Initial estimation #2: code book of size 4. 

5.  Final estimation for code book of size 4, after training data 
reassignment. … 


