

Version 2.2.0

PROGRAMMING MANUAL

 For 3D time-of-flight cameras

PMDSDK 2

PMDSDK2

Technical information subject to change without notice.
This document may also be changed without notice.
July 2008

Version: 2.2.0-1
Created: 31/July/2008
Changed: 22/Sep/2009
Author: Pro,Frd
© PMDTec GmbH

All texts, pictures and other contents published in this instruction manual are subject to the copyright of
PMDTec, Siegen unless otherwise noticed. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system, without permission in writing from the publisher PMDTec.

We would like to advise you that all equipment related to the camera demonstrator, including the
camera itself, is intended for internal use on an experimental basis only. Please note, that
PMDTechnologies has assigned exclusive rights to third party companies for the use of
PMDTechnologies systems. Permission must be granted by these companies for any further use or
development of these systems, and lack thereof may result in PMDTechnologies being unable to
supply further revisions of the equipment in the future.

Page 3 of 30

PMDSDK2

Table of Contents

1 INTRODUCTION .. 4

1.1 DESCRIPTION .. 4

1.2 SYSTEM REQUIREMENTS ... 4

1.3 CHANGES .. 4

2 BUILDING APPLICATIONS ... 6

2.1 BUILDING APPLICATIONS FOR MICROSOFT WINDOWS ... 6

2.2 BUILDING APPLICATIONS FOR LINUX ... 6

3 GENERAL API DESCRIPTION .. 7

4 CONNECTION AND PROCESSING WITH PLUGINS ... 9

4.1 SEPARATE PLUGIN INSTANTIATION .. 10

5 RETRIEVING IMAGE DATA ... 12

5.1 SEPARATE CALCULATION OF IMAGE DATA .. 14

6 CONFIGURING THE PMD CAMERA .. 15

6.1 QUERYING VALID VALUES .. 15

7 RETRIEVING CAMERA INFORMATION ... 17

7.1 GETTING THE SOURCE DATA PROPERTIES .. 17

7.2 GETTING OTHER PROPERTIES .. 17

8 CONFIGURING PLUGINS AT RUNTIME ... 18

9 ERROR HANDLING ... 19

A. REFERENCE ... 20

A. STATUS CODES ... 20

B. TYPES AND DATA STRUCTURES ... 21

C. FUNCTION DOCUMENTATION .. 22

Page 4 of 30

PMDSDK2

1 Introduction

1.1 Description

This manual describes the programming API (application programming
interface) for PMD[vision]

 ®
 time-of-flight cameras.

The PMDSDK2 supplies functionality to access PMD[vision]
 ®

 cameras and
other data sources. It is possible to set camera parameters, as well as retrieve
2D and 3D images from the data source. This allows simple and fast
application development supporting all available PMD[vision]

 ®
 cameras.

All functionality is provided through an API for the C programming language.

1.2 System requirements

For Windows:

• Microsoft Windows XP

• Microsoft Visual Studio .net 2003/2005/2008

Other Compilers/IDEs have been reported to work with the PMDSDK2 as well.

For Linux:

• Linux Operating System

• x86 architecture or x86_64 or compatible

• GCC 4.1.2 or compatible

• glibc 2.3.6 or compatible, libstdc++ 6

1.3 Changes

2.1.2 ���� 2.2.0

• Added pmdGetFlags and pmdCalcFlags functions

2.1.1 ���� 2.1.2

• 64 bit Linux support (x86_64)

2.1.0 ���� 2.1.1

Page 5 of 30

PMDSDK2

• Added data type for the PMD[vision]
®
CamCube 2.0

2.0.0 ���� 2.1.0

• Added pmdGet3DCoordinates function

• Added pmdCalc* functions

• Renamed std to img in PMDDataDescription structure. std is still available
for source code compatibility if PMD_NO_DEPRECATED is not defined.

Page 6 of 30

PMDSDK2

2 Building applications

2.1 Building applications for Microsoft Windows

To create Windows applications using the PMDSDK2, several files from this
SDK are needed.

• pmdsdk2.h: This file contains the declarations of all available PMDSDK2
functions. This must be included in the application source code

• pmdaccess2.lib: The import library to be linked to the application.

• pmdaccess2.dll: This is the library itself.

• pmdsdk2common.h: This file is automatically included from pmdsdk2.h

• pmddatadescription.h: This file is automatically included from pmdsdk2.h

• A source plugin file (*.W32.pap or *.W32.pcp)

• A processing plugin file (*.W32.ppp or *.W32.pcp)

2.2 Building applications for Linux

To create Linux applications using the PMDSDK2, several files from this SDK
are needed.

• pmdsdk2.h: This file contains the declarations of all available PMDSDK2
functions. This must be included in the application source code.

• libpmdaccess2.so: This is the library.

• pmdsdk2common.h: This file is automatically included from pmdsdk2.h.

• pmddatadescription.h: This file is automatically included from pmdsdk2.h.

• A source plugin file (*.L32.pap or *.L32.pcp, L64 on x86_64).

• A processing plugin file (*.L32.ppp or *.L32.pcp, L64 on x86_64).

Page 7 of 30

PMDSDK2

3 General API description

All functions in the PMDSDK2 are prefixed by the letters pmd, followed by a
descriptive command identifier. For example, the command to get the distance
data from the image sensor is pmdGetDistances().

All commands require a handle of a camera connection. This handle is
created when connecting to the camera and is disposed upon disconnection.
Also, every command returns a code stating the success of its execution
(PMD_OK) or giving an error code upon failure. See the reference section for
information about the available return codes.

Almost all functions in the PMDSDK2 look like this:

int pmdFunctionName (PMDHandle hnd, Type1 * result,

 Type2 param1, Type2 param2);

The first parameter is always the handle. Then follow parameters that will be
modified by the function (call-by-reference). At the end there are parameters
that will not be changed.

The following source code shows a very simple program using the PMDSDK2.
The program attempts to connect to a PMD camera using the plugins called
a.X32.pap and b.X32.ppp (where X is either W or L, depending on the
operating system) and retrieve the number of pixel columns in the camera
data. For more information on plugins, see the next section.

#include <stdio.h>

#include “pmdsdk2.h”

int main (void)

{

 PMDHandle hnd; // connection handle

 int res;

 PMDDataDescription dd;

 // connect to camera

 res = pmdOpen (&hnd, “a”, “”, “b”, “”);

 if (res != PMD_OK) {

 printf (“Could not connect\n”);

 return 1;

 }

 res = pmdUpdate (hnd);

 if (res != PMD_OK) {

 printf (“Could not retrieve data\n”);

 pmdClose (hnd);

 return 1;

 }

Page 8 of 30

PMDSDK2

 res = pmdGetSourceDataDescription (hnd, &dd);

 if (res != PMD_OK) {

 printf (“Could not retrieve sensor width\n”);

 pmdClose (hnd);

 return 2;

 }

 printf (“Sensor width: %d\n”, dd.img.numColumns);

 pmdClose (hnd);

 return 0;

}

Some functions use output parameters of variable length, like image data or
text messages. These functions will always take the maximum length in bytes
as an additional parameter to prevent buffer overflows. If not enough memory
is supplied for the data, the behaviour is as follows:

• Strings will be truncated to fit the available memory.

• Other commands will fail with an error code.

Page 9 of 30

PMDSDK2

4 Connection and processing with plugins

The PMDSDK2 uses plugins to connect to the different camera models (or
other data sources) and to do the processing that is needed to generate
distances and other types of data.

The first thing a program using the PMDSDK2 has to do is to use the function
pmdOpen() to initialize a handle for the communication and load two plugins
(a source plugin for accessing the camera and a processing plugin for the
calculation). Each plugin can take a string parameter for initialization. After this
initialization, the other functions can be used in conjunction with the handle. If
the plugin’s behaviour shall be changed during runtime in a way that is not
provided by the standard functions, the PMDSDK2 provides functions for
issuing plugin dependent commands as well (pmdSourceCommand(),
pmdProcessingCommand()). The last thing to do is to close the connection
and unload the plugins with pmdClose().

In the following example, there is a source plugin called mycam.pap and a
processing plugin called myproc.ppp. The source plugin takes an IP address
as its parameter, while the processing plugin takes its own initialization string.

The program loads both plugins, configures the integration time and
immediately disconnects again.

#include <stdio.h>

#include “pmdsdk2.h”

int main (void)

{

 PMDHandle hnd; // connection handle

 int res;

 // connect to camera

 res = pmdOpen (&hnd,

 “mycam”, “10.0.0.1”,

 “myproc”, “offset=10:mult=1.0”);

 if (res != PMD_OK) {

 printf (“Could not connect\n”);

 return 1;

 }

 res = pmdSetIntegrationTime (hnd, 0, 1000);

 if (res != PMD_OK) {

 printf (“Could not set integration time\n”);

 }

 pmdClose (hnd);

 return 0;

}

Page 10 of 30

PMDSDK2

4.1 Separate plugin instantiation

In some rare cases, it can be desirable not to load a source plugin and a
processing plugin at the same time. Instead of pmdOpen, which opens both a
source plugin and a processing plugin, the functions pmdOpenSourcePlugin
and pmdOpenProcessingPlugin can be called to open only one kind of plugin.
Some of the functions in the PMDSDK2 will only work when a processing
plugin is loaded, others rely on the availability of a source plugin and some
need both at the same time. Other than that, the behaviour is basically the
same.

Here is the example from above with only a source plugin. Only one statement
has been changed (from pmdOpen to pmdOpenSourcePlugin), because there
are no functions that actually need a processing plugin in this example.

#include <stdio.h>

#include “pmdsdk2.h”

int main (void)

{

 PMDHandle hnd; // connection handle

 int res;

 // connect to camera without a processing plugin

 res = pmdOpenSourcePlugin (&hnd,

 “mycam”, “10.0.0.1”);

 if (res != PMD_OK) {

 printf (“Could not connect\n”);

 return 1;

 }

 res = pmdSetIntegrationTime (hnd, 0, 1000);

 if (res != PMD_OK) {

 printf (“Could not set integration time\n”);

 }

 pmdClose (hnd);

 return 0;

}

The following functions need a source plugin:

• pmdUpdate

• pmdGetSourceData

• pmdGetSourceDataDescription

• pmdGetSourceDataSize

Page 11 of 30

PMDSDK2

• pmdSetIntegrationTime

• pmdGetIntegrationTime

• pmdGetValidIntegrationTime

• pmdSetModulationFrequency

• pmdGetModulationFrequency

• pmdGetValidModulationFrequency

• pmdSourceCommand

These functions need a processing plugin:

• pmdCalcDistances

• pmdCalcAmplitudes

• pmdCalcIntensities

• pmdCalcFlags

• pmdCalc3DCoordinates

• pmdProcessingCommand

The following functions need both plugins on the same PMDHandle:

• pmdGetDistances

• pmdGetAmplitudes

• pmdGetIntensities

• pmdGetFlags

• pmdGet3DCoordinates

For a detailed description of these functions, see the following chapters and
the reference in the appendix.

Page 12 of 30

PMDSDK2

5 Retrieving image data

The PMDSDK2 provides several commands to retrieve image information
from the camera. These commands are:

• pmdGetDistances (PMDHandle hnd, float * data, size_t size)

• pmdGetAmplitudes (PMDHandle hnd, float * data, size_t size)

• pmdGetIntensities (PMDHandle hnd, float * data, size_t size)

• pmdGetSourceData (PMDHandle hnd, void * data, size_t size)

• pmdGet3DCoordinates (PMDHandle hnd, float * data, size_t size)

• pmdGetFlags (PMDHandle hnd, unsigned * data, size_t size)

All of these functions take three parameters. The first one is the handle of the
connection that was initialized with a call to pmdOpen(). The second one is a
pointer to a block of memory. The third one is the size of the memory block (to
prevent buffer overruns). If the call succeeds, this memory block will contain
the requested data.

The data type of the data depends on the function.

pmdGetSourceData() will return the source data (e.g. the phase images) of
the camera. Although in most cases, the source data will not be needed,
some applications might have a need for it. The size of the data block
depends on the type of the sensor. pmdGetSourceDataSize() can determine
this. The PMDDataDescription structure that can be obtained through
pmdGetSourceDataDescription() includes, among other information, also the
size of the data.

The other functions use values of the type float. There will always be one
value for each pixel, except for pmdGet3DCoordinates, which will return three
values for each pixel.

pmdGetDistances() will return a matrix of distance values in meters. The fields
contain the distance between the PMD camera and the object (or part thereof)
that the respective pixel observes.

pmdGetAmplitudes() will return the signal strength of the active illumination.
This can be used to determine the quality of the distance value. Very low
amplitudes indicate a low accuracy of the measured distance in a pixel.

pmdGetIntensities() will return a greyscale image. Not all cameras support
this. In fact, none of these functions is guaranteed to work with every device.
Upon failure, they will return a value other than PMD_OK.

pmdGet3DCoordinates() will return the range data in cartesian coordinates.
Not all cameras or source plugins support this. Upon failure, it will return a
value other than PMD_OK. Remember that the coordinate of every pixel is

Page 13 of 30

PMDSDK2

described by 3 values (X, Y and Z), thus the data size is three times the data
size of distance values, for example. The x,y,z data is stored pixelwise within a
float array (x1 y1 z1 x2 y2 z2 ...).

pmdGetFlags() will return an “image” with a 32 bit value for each pixel. Each
bit in this value contains additional information about the pixel. For example,
there is a flag for invalid pixels. If the corresponding bit is set, the distance
value of the pixel cannot be trusted to be correct. Other bits might provide
information about the reason for the invalidity (e.g. saturation or low signal) or
other additional information. To check whether a flag is set, use a bitwise AND
operator in conjunction with one of the following identifiers:

• PMD_FLAG_INVALID: The pixel’s depth value should not be used
because it does not represent a reliable distance.

• PMD_FLAG_SATURATED: The pixel was overexposed.

• PMD_FLAG_LOW_SIGNAL: The pixel did not generate a high enough
signal for an accurate measurement.

• PMD_FLAG_INCONSISTENT: The pixel’s raw data values are
inconsistent with each other. This can happen when there are very fast
changes in the scene (motion artefacts).

It is likely that when one of the other flags is set, PMD_FLAG_INVALID is also
set.

Note that not all cameras generate all kinds of flag data. Some cameras are
not capable to detect certain kinds of situations.

Before any of those functions can be called, the actual image data must be
transferred from the PMD camera. This is done by calling pmdUpdate().
Subsequent calls to the above “Get”-functions will produce the same values
until pmdUpdate() is called again. This way, calls to two of the above functions
(between two pmdUpdate() calls) will always produce data from the same
frame.

The following example shows a function which displays the distance of the
first pixel on the screen and checks if the distance is valid. Error checking is
kept simple (and crude) to keep the example short.

void showFirstPixel (PMDHandle hnd)

{

 int res;

 float dat[NUM_OF_PIXELS];

 unsigned flags[NUM_OF_PIXELS];

 res = pmdUpdate (hnd);

 if (res != PMD_OK) exit (3);

 res = pmdGetDistances (hnd, &dat, sizeof(dat));

Page 14 of 30

PMDSDK2

 if (res != PMD_OK) exit (4);

 printf (“The first pixel measured %f m\n”, dat[0]);

 res = pmdGetFlags (hnd, &flags, sizeof(flags));

 if (res != PMD_OK) exit (4);

 if (flags[0] & PMD_FLAG_INVALID)

 {

 printf (“The first pixel is invalid\n”);

 }

 else

 {

 printf (“The first pixel is valid\n”);

 }

}

5.1 Separate calculation of image data

Additionally, the PMDSDK2 provides functions to calculate distances,
amplitudes etc. from source data, without the need of an active connection to
a data source. Only a processing plugin has to be loaded through
pmdOpenProcessingPlugin to use them. These functions are:

• pmdCalcDistances (PMDHandle hnd, float * data, size_t size, struct

PMDDataDescription dd, void * sourceData)

• pmdCalcAmplitudes (PMDHandle hnd, float * data, size_t size, struct

PMDDataDescription dd, void * sourceData)

• pmdCalcIntensities (PMDHandle hnd, float * data, size_t size, struct

PMDDataDescription dd, void * sourceData)

• pmdCalc3DCoordinates (PMDHandle hnd, float * data, size_t size, struct

PMDDataDescription dd, void * sourceData)

• pmdCalcFlags (PMDHandle hnd, unsigned * data, size_t size, struct

PMDDataDescription dd, void * sourceData)

They behave like their respective pmdGet* counterparts. The only difference
is that they need two additional parameters: The PMDDataDescription
structure as retrieved by pmdGetSourceDataDescription and the actual source
data as retrieved by pmdGetSourceData.

These functions are useful to perform offline processing or to use separate
threads for data acquisition and calculation in order to improve the frame rate.

Page 15 of 30

PMDSDK2

6 Configuring the PMD camera

There are two important configuration parameters that control the PMD
camera’s image acquisition:

• The integration time.

• The modulation frequency.

Some cameras use only one integration time and one modulation frequency,
others support multiple settings. Some cameras use fixed settings, others can
be configured.

The PMDSDK2 provides four functions to access these settings:

• pmdGetIntegrationTime()

• pmdSetIntegrationTime()

• pmdGetModulationFrequency()

• pmdSetModulationFrequency()

The function below will display the current settings of the first integration time
(index 0) and the third modulation frequency (index 2) on the screen.

void showParameters (PMDHandle hnd)

{

 int res;

 unsigned i, m;

 res = pmdGetIntegrationTime (hnd, &i, 0);

 if (res != PMD_OK) exit (7);

 res = pmdGetModulationFrequency (hnd, &m, 2);

 if (res != PMD_OK) exit (8);

 printf (“Integration time: %d microseconds.\n”, i);

 printf (“Modulation frequency: %d Hz.\n”, m);

}

6.1 Querying valid values

The Set functions will fail if the supplied value does not exactly match an
integration time/modulation frequency that is supported by the device. It is not
always known which values are supported beforehand and the acceptable
values might even change during the operation of the camera (e.g. some
cameras might support different integration time settings for different

Page 16 of 30

PMDSDK2

modulation frequencies). Therefore, there are two additional commands to
query valid values:

• pmdGetValidIntegrationTime()

• pmdGetValidModulationFrequency()

With those commands it is possible to search for valid values that best match
a given reference value. If, for example, you want to use an integration time of
around 4 ms as the first integration time (index 0), you could use this
command to get the supported integration time that is closest to it:

pmdGetValidIntegrationTime (hnd, &i, 0, CloseTo, 4000);

If the device supports 4 ms, the variable i will contain a value of 4000,
otherwise it might contain values like 4100 or 3575, depending on what the
camera can work with.

If 4 ms is the desired lower or upper limit, you can use

pmdGetValidIntegrationTime (hnd, &i, 0, AtLeast, 4000);

or

pmdGetValidIntegrationTime (hnd, &i, 0, AtMost, 4000);

Retrieving valid modulation frequencies works the same way.

Page 17 of 30

PMDSDK2

7 Retrieving camera information

Several additional pieces of information can be read from the PMD camera.
The most important ones are the properties of the sensor, like the type of data
it produces or its dimensions in pixels. Others might include the camera’s
serial number or the number of the current frame. Some pieces of information
are provided by all cameras/device, some are only available in certain models.

7.1 Getting the source data properties

The function pmdGetSourceDataDescription() returns a PMDDataDescription
structure which includes all necessary information about the source data. A
PMDDataDescription contains the type of the data (e.g. a code for “16-Bit
Difference data” or “precalculated floating point distances”), the size of the
data block in bytes and a union of sub-structures with additional information,
depending on the type. It also includes a unique ID for the data block. The
PMDDataDescription always refers to the data generated by the last
pmdUpdate() call.

The most important sub-structure is called img (of the type PMDImageData). It
includes fields for the number of columns and rows of the sensor. It also
includes additional information like a sub-type or the number of sub-images in
the data block (e.g. 4 phase images from a standard PMD camera).

A PMDDataDescription structure is always exactly 128 bytes long. Unused
bytes are padded.

This structure is provided by all camera models/data sources.

7.2 Getting other properties

The availablitiy of other information depends on the model of the camera and
the plugin that is used to connect to it. The functions pmdSourceCommand()
and pmdProcessingCommand() can be used to issue plugin-dependent
commands, including the retrieval of plugin-dependent information (see also
the next chapter). The following code example demonstrates the retrieval of a
serial number (if this is supported by the camera/data source):

void showSerialNumber (PMDHandle hnd)

{

 int res;

 char dat[MAX_LEN];

 res=pmdSourceCommand (hnd, dat, sizeof(dat),

 ”GetSerialNumber”);

 if (res != PMD_OK) exit (4);

 printf (“The serial number is %s\n”, dat);

}

Page 18 of 30

PMDSDK2

8 Configuring plugins at runtime

Special configuration of the plugins can be achieved through two extra
functions:

• pmdSourceCommand() to configure the source plugin

• pmdProcessingCommand() to configure the processing plugin

These functions take a textual command that is interpreted by the plugin. It is
the plugin’s responsibility to act accordingly. They can return a result message
in a string.

Example:

void resetOffset (PMDHandle hnd)

{

 int res;

 char dat[MAX_LEN];

 dat[0] = 0; // init with empty string

 res=pmdProcessingCommand (hnd, dat, sizeof(dat),

 ”SetOffset 0”);

 if (res != PMD_OK) exit (4);

 printf (“The result was: %s\n”, dat);

}

Page 19 of 30

PMDSDK2

9 Error handling

All functions of the PMDSDK2 return a status code of the type int. If the
command was executed successfully, this status code is PMD_OK. If there
was an error, the code contains a value describing the type of error that
occurred. For example, if a source plugin is supposed to read data from a file
which does not exist, the call to pmdOpen() will return
PMD_FILE_NOT_FOUND.

To make it easier to deal with errors, the function pmdGetLastError() exists. It
will return a textual description of the last error that was associated with the
given handle.

Example:

void doSomething (PMDHandle hnd)

{

 int res;

 res=pmdUpdate (hnd);

 if (res == PMD_OK)

 {

 printf (“Everything went ok\n”);

 }

 else

 {

 char err[128];

 pmdGetLastError (hnd, err, 128);

 fprintf (stderr, “An error occured: %s\n”, dat);

 }

}

Page 20 of 30

PMDSDK2

A. Reference

a. Status Codes

#define PMD_OK 0

Operation succeeded.

This value is returned when no error occurred during an operation.

#define PMD_RUNTIME_ERROR 1024

A runtime error occurred.

#define PMD_GENERIC_ERROR 1025

An unknown error occurred.

#define PMD_DISCONNECTED 1026

The camera was disconnected.

#define PMD_INVALID_VALUE 1027

The specified value/parameter is invalid.

#define PMD_LOGIC_ERROR 2048

The program did not behave correctly.

#define PMD_UNKNOWN_HANDLE 2049

The specified handle is invalid.

#define PMD_NOT_IMPLEMENTED 2050

The requested operation is not implemented.

#define PMD_OUT_OF_BOUNDS 2051

The specified value/parameter is not within the supported range.

#define PMD_RESOURCE_ERROR 4096

A resource could not be acquired.

#define PMD_FILE_NOT_FOUND 4097

The specified file could not be found.

#define PMD_COULD_NOT_OPEN 4098

Could not open data source.

Page 21 of 30

PMDSDK2

#define PMD_DATA_NOT_FOUND 4099

The requested piece of information is not available or does not exist.

#define PMD_END_OF_DATA 4100

The data source has reached its end.

b. Types and data structures

typedef unsigned PMDHandle

Handle for a camera connection. This handle is used for all operations that interact with a
data source. It is initialized with the functions pmdOpen() or pmdOpenSourcePlugin() and
is disposed when calling pmdClose().

struct PMDDataDescription

Contains information about a data block. This is used to describe the source data of a
camera. A PMDDataDescription is always 128 bytes long.

Note: This structure contains an anonymous union. Most C compilers support this feature,
but it is not part of the ANSI C standard. If you need full ANSI C compatibility, define
PMD_ANSI_C before including pmdsdk2.h. The union then has the name u, so in order to
access its fields, write myDD.u.img.numColumns instead of myDD.img.numColumns.
C++ does not have this problem as its standard includes anonymous unions.

Fields:

PID Identifier of the plugin that generated or modified the data block
DID Identifier of the data block. This is unique for a plugin
type Type of the data. This is used to describe what kind of data is in the block.
size Size in bytes of the data block
subHeaderType Identifier for the active sub header structure. This can be PMD_IMAGE_DATA or
PMD_GENERIC_DATA.

Union Fields (only one of these fields is used at the same time):

gen PMDGenericData
img PMDImageData

struct PMDGenericData

Contains information about a generic data block. This structure is used as a field inside
PMDDataDescription for special information.

Fields:

subType Sub-type of the data. This depends on type in PMDDataDescription and allows further
refinement of the type.
numElem Number of data elements.
sizeOfElem Size in bytes of one data element.

struct PMDImageData

Contains information about a PMD- or image-data block. This structure is used as a field
inside PMDDataDescription for special information.

Page 22 of 30

PMDSDK2

Fields:

subType Sub-type of the data. This depends on type in PMDDataDescription and allows further
refinement of the type.
numColumns Number of pixel columns in the image.
numRows Number of pixel rows in the image.
numSubImages Number of sub-images (e.g. phase images) in the data block.
integrationTime[] Up to four integration times used to generate the image.
modulationFrequency[] Up to four modulation frequencies used to generate the image.

c. Function Documentation

int pmdOpen (PMDHandle * hnd, const char * pap, const char * rparam,
const char * ppp, const char * pparam)

Open a connection to a PMD camera or other data source.

Parameters:

hnd Empty PMDHandle. On success, this value will contain the handle for subsequent operations.
pap Filename of the source plugin (*.pap or *.pcp)
rparam Parameter string for the source plugin
ppp Filename of the processing plugin (*.ppp or *.pcp)
pparam Parameter string for the processing plugin

Returns:

PMD_OK on success, errorcode otherwise

int pmdOpenSourcePlugin (PMDHandle * hnd, const char * pap, const char
* rparam)

Open a connection to a PMD camera or other data source without a processing plugin.
Functions that depend on a processing plugin, like pmdGetDistances, will not be
available.

Parameters:

hnd Empty PMDHandle. On success, this value will contain the handle for subsequent operations.
pap Filename of the source plugin (*.pap or *.pcp)
rparam Parameter string for the source plugin

Returns:

PMD_OK on success, errorcode otherwise

int pmdClose (PMDHandle hnd)

Disconnect and close the handle.

After this call, the handle is invalid and must not be used anymore.

Parameters:

hnd Handle of the connection.

Page 23 of 30

PMDSDK2

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetAmplitudes (PMDHandle hnd, float * data, size_t maxLen)

Get the amplitude data from the current frame. pmdUpdate() must be called at least once
before this function.

The amplitude value of a pixel relates to its signal strength. Higher amplitudes indicate
better accuracy of the measurement.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetDistances (PMDHandle hnd, float * data, size_t maxLen)

Get the distance data from the current frame. pmdUpdate() must be called at least once
before this function.

The values in this matrix represent the distance between the camera and the object that
the respective pixel observes.

For some PMD cameras, the distances may be shifted by a constant offset, whose value
depends on the modulation frequency. Not all camera models have this behaviour.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetIntensities (PMDHandle hnd, float * data, size_t maxLen)

Get the grayscale data from the current frame. pmdUpdate() must be called at least once
before this function.

This function produces a 2D grayscale image, like a standard 2D camera would produce.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

Page 24 of 30

PMDSDK2

PMD_OK on success, errorcode otherwise

int pmdGetFlags (PMDHandle hnd, unsigned * data, size_t maxLen)

Get the pixel flags from the current frame. pmdUpdate() must be called at least once
before this function.

The values in this matrix contain additional information about the measurement in the
corresponding pixel. Each bit carries one piece of information. The following flags are
available:

PMD_FLAG_INVALID, PMD_FLAG_SATURATED, PMD_FLAG_LOW_SIGNAL,
PMD_FLAG_INCONSISTENT.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGet3DCoordinates (PMDHandle hnd, float * data, size_t maxLen)

Get the cartesian coordinates of the current frame. pmdUpdate() must be called at least
once before this function.

The values in this matrix represent the coordinates between the camera and the object
that the respective pixel observes. The x,y,z values are aligned pixelwise in the data array
(x1 y1 z1 x2 y2 z2 ..).

For some PMD cameras, the coordinates may be shifted by a constant offset, whose
value depends on the modulation frequency. Not all camera models have this behaviour.

Not all data sources support this call. Therefor consult your camera source plugin
documentation.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

PMD_OK on success, errorcode otherwise

int pmdCalcAmplitudes (PMDHandle hnd, float * data, size_t maxLen,
PMDDatadescription dd, void * data)

Calculate the amplitude data from a given frame.

The amplitude value of a pixel relates to its signal strength. Higher amplitudes indicate
better accuracy of the measurement.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.

Page 25 of 30

PMDSDK2

maxLen Number of bytes available in the memory block.
dd Description of the source data frame
data The source data to use to calculate the amplitudes

Returns:

PMD_OK on success, errorcode otherwise

int pmdCalcDistances (PMDHandle hnd, float * data, size_t maxLen,
PMDDatadescription dd, void * data)

Calculate the distance data from a given frame.

The values in this matrix represent the distance between the camera and the object that
the respective pixel observes.

For some PMD cameras, the distances may be shifted by a constant offset, whose value
depends on the modulation frequency. Not all camera models have this behavior.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.
dd Description of the source data frame
data The source data to use to calculate the distances

Returns:

PMD_OK on success, errorcode otherwise

int pmdCalcIntensities (PMDHandle hnd, float * data, size_t maxLen,
PMDDatadescription dd, void * data)

Calculate the grayscale data from a given frame.

This function produces a 2D grayscale image, like a standard 2D camera would produce.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.
dd Description of the source data frame
data The source data to use to calculate the intensities

Returns:

PMD_OK on success, errorcode otherwise

int pmdCalcFlags (PMDHandle hnd, float * data, size_t maxLen,
PMDDatadescription dd, void * data)

Generate the pixel flags from a given frame.

The values in this matrix contain additional information about the measurement in the
corresponding pixel. Each bit carries one piece of information. The following flags are
available:

Page 26 of 30

PMDSDK2

PMD_FLAG_INVALID, PMD_FLAG_SATURATED, PMD_FLAG_LOW_SIGNAL,
PMD_FLAG_INCONSISTENT.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.
dd Description of the source data frame
data The source data to use to calculate the intensities

Returns:

PMD_OK on success, errorcode otherwise

int pmdCalc3DCoordinates (PMDHandle hnd, float * data, size_t maxLen,
PMDDatadescription dd, void * data)

Calculate the cartesian coordinates from a given frame.

The values in this matrix represent the coordinates between the camera and the object
that the respective pixel observes. The x,y,z values are aligned pixelwise in the data array
(x1 y1 z1 x2 y2 z2 ..).

For some PMD cameras, the coordinates may be shifted by a constant offset, whose
value depends on the modulation frequency. Not all camera models have this behaviour.

Not all data sources support this call.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.
dd Description of the source data frame
data The source data to use to calculate the 3D coordinates

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetIntegrationTime (PMDHandle hnd, unsigned * t, unsigned idx)

Get an integration time of the camera

Parameters

hnd Handle of the connection.
t Pointer to a variable to contain the integration time in microseconds.
idx Index of the integration time to be retrieved (starting with 0).

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetModulationFrequency (PMDHandle hnd, unsigned * t, unsigned
idx)

Get a modulation frequency of the camera

Parameters:

Page 27 of 30

PMDSDK2

hnd Handle of the connection.
t Pointer to a variable to contain the modulation frequency in Hz.
idx Index of the modulation frequency to be retrieved (starting with 0).

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetSourceData (PMDHandle hnd, void * data, size_t maxLen)

Get the source data from the current frame. pmdUpdate() must be called at least once
before this function.

The structure of the data depends on the data source.

Parameters:

hnd Handle of the connection.
data Pointer to memory to contain the data.
maxLen Number of bytes available in the memory block.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetSourceDataDescription (PMDHandle hnd, PMDDataDescription *
dd)

Get the source data description structure of the current frame. pmdUpdate() must be
called at least once before this function.

Parameters:

hnd Handle of the connection.
dd Pointer to a PMDDataDescription structure to be filled

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetSourceDataSize (PMDHandle hnd, size_t * size)

Get the size of the source data from the current frame. pmdUpdate() must be called at
least once before this function.

Parameters:

hnd Handle of the connection.
size Pointer to memory to contain the size.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetValidIntegrationTime (PMDHandle hnd, unsigned * result,
unsigned idx, Proximity w, unsigned t)

Get a valid integration time of the camera. This function is used to determine which
integration time settings a camera supports. It is possible to search for valid integration
times that best match a user-specified time.

Parameters:

hnd Handle of the connection.
result Returns a valid integration time according to specification in microseconds.

Page 28 of 30

PMDSDK2

idx Index of the integration time to be queried (starting with 0).
w Where to look for a valid integration time. Either CloseTo, AtLeast or AtMost.
t The desired integration time in microseconds. The result will be close to this value.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetValidModulationFrequency (PMDHandle hnd, unsigned * result,
unsigned idx, Proximity w, unsigned f)

Get a valid modulation frequency of the camera. This function is used to determine which
modulation frequency settings a camera supports. It is possible to search for valid
modulation frequencies that best match a user-specified frequency.

Parameters:

hnd Handle of the connection.
result Returns a valid modulation frequency according to specification in Hz.
idx Index of the modulation frequency to be queried (starting with 0).
w Where to look for a valid modulation frequency. Either CloseTo, AtLeast or AtMost.
f The desired modulation frequency in Hz. The result will be close to this value.

Returns:

PMD_OK on success, errorcode otherwise

int pmdSetIntegrationTime (PMDHandle hnd, unsigned idx, unsigned t)

Set an integration time of the camera

Parameters:

hnd Handle of the connection.
idx Index of the integration time to be set (starting with 0).
t Integration time in microseconds.

Returns:

PMD_OK on success, errorcode otherwise

int pmdSetModulationFrequency (PMDHandle hnd, unsigned idx, unsigned f)

Set a modulation frequency of the camera.

Parameters:

hnd Handle of the connection.
idx Index of the modulation frequency to be set (starting with 0).
f Modulation frequency in Hz.

Returns:

PMD_OK on success, errorcode otherwise

int pmdUpdate (PMDHandle hnd)

Retrieve a new frame from the camera. To obtain the actual data, use
pmdGetSourceData, pmdGetDistances, pmdGetAmplitudes etc. afterwards.

Parameters:

Page 29 of 30

PMDSDK2

hnd Handle of the connection.

Returns:

PMD_OK on success, errorcode otherwise

int pmdSourceCommand (PMDHandle hnd, char * result, size_t len, const
char * cmd)

Issue a device-dependent command.

Parameters:

hnd Handle of the connection.
result Pointer to memory to contain the result of the command.
len Number of bytes available in the memory block.
cmd String identifying the command.

Returns:

PMD_OK on success, errorcode otherwise

int pmdProcessingCommand (PMDHandle hnd, char * result, size_t len,
const char * cmd)

Issue an arbitrary command to the processing plugin.

Parameters:

hnd Handle of the connection.
result Pointer to memory to contain the result of the command.
len Number of bytes available in the memory block.
cmd String identifying the command.

Returns:

PMD_OK on success, errorcode otherwise

int pmdGetLastError (PMDHandle hnd, char * dest, size_t len)

Get a textual description of the last error associated with the given handle.

Parameters:

hnd Handle of the connection.
desc Description of the last error.
len Number of bytes available for the error string.

Returns:

PMD_OK on success, errorcode otherwise

PMDTechnologies GmbH
Am Eichenhang 50

57076 Siegen

Germany
Phone +49(0)271 / 238 538- 800

Fax +49(0)271 / 238 538- 809
info@PMDTec.com
www.PMDTec.com

