
October 6, 2011 RITKTHE RANGE IMAGING TOOLKIT

RITK Style Guide

Jakob Wasza, Sebastian Bauer, Sven Haase

October 2011

1 Purpose

The following document is a description of the accepted coding style for the
Range Imaging Toolkit (RITK). Developers who wish to contribute code to
RITK should read and adhere to the standards described here.

2 Document Overview

This document is organized into the following sections

• System Overview & Philosophy - motivation for the guideline

• Copyright - copyright issues

• File Organization - guide to RITK directory structure

• Naming Convention - patterns used to name classes, variables and files

• Namespaces - the use of namespaces

This style guide is not a final ultimate version. Rather, you can send any
suggestions to ritk@i5.cs.fau.de and we will revise the issue or add sections to
this style guide. If you want to be sure to use the most recent style guide, go
to http://www5.cs.fau.de/ritk and download the latest version there.

3 Style Guidelines

The following guidelines have been adopted by the RITK community. They
will help to standardize the code written for RITK. By developing source code
with one single style we can include new enhancements from the community
and evaluate bugfixes faster. All in all this provokes a faster evolution and
improved quality of the RITK source code. Most of the guidelines are in the
style of ITK [ISNC05]. The ITK guide can be found in your ITK directory in
Documentation/Style.pdf.

1

mailto:ritk@i5.cs.fau.de
http://www5.cs.fau.de/ritk


October 6, 2011 RITKTHE RANGE IMAGING TOOLKIT

3.1 System Overview & Philosophy

The decisions of the following guidelines where established and evolved during
the developing process of RITK. These decisions were mostly influenced by the
goals RITK needs to fulfil, e.g. real-time processing, generic architecture and
portability.

3.1.1 Implementation Language

The core implementation language is C++. It was chosen as we decided to build
a range image streaming application that is only useful if it can run in real-time
and still can handle large amounts of data. RITK uses the full power of C++
including namespaces, function overloading, inheritance and templates.

3.1.2 Portability

RITK and its dependencies were developed with the intention to compile on
different operating systems with different compilers. Nevertheless, only two
configurations have been tested yet:

• Windows 7 32bit, MSVC 2008

• Windows 7 64bit, MSVC 2008

• Windows 7 32bit, MSVC 2010

• Linux, GCC

If you can confirm any other combination of operating systems and compilers,
please write us an email with additional information.

3.1.3 CMake Build Environment

The RITK build environment is CMake as it is in ITK. For further information
go to http://www.cmake.org.

3.1.4 Doxygen Documentation System

The Doxygen open-source system is used to generate an on-line documentation.
For further information go to http://www.doxygen.org.

3.2 Copyright

The license file is included in all downloads. We have not yet put up any
copyright header that needs to be included in all files.

2

http://www.cmake.org
http://www.doxygen.org


October 6, 2011 RITKTHE RANGE IMAGING TOOLKIT

3.3 File Organization

Classes are created and organized into a single class per file set. A file set consists
of .h header file, .cxx implementation file, and/or a .txx templated implemen-
tation file. The files should be placed in the correct directory. Please adapt
the already existing system, where plugins are subdivided into open-source and
closed-source and within those folders in source-, filter-, and application-plugins.
If you modify RITK itself make sure to put your additional source codes in the
correct module and keep the logical structure. File names within RITK always
have to start with ritk (e.g. ritkRImage.h).

3.4 Naming Convention

The most important naming rule is to use meaningful names. In addition to that
there are several rules to keep the appearance of the source code homogeneous.

3.4.1 Classes

If you create a plugin use the Plugin Creator. It will organize and name the code
files the right way. For naming additional classes please adapt the structure to
the already implemented source files.

3.4.2 Variables

To indicate separate words names are constructed by using case change. For
member variables use the prefix m (e.g. m MyMemberVariable). Local vari-
ables should start with a capital letter.

3.4.3 Functions

Functions in RITK need to start with a capital letter. When referring to class
methods in code, an explicit this→ pointer should be used. This helps clarify
exactly which method is being invoked.

3.5 Namespaces

All classes within RITK itself should be placed in the ritk:: namespace. The
plugins do not have to use any namespace.

3.6 Code Layout and Indentation

There is only one important point. We DO use tabs in comparison to ITK. For
all other layout guidelines please consult the ITK style guide (Chapter 3.7).

3



October 6, 2011 RITKTHE RANGE IMAGING TOOLKIT

References

[ISNC05] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software
Guide, second edition, 2005.

4


	Purpose
	Document Overview
	Style Guidelines
	System Overview & Philosophy
	Implementation Language
	Portability
	CMake Build Environment
	Doxygen Documentation System

	Copyright
	File Organization
	Naming Convention
	Classes
	Variables
	Functions

	Namespaces
	Code Layout and Indentation


