
Multiview Geometry 

Prof. Dr. Elli Angelopoulou 
Pattern Recognition Lab (Computer Science 5) 
University of Erlangen-Nuremberg 



 Page 2  Page 2 

Elli Angelopoulou Multiview Geometry 

Multiview Analysis 

  Observing the same scene point from multiple 
distinct viewpoints allows the recovery of 3D 
structure. 

  A key component of multiview analysis is finding 
corresponding scene regions in the different image 
planes – the correspondence problem. 

  The relative shift between corresponding 
projections, the disparity, provides 3D structure 
information. 

  Recovery of exact 3D data requires further 
knowledge about the camera setup. 
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  Camera 1 

First Camera 

  Camera 1: 
  Center of Projection O 
  Image plane π

  Scene point P projects on point p on π. 
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p 



 Page 4  Page 4 

Elli Angelopoulou Multiview Geometry 

  Camera 2 

Second Camera 

O 

P 

π


p p’ 

  Camera 2: 
  Center of Projection O’ 
  Image plane π’

  Scene point P projects on point p’ on π’. 

π’ 

O’ 
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p’ 

π’ 

O’ O 

π


p epipolar 
plane 

Epipolar Plane 

P 

  The epipolar plane is defined by the 2 COPs O 
and O’ and a point in the scene P. 

  The lines OP and O’P lie on the epipolar plane Γ. 
  Point p lies on the OP line and on the image plane π.

 It is the intersection of OP and π.  
  Point p’ lies on the O’P line and on the image plane π’.

 It is the intersection of O’P and π’.  
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p’ 

π’ 

O’ 
O 

π


p epipolar plane 

Epipolar Line 

P 

  The epipolar line is the intersection of the 
epipolar plane with the image plane. 

  Since point p lies on the OP line and on the image plane 
π, it also lies on the intersection of the epipolar plane 
with the image plane π, i.e. on the epipolar line l. 

  Since point p’ lies on the O’P line and on the image plane 
π’, it also lies on the intersection of the epipolar plane 
with the image plane π’, i.e. on the epipolar line l’  
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Epipoles 

p’ 

π’ 

O’ 
O 

π


p epipolar plane 

P 

  The baseline b is the line between the 2 COPs O and 
O’. In verged cameras, this line intersects both plane 
π and π’. 

b 

  The epipole is the intersection of the baseline with the 
respective image plane. 

e’ e 
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Epipolar Constraint 

p’ 

π’ 

O’ 
O 

π


p epipolar plane 

P 

  The epipolar line l passes through the epipole e. 

  The epipolar line l’ passes through the epipole e’. 

  If both p and p' are projections of the same point P, 
then p and p’ must lie on the same epipolar plane. 
They must lie on epipolar lines l and l’ respectively. 
This is called the epipolar constraint. 

b e’ e 
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Impact of the Epipolar Constraint 

p’ 

π’ 

O’ 
O 

π


p epipolar plane 

P 

  The epipolar constraint has a fundamental role in 
stereo and motion analysis. 

  Reduces correspondence problem to 1D search along 
conjugate epipolar lines. 

  Given an image point p, one needs to only search in 
the epipolar line l’ for the corresponding point p’.  

b e’ e 
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Required Knowledge 

  In order to know the epipolar geometry, we need: 
  The location of the two COPs 
  The location of the two image planes 
  The orientation of the image planes 

  We need to know the intrinsic and extrinsic camera 
characteristics. 

  Intrinsic camera characteristics 
  Pixel size  
  Focal length 
  Principal point 

  Extrinsic camera characteristics 
  The relative position of the 2 optical centers 
  The relative orientation of the two image planes 
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Epipolar Constraint – Calibrated Case 

  Assume that the intrinsic parameters of each of the 
cameras are known, i.e. the mapping from the 
image coordinate system to a metric camera 
coordinate system. 

  Goal: Express algebraically the epipolar constraint, 
so that it can be incorporated in our 
correspondence, stereo and motion algorithms. 
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Epipolar Plane Constraint 

p’ 

π’ 

O’ O 

π


p 

P 

t 

  The vectors Op, O'p' and O’O are all co-planar, i.e. 
they must satisfy the following equation: 

  The vector Op is perpendicular to the vector 
resulting from the cross-product of O’O and O’p’. 

€ 

Op ⋅ (O'O×O' p') = 0
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Relating the 2 Camera Coord. Systems 

  Each each image is unaware of the other camera. 

  Point p is specified in the local coordinate system of 
the camera with COP O. 

  Similarly point p’ is specified in the local coordinate 
system of the camera with COP O’. 

  We need to express everything in terms of a single 
coordinate system.  

  Without loss of generality we choose as the 
reference coordinate system the one of the camera 
with COP O. 
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Translation 

p’ 

π’ 

O’ 

P 

t 

  There is a translation vector t, (the baseline to be 
precise) that shows you how one can move COP O’ 
to COP O. 

  

€ 

 
t = O'O
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Need for Rotation 

  If we apply this translation t to every point p’ of the 
camera with COP O’ then we will move the 
coordinate system with COP O' so that both camera 
coordinates are pined to the same origin O. 

p’ 

π’ 

p’ 

π’ 

O’ 

P 

t O 
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Rotation 

  Still the two coordinate systems can differ by a 
rotation. Let R be the rotation matrix that aligns the 
corresponding axes of the two camera coordinates.  

p’ 

π’ 

p’ 

π’ 

O’ 

P 

t O 

π


p 
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Translation and Rotation 

  Each point p' after the translation from camera O’ to 
camera O, is rotated by R.  

  The two camera coordinate systems are now aligned. 

  Everything can be expressed in terms of the 
coordinate system of camera O.  

p’ 

π’ p’ 

π’ 

O’ 

P 

t O 

π
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p’ 

π’ 
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Epipolar Constraint Revisited 

p’ 

π’ p’ 

π’ 

O’ 

P 

t O 

π
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p’ 

π’ 

  Recall that vectors Op, O'p' and O’O are co-planar: 

  Rewritten in the coordinate frame of camera O: 

€ 

Op ⋅(O'O×O' p') = 0

€ 

p ⋅ (t × (Rp')) = 0
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  The epipolar equation can be rewritten as a series of 
matrix multiplications: 

  This is often represented more compactly as: 

 where     is a 3x3 matrix of the form: 

 and it is known as the essential matrix.  

        is a skew-symmetric matrix such that    

        is the matrix representation of the cross product with t .  

 if                 then 

Epipolar Constraint – Matrix Form 

€ 

pT (t ×R)p'= 0

€ 

pTEp'= 0

€ 

E

€ 

E = [t×]R

€ 

[t×]

€ 

[t×]b = t ×b

€ 

[t×]

€ 

t =

tx
ty
tz

 

 

 
 
 

 

 

 
 
 

€ 

t×[ ] =

0 −tz ty
tz 0 −tx
−ty tx 0

 

 

 
 
 

 

 

 
 
 
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Epipolar Constraint Equations 

  The equation              is the algebraic representation 
of epipolar geometry. 

  The vector that corresponds to the epipolar line l that 
is associated with point p’ is           . 

  Similarly, the vector that corresponds to the epipolar 
line l’  that is associated with point p is           . 

  Thus, once the essential matrix E is recovered, one 
can reduce the search space for finding the 
corresponding points to a 1D space.  

€ 

pTEp'= 0

€ 

l = Ep'

€ 

l'= ETp
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Epipolar Constraint –Uncalibrated case 

  For uncalibrated cases, the matrices (rotation R and 
translation t) that express point p' in terms of the 
coordinate system of camera O must also incorporate 
the intrinsic camera parameters. 

  Instead of               we have: 

 where                                     are the intrinsic 
parameter matrices of cameras O and O' accordingly 

  F is called the fundamental matrix.  

€ 

pTEp'= 0

€ 

pTK−TE ′ K −1 ′ p = 0

€ 

F = K−TE ′ K −1 and K and ′ K 

€ 

pTFp'= 0
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Multiple Views 

  For binocular setups the epipolar constraint can be 
represented in a 3x3 matrix from, called the 
fundamental matrix. 

  When we have 3 images the epipolar constraint is 
represented by a 3x3x3 structure, called the trifocal 
tensor. 

  When we have 4 images the epipolar constraint is 
represented by a 3x3x3x3 structure, called the 
quadrifocal  tensor. 



 Page 23  Page 23 

Elli Angelopoulou Multiview Geometry 

Key Points of Epipolar Geometry 

  For each pair of corresponding points p and p' in 
camera coordinates (cartesian metric coordinate. 
system), the following relationship holds: 

  For each pair of corresponding points q and q' in 
pixel (image) coordinates the following relationship 
holds: 

€ 

pTEp'= 0

€ 

qTFq'= 0

E is the essential matrix 

F is the fundamental matrix 
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Key Points of Epipolar Geometry 2 

  The epipolar line l' that corresponds to the point q 
has the form                                             and is 
given by: 

 where x,y,z are in the local coordinate system of 
camera O’.  

  The epipolar line l that corresponds to the point q’ 
has the form                                             and is 
given by: 

 where x,y,z are in the local coordinate system of 
camera O.  

€ 

′ l 1x + ′ l 2y + ′ l 3z = 0, where ′ l = ( ′ l 1, ′ l 2, ′ l 3)

€ 

′ l = FTq

€ 

l1x + l2y + l3z = 0, where l = (l1,l2,l3)

€ 

l = F ′ q 
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The Essential Matrix in Practice 

  What does the epipolar plane depend on? A point P in 
the scene and the camera COPs O and O’. It varies 
from point to point. 

  What does the matrix E (similarly F) depend on? The 
rotation R and the translation t between the two 
camera coordinate systems. No dependence on the 
scene.  

  So… recover E (or F) once, keep the camera setup 
stable and then reuse it for every scene point. 

  How do we recover E (or F)? 
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Estimation of the Fundamental Matrix. 

  Assume known correspondences of n points between 
the two images. 

  You have n equations of the form: 

  F is a 3x3 matrix => 9 unknowns. 

  If you have 8 well spread correspondences, you can 
determine F. 

  Why 8? The n equations are homogeneous linear 
equations, i.e. all equations have a zero as a 
constant in the right hand side. So the solution is 
unique up to a scaling factor. 

  

€ 

pi
TFpi '= 0 ,    i =1…n
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Over-determined System 

  If n>8, then we have an over-determined system. 
Use SVD (Singular Value Decomposition). 

  How? Build a nx9 matrix A which contains the 
coefficients of the n equations: 

  Run SVD on A. It decomposes A to: 
  D diagonal matrix; its elts are called singular values. 
  U is n x n orthogonal 
  D is n x 9  
  V is 9 x 9 orthogonal 

  In theory, the solution to F (the value of its 9 
unknowns) is the column of V that corresponds to 
the only null singular value of A, i.e. the only zero 
value on the diagonal. 

  

€ 

pi
TFpi '= 0 ,    i =1…n

€ 

A =UDVT
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Estimating F in Practice 

  In reality, due to noise, quantization, numerical 
errors, inaccuracies in the n correspondences, there 
is no null singular value.  

  Thus, in practice we use the minimum singular 
value and its corresponding column in V. 

 where sm was the minimum diagonal value in D and 
was located in column m in D. € 

F = V(Colm )
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Estimating F in Practice - continued 

  However, this whole process had inaccuracies. The 
resulting F may not be singular. So, run SVD again, 
this time on F. 

  Then build the matrix D’ from DF but with the 
minimum singular value of DF set to 0. 

  Compute a new fundamental matrix which is singular: 

  F' is a good estimate of the fundamental matrix. 

€ 

F =UFDFVF
T

€ 

′ F = UF ′ D VF
T
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Longuet-Higgins Eight-Point Algorithm 

1.  Let A be an nx9 matrix of the coefficients of the n eqs.:   

2.  Apply SVD on A and find matrices U, D, V such that 

3.  The entries of F are the components of the column of V 
corresponding  to the least singular value of A. 

4.  Enforce singularity constraint by applying SVD on F 

5.  Set D' = DF with the smallest singular value of DF set to 0. 

6.  Get new estimate of F, call it F' such that 

  

€ 

pi
TFpi '= 0 ,    i =1…n

€ 

A =UDVT

€ 

F =UFDFVF
T

€ 

′ F = UF ′ D VF
T
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Fundamental Matrix Video 

You may want to check out the fundamental matrix 
video at the following web-site: 

http://danielwedge.com/fmatrix/ 


