Introduction to Pattern Recognition

RECOMMENDED TEXTBOOKS

- H. Niemann. *Klassifikation von Mustern*. Springer, 1983. 2nd edition (2003) available via the Internet: http://www5.informatik.uni-erlangen.de/en/our-team/niemann-heinrich
- S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, 4th ed., by, Academic Press 2008, ISBN 1597492728 or (ISBN 978-1-59749-272-0)
- R. O. Duda, P. E. Hart and D. G. Stork, *Pattern Classification*, 2nd ed., by, Wiley-Interscience 2000, ISBN 0471056693.

Lecture Plan

TOPIC: SIGNAL ACQUISITION

	Week 1	15. October	Introduction to IntroPR Lecture
--	--------	-------------	---------------------------------

Administrative information

Key concepts

Introduction to A/D conversion

Week 2 22. October Fourier analysis

Nyquist sampling theorem

Quantization

TOPIC: PRE-PROCESSING

Week 3	29. October	Histogram equalization
No lecture 31.10.12		Intro to Thresholding

intro to Thresholdin

Week 4 05. November Thresholding

Filtering

Linear shift-invariant systems

Convolution

Noise suppression (low-pass filtering)

Week 5 12. November Edge detection (high-pass filtering)

Recursive filtering Homomorphic filters

Week 6	19. November	Morphology
--------	--------------	------------

Pattern normalization

Moments

TOPIC: FEATURE EXTRACTION

Week 7	26. November	Introduction to feature extraction Orthogonal bases Fourier series
Week 8	03. December	Walsh (Hadamard) transform Haar transform Linear Predictive Coding Moments as features
Week 9	10. December	Wavelets
Week 10	17. December	Principal Component Analysis (PCA) Linear Discriminant Analysis (LDA) Optimal Feature Transform (OFT)
Week 11	7. January	Gradient Descent Coordinate Descent Feature Selection
	T	OPIC: CLASSIFICATION
Week 12	To 14. January	OPIC: CLASSIFICATION Introduction to classification Statistical classifiers Miss-classification cost Optimal decision rule Bayesian classifier
Week 12 Week 13		Introduction to classification Statistical classifiers Miss-classification cost Optimal decision rule
	14. January	Introduction to classification Statistical classifiers Miss-classification cost Optimal decision rule Bayesian classifier Gaussian classifier Polynomial classifiers