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Abstract
Cerebrovascular disease is among the leading causes of death in
western industrial nations. 3D rotational angiography delivers indispensable
information on vessel morphology and pathology. Physicians make use of
this to analyze vessel geometry in detail, i.e. vessel diameters, location and
size of aneurysms, to come up with a clinical decision. 3D segmentation
is a crucial step in this pipeline. Although a lot of different methods are
available nowadays, all of them lack a method to validate the results for
the individual patient. Therefore, we propose a novel 2D digital subtraction
angiography (DSA)-driven 3D vessel segmentation and validation framework.
2D DSA projections are clinically considered as gold standard when it comes
to measurements of vessel diameter or the neck size of aneurysms. An
ellipsoid vessel model is applied to deliver the initial 3D segmentation. To
assess the accuracy of the 3D vessel segmentation, its forward projections are
iteratively overlaid with the corresponding 2D DSA projections. Local vessel
discrepancies are modeled by a global 2D/3D optimization function to adjust
the 3D vessel segmentation toward the 2D vessel contours. Our framework has
been evaluated on phantom data as well as on ten patient datasets. Three 2D
DSA projections from varying viewing angles have been used for each dataset.
The novel 2D driven 3D vessel segmentation approach shows superior results
against state-of-the-art segmentations like region growing, i.e. an improvement
of 7.2% points in precision and 5.8% points for the Dice coefficient. This
method opens up future clinical applications requiring the greatest vessel
accuracy, e.g. computational fluid dynamic modeling.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In modern neuroradiology, 3D rotational angiography (3D DSA) is an established and helpful
technique to visualize complex cerebral vascular pathology and to guide interventional
procedures. More and more 3D DSA data are also used for further quantitative analysis
to support treatment planning and therapeutic procedures in patients with cerebrovascular
diseases, e.g. aneurysms or stenosis (Heran et al 2006). This analysis requires reliable
3D vessel segmentation methods that delineate the boundary of the vessel as accurately as
possible to come up with exact vessel measurements, e.g. vessel diameter, bifurcation angle
of vessel branches, aneurysm dome sizes, etc. Since recent investigational techniques like
hemodynamic simulations based on computational fluid dynamics (CFD) have become more
and more popular within the research community of neuroradiology (Ford et al 2008, Castro
et al 2006, Cebral et al 2005, Jou et al 2008, Spiegel et al 2011), the segmentation result and
its corresponding mesh representation are the basis for even more reliable analysis. Small
changes within the segmentation result may induce completely different flow patterns or wall
shear stress distributions.

Hence, vessel segmentation results become more important for post-processing
applications within the clinical environment. Accurate vessel segmentation based on 3D
angiograms is challenging as it depends on the quality of the 3D DSA image that might vary
for the individual patient. In clinical practice, there are a lot of factors that contribute to
optimal and reproducible image quality. This includes the amount of injected contrast agent,
the timing of injection, hemodynamic mixture of contrast agent and factors like blood flow
cardiac output. Also reconstruction parameters may be different between patients (Strobel
et al 2009, Zellerhoff et al 2005). Figure 1 gives examples of the influence of the different
acquisition parameters on the final 3D DSA reconstructed images. The edge ramp between
background and vessel intensities differs depending on the applied reconstruction kernel (see
figure 1, upper part), e.g. some kernels yield an edge ramp whose slope is much higher than
those generated by another kernel (Buzug 2008, Kak and Slaney 1988). These profiles provide
an opening for different segmentation methods to differently interpret these edge ramps which
may lead to varying vessel boundary positions. The ramp itself is also an indicator how the
contrast agent is distributed at this position. In the case of sub-optimal injection timing, the
contrast agent may leach out which leads to locally blurred vessel boundaries (see figure 1,
lower part). Even if all acquisition parameters would be exactly the same, the final 3D DSA
image volume will slightly differ because of the heterogeneous hemodynamic mixture of the
contrast agent with the blood. Due to this, the validation of 3D DSA vessel segmentation
results turns out to be rather difficult and thus 2D DSA imaging is still considered as the gold
standard in quantitative evaluation and measurements (Peker et al 2009) being available during
and after interventional evaluations. It is a challenge to validate any kind of segmentation
methods so far and is especially true for the individual patient, while phantom models can be
used for validation tests.

To overcome these challenges, a novel 3D vessel segmentation method is proposed in
this paper that is driven by additional 2D vessel information. 2D DSA acquisitions are used
as the validation base for 3D segmentations as well as a driving force to adapt an initial 3D
segmentation. Each 3D DSA dataset comes automatically with 133 2D DSA projections
showing the patient from various viewing angles. Moreover, these projections are registered
and calibrated with the 3D DSA dataset. Selected 2D DSA images exhibit the advantage that
the vessel boundaries are clearly visible and not blurred as it often happens in 3D DSA images.
The novelty of our approach comprises an automatic segmentation algorithm formalizing a
new global 2D/3D optimization function that smoothly combines 2D vessel information with
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Figure 1. Influence parameters during the generation of a 3D DSA image: the upper part of
the image shows the result using five different reconstruction kernels according with the intensity
profiles. The lower part illustrates improper timing of contrast agent injection where veins are
already visible (see the yellow circles).

an ellipsoid-based 3D vessel segmentation. Given a certain number of 2D DSA acquisitions,
a forward projection of the current 3D segmentation is computed to be overlaid with the 2D
acquisitions. The match between the forward projection and 2D DSA vessel information is
used to drive and adapt the 3D vessel segmentation toward the 2D information. The entire
workflow of our algorithm is depicted as a flow chart in figure 2(a). The remainder of this paper
is organized as follows: (1) a brief overview is given on state-of-the-art vessel segmentation
techniques, especially working with 3D DSA image data. (2) The applied 3D segmentation
method is shortly illustrated delivering the initial segmentation result. (3) The adaptation
process of the 3D vessel segmentation according to 2D DSA images will be introduced in
detail which denotes the core part of this work. Section 4 delivers a quantitative insight on the
applicability of this method.
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(a) (b)

Figure 2. (a) An overview of the individual modules of the proposed 2D driven 3D vessel
segmentation system. The orange box indicates the 3D vessel segmentation approach and the red
box illustrates the components of the 2D/3D adaptation method. (b) A 3D vessel centerline (yellow
line) is depicted which is used as the initialization for the 3D ellipsoid-based vessel segmentation.
The spheres, illustrated in silver, represent bifurcation positions within the vessel centerline
tree.

2. Related work

Within the last 10 years, a large variety of vessel detection, extraction and segmentation
algorithms have been introduced for all kinds of imaging modalities (CT, MRI, 3D DSA) and
applications. An extensive overview of this field is given by Lesage et al (2009) as well as
by Kirbas and Quek (2004). The focus in this section is on vessel segmentation approaches
using 3D DSA image data.

The 3D vessel segmentation approach used in this work is related to tubular-preserving
vessel models. Yim et al (2001) employ a tubular deformable model in order to reconstruct
vessel surfaces from 3D angiographic images. Another idea, proposed by Tyrrell et al (2007),
models complex vessel trees by cylindrical super ellipsoids together with a joint estimation of
vessel boundary and centerlines. This approach does not take explicit edge information into
account for the vessel boundary detection. Wong and Chung (2007) introduced a probabilistic
vessel axis tracing method for 3D angiograms to delineate the vessel boundary on cross
sections. In a second step, the 3D vessel surface is defined by the minimum cost path on a
weighted acyclic graph. Chang et al (2009) applied a region-growing segmentation approach
on 3D DSA image data with a 3D extension for a deformable contour based on the charged
fluid model. 4D minimal paths are used by Li and Yezzi (2007) to exploit and reconstruct 3D
tubular structures on MR angiography and CT images. A non-parametric deformable model
with high-order multiscale features is proposed by Hernandez and Frangi (2007) to segment
vascular structures in 3D DSA and CT data. Gan et al (2005) applied a statistical vessel
segmentation approach for 3D DSA images using expectation-maximization (EM) algorithm
to estimate the intensity distribution of vessels based on maximum intensity projection (MIP)
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images. Kang et al (2009) introduced a complementary geodesic distance field in order to
smoothly register a given centerline onto the vessel lumen and to adapt an active tube model.

Another common approach is to apply multiscale filtering methods for determining vessel
boundaries and to subsequently extract the vessel geometry from the image volume. Law and
Chung (2007) introduced a combination of translated and rotated first derivative Gaussian
filters to detect the intensity drop along vessels and aneurysms. The detection response is
used to guide a level set segmentation framework. Tek et al (2005) described an algorithm for
multiscale vessel detection and segmentation by using mean-shift analysis.

The literature contains some work which combines the 2D DSA image with different 3D
imaging modalities, e.g. 3D DSA, CT or MR (Hipwell et al 2003, Chan et al 2004). Groher
et al (2007) proposed a 2D–3D registration approach of abdominal angiographic data to
register a catheter. Hentschke and Toennies (2009, 2010) registered a 2D DSA image with 3D
DRA datasets to compare and validate flow simulation with the flow information encoded in
2D DSA images.

Although there are already ambitions to incorporate 2D information into 3D image datasets
for various purposes, so far there is no 2D driven 3D vessel segmentation framework which
adapts 3D vessel morphology by using 2D DSA information.

3. Methods

This section describes the proposed 2D driven 3D vessel segmentation approach. First, a short
overview is given on the applied ellipsoid-based 3D vessel segmentation (Tyrrell et al 2007)
which is enhanced by a local foreground/background intensity estimation using Gaussian
mixture models (GMM) (Huang and Chau 2008). The methodology combining 2D and 3D
vessel information will be discussed in detail.

3.1. 3D vessel segmentation approach

The main purpose of our 3D segmentation approach is to detect and segment medium and
large vessels within 3D DSA datasets delivering the input for the subsequent adaptation with
2D information.

3.1.1. Prior knowledge, centerline and initialization. 3D DSA is based on the direct intra-
arterial injection of contrast agent. Due to the high contrast and the subtraction, it can be
assumed a priori that the vessels appear in the highest intensity bins of the histogram. Thus,
3D DSA datasets consist of three different types of intensity classes, i.e. foreground (vessels),
artifacts and background. The separation of these classes can be modeled by GMMs (Huang
and Chau 2008) on a local or global level. This knowledge is utilized to design the external
energy term of our 3D segmentation algorithm introduced later in this paper.

The vessels of a 3D DSA dataset enter the image volume from the bottom because of the
a priori known acquisition setup, the anatomy of the cerebral vessel tree and the position of
the patient on the table of a C-Arm system. Thus, the flow direction of the contrast agent is
from bottom to top. This knowledge is used to automatically find the position of the largest
vessel entering the volume. The Hough transformation (Jaehne 2011) for circles is applied on
the most bottom slice of a 3D DSA image to localize the entering vessel associated with the
largest diameter. This position is then taken as the seed point for the centerline computation
method introduced by Guelsuen and Tek (2008). Figure 2(b) gives an example of the vessel
centerline result. This seed point initialization is limited up to the selected volume of interest
(VOI) used for secondary reconstruction. It may happen that this VOI was defined in a
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way such that the major vessels enter laterally. In this case, the seed point has to be set
manually. After centerline computation, each vessel branch is associated with one centerline
that is represented as a B-spline. All centerline sections are stored within a tree structure,
i.e. the centerline of the vessel lumen entering the volume is taken as the root within the tree
structure. This structure easily reveals the father–son relationship between different vessel
branches. The vessel centerline tree is used as an initialization for the ellipsoid-based vessel
segmentation.

3.1.2. Ellipsoid-based vessel segmentation. Superellipsoids, ellipsoids or spheres are
geometric primitives that are well suited for describing local vessel segments because such
primitives being interleaved are able to approximate the tubular vessel structures in a smooth
manner as mentioned in Tyrrell et al (2007). A unit sphere located within the coordinate center
is implicitly defined as follows:

f (x) = x2
0 + x2

1 + x2
2 = 1, (1)

where x ∈ R
3 denotes a point on the surface of the sphere. To approximate localized vessel

segments, a coordinate transformation has to be applied to allow arbitrary rotation, scale and
translation, i.e. nine transformation parameters have to be estimated (three rotation, three
scaling, three translation). The entire transformation function is expressed by

T (m,x) = R(r)S(s)x + t. (2)

R represents the 3×3 rotation matrix with the argument r ∈ R
3 as rotation parameters. The

scaling parameters s ∈ R
3 are encoded within the 3×3 diagonal matrix S(s) and t ∈ R

3

denotes the translation vector. All transformation parameters are summarized within the
vector m = (r, s, t) ∈ R

9. Thus, the implicit shape model can be rewritten as

fT (m,x) := f (T (m,x)) = f (R(r)S(s)x + t) (3)

which separates the space into three different regions:

fT (m,x) ∈

⎧⎪⎨
⎪⎩

< 1, if x ∈ I(m)

1, if x ∈ S(m)

> 1, if x ∈ O\(I(m) ∪ S(m)),

(4)

where S(m) and I(m) denote the surface and the interior of an ellipsoid, respectively,
and O describes the image domain. This distinction will be later used as the external
energy term within the global objective function to estimate the parameters properly. The
previously computed centerlines are used to initialize the parameters, i.e. the center of
the ellipsoids is placed on the centerlines. They are rotated such that the tangent vector of the
centerline coincides with the local z-axis of the internal coordinate system of the ellipsoid. The
curvature of the centerline is utilized to determine the number of ellipsoids that are required
to approximate the vessel branch. In centerline sections with high curvature, the number of
ellipsoids is increased while the ellipsoid scale in the z-direction is concurrently decreased.
Areas of low curvature are treated vice versa. The ellipsoid scales pointing perpendicular
to the vessel direction are initialized using cross-sectional radius intensity profiling. The
parameter vector k = (m0,m1, ...,mM−1) ∈ R

9×M holds all ellipsoid parameter of the
entire model and M denotes the total number of ellipsoids used. For each ellipsoid, a
specific local intensity threshold is estimated using GMM dividing the local image domain
into foreground and background intensities. The threshold values are stored within the vector
h = (h0, h1, ..., hM−1)

T ∈ R
M . This estimate is further described later within this text when

it comes to the definition of the external energy functional.
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The initialized ellipsoid tube model is now optimized such that the model evolves toward
the boundary of the vessels according to a predefined energy. The total energy functional,
Gtot(k,h), is composed of two terms:

Gtot(k,h) : R
9×M × R

M → R

arg mink,hGtot(k,h) = αGext(k,h) + (1 − α)Gint(k), (5)

where Gext(k,h) and Gint(k) denote the external and internal energy term, respectively, and
α defines the weighting factor.

The internal energy term is associated with the inherent characteristics of the tube model,
i.e. the pose parameters between two subsequent ellipsoids have to be modeled in a smooth
way. For that purpose, the internal energy term consists of three cubic B-splines (Klein et al
1997, Tauber et al 2009) ({Bi}2

i=0) to ensure smoothness in terms of rotation, scaling and
translation between neighboring ellipsoids:

Gint(k) =
2∑

i=0

∫
Li

|Bi(l,k)′|dl +
∫

Li

|Bi(l,k)′′|dl, (6)

where Bi(l,k)′ and Bi(l,k)′′ represent the first and second derivative of the B-spline Bi with
respect to the parameters k. Li is the total length of the B-spline and l is the position on the
spline. The first B-spline, B0(l,k), is a B-spline in 2D and it describes the change of orientation
between two ellipsoids. Its sample points qr = (l, φ) ∈ R

2 are defined by l and φ denoting the
length position of the ellipsoid center on the B-spline and the change of the orientation angle
between two ellipsoids, respectively. B1(l,k) is a B-spline in 3D covering the change of scales
between subsequent ellipsoids. The sample points are defined as qs = (l, s0, s1) ∈ R

3 where
s0 and s1 represent the scaling in the x–y directions of the ellipsoid. The last B-spline, B2(l,k),
represents the centerline in 3D which is now defined by the center points of the ellipsoids
qt = (t0, t1, t2) ∈ R

3. Equation (6) regularizes the changes of the ellipsoid parameters k
induced by the external energy such that the entire ellipsoid model represents the vessel tree
in a smooth manner.

The external energy term is responsible to drive the model toward the surrounding
vessel structures. A 3D DSA image consists of foreground and background voxel
intensities as already mentioned in section 3.1.1. Given this prior knowledge, our ellipsoid
vessel shape model tries to separate the image domain into these two regions as good
as possible. This is evaluated by counting the number of foreground and background
voxel intensities within the sets S(ki ) and I(ki ). Depending on the local intensity
threshold hi and the ellipsoid parameters ki , F(ki , hi) ⊂ (S(ki ) ∪ I(ki )) defines the
set of foreground voxels. Consequently, B(ki , hi) ⊂ (O\F(ki , hi)) describes the set of
background voxels which is constrained by the ellipsoid bounding box. The external energy is
described as

Gext(k,h) = 1

M

M−1∑
i=0

( |F(ki , hi)| − |B(ki , hi)|
|F(ki , hi) ∪ B(ki , hi)|

)−1

. (7)

The initialization of the ellipsoid pose parameters (described in the beginning of this section)
and the estimation of the local intensity threshold hi ensure that the number of foreground voxels
|F(ki , hi)| is always greater than the number of background voxels |B(ki , hi)|. The GMM
modeling is used to estimate the local intensity threshold within a box which is centered at the
current ellipsoid center and its size ranges between 32×32×32 and 64×64×64 depending on
the current vessel scales. The goal is to minimize equation (7) such that the pose parameters
of the ellipsoids perfectly match to the local vessel structures. Hence, the ideal situation
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would be if |B(ki , hi)| becomes zero, i.e. the fraction in equation (7) would be 1. In real
datasets, however, |B(ki , hi)| is greater than zero making the fraction smaller than 1 such that
the reciprocal delivers a final value which is greater than 1. Thus, the external energy term
becomes minimal if the parameters k are estimated such that |F(ki , hi)| is maximized while
|B(ki , hi)| becomes very small given a certain threshold hi. This local foreground/background
estimation ensures that the external energy adapts to vessel structures exhibiting even a high
intensity variation throughout the entire dataset.

The optimal ellipsoid parameters are found by minimizing the total energy functional
Gtot(k,h) together with the local intensity thresholds. Since our model is initialized by a
pre-computed centerline and cross-sectional radius profile estimation, the initial parameter set
is located near the global optimum. Hence, gradient descent is applied to optimize our energy
functional using finite differences.

3.2. 2D driven 3D adaptation

The methods described in section 3.1.2 deliver a parametric 3D vessel segmentation result
that is purely driven by 3D image data. As already mentioned within the introduction, the
appearance of the 3D DSA volume data depends on four influence factors, i.e. amount of
contrast agent, time of injection, hemodynamic mixture of the contrast agent and the applied
reconstruction kernel. Therefore, a comparison of the 3D segmentation result with 2D DSA
segmentation is necessary. 2D DSA projections are manually selected to validate the 3D
segmentation result via overlay matching. The mapping of the volumetric data onto the 2D
DSA images is known by calibration (Hoppe et al 2007). This comparison is performed by
forward projection of the 3D vessel segmentation using ray casting (Sherouse et al 1990).
The local discrepancies between the 2D vessel information and the forward projection is now
formalized within a new objective function which utilizes the 3D parametric segmentation.
This leads to a new 2D/3D external energy functional Gext2D/3D(k) measuring the differences
between 2D and 3D segmentations. It is defined as follows:

Gext2D/3D(k) =
Q−1∑
i=0

∑
u

(w(i,u) − v(i,u,k))2 (8)

where Q indicates the number of projection images used to adapt the 3D segmentation result
and w(i,u) denotes the intensity value of the 2D ground truth segmentation of the ith projection
image at position u = (x1, x2) ∈ R

2. The intensity value of the forward projection v(i,u,k) is
given by the maximum intensity projection (MIP). The novel 2D/3D external energy functional
forms a new total energy that is defined as follows:

Gtot2D/3D(k) : R
9×M → R

arg minkGtot2D/3D(k) = αGext2D/3D(k) + (1 − α)Gint(k). (9)

The external energy term in equation (5) is replaced by the new 2D driven 3D external
force Gext2D/3D(k) while the internal energy is kept. The internal energy functional
denotes an important regularization term during 2D/3D adaptation because the 3D
information is lost while performing the forward projection. Thus, the internal energy ensures
that the 3D ellipsoid model does not deform toward unrealistic vessel approximations or
twisting.

As illustrated in equation (8), the sum of squared differences (SSD) between the 2D
ground truth and the forward projection is applied as a similarity measure. Considering the
2D/3D medical image registration literature, however, there might be other similarity measures
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(Penney et al 1998) like normalized cross-correlation, etc, which might lead to similar
results.

4. Evaluation and results

Our 2D driven 3D vessel segmentation method was evaluated on one phantom image and
ten patient datasets with different cerebrovascular diseases. The datasets were acquired at
the Department of Neuroradiology (University Erlangen-Nuremberg) during endovascular
interventions using a flat-panel equipped C-Arm System (AXIOM Artis dBA, Siemens
AG Healthcare Sector, Forchheim, Germany). The volume dimensions range between
512×512×390 and 512×512×511 with an isotropic voxel spacing of 0.1 mm. A 3D DSA
image volume is commonly reconstructed given 133 2D DSA projections that were acquired
while the C-Arm rotates around the patient’s head. Three out of the 133 projections were
selected showing the volume from different viewing angles to perform the 2D/3D match. The
viewing angle difference of the selected projections varies from 10◦ to 170◦ which ensures an
adaptation of the 3D segmentation according to sufficiently different 2D projections. The novel
idea of using 2D DSA projection in order to refine the given 3D ellipsoid-based segmentation
result is compared to the clinical established threshold-based region growing segmentation.
Hence, three different 3D vessel segmentations were computed, i.e. region-growing, 3D
ellipsoid and 2D driven 3D ellipsoid segmentation. The marching cubes algorithm (Lorensen
et al 1987) was applied to visualize the 3D segmentation results as meshes.

4.1. Methods of evaluation

Since the setup of 3D gold standard segmentations given 3D DSA data is rather difficult due
to the dependency of many parameters (hemodynamic mixture of the contrast agent, applied
reconstruction kernel, start and time of acquisition), we focus in this work on pure 2D related
evaluation measures. The 3D segmentation result is being forward projected into 2D defining
the vessels of interest within the used 2D DSA projections for adaptation (see figures 3 and 4,
left column (DSA) with the red boxes). These vessels were manually outlined and approved
by a neuroradiologist to be used as the gold standard segmentation in 2D. The overlap between
the forward projection of a 3D segmentation result and the 2D gold standard was evaluated
using two measurements:

Dice coefficient and precision. The Dice coefficient is defined by

Dice = 2 |X ∩ Y |
|X| + |Y | , (10)

where X denotes all pixels of the gold standard segmentation and Y all pixels of the forward
projection.

The precision (P) is expressed by the following formula:

P = TP

TP + FP
, (11)

where TP is the number of true positives and FP the number of false positives. In our case,
TP is given by the number of pixels that are consistently segmented as vessel both by the
specific 3D segmentation method and within the gold standard. FP is the number of pixels that
have been falsely classified as vessel structure. The Hausdorff distance is applied to measure
and visualize the deformations before and after 2D driven 3D optimization. The evaluation
regarding 2D measurements is four-sided.
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Figure 3. This set of images shows evaluation results concerning four datasets. In the left column, one of the three projection images is illustrated that was used to adapt the 3D ellipsoid
segmentation. The three middle columns depict 2D comparison of the forward projections originating from three different vessel segmentation methods, i.e. region growing, 3D ellipsoid
and 2D driven 3D segmentation. The rightmost column gives a 3D impression of the deviations. The meaning of the circles is described within section 4.
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6411Figure 4. This set of images shows qualitative evaluation results concerning four datasets. The projections were not part of the optimization set in order to measure the overall fit of the

2D driven 3D segmentation approach. The three columns on the right depict 2D comparison of the forward projections originating from three different vessel segmentation methods, i.e.
region growing, 3D ellipsoid and 2D driven 3D segmentation.
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(1) A simple intensity region growing segmentation is applied which was started by a manual
seed point. The intensity range was chosen by a neuroradiologist based on his working
experience with 3D DSA data. The forward projections are compared to the 2D gold
standard segmentations.

(2) The pure 3D driven ellipsoid-based segmentation result (see section 3.1.2) is being forward
projected to measure the overlap with the 2D gold standard segmentation.

(3) The forward projections of our novel 2D driven 3D segmentation approach are compared
to 2D gold standard segmentations. This allows judging the overlap match before and
after 2D/3D adaptation.

(4) Another three 2D DSA projections are selected that were not part of the 2D/3D
adaptation process. These three 2D DSA projections were again manually outlined.
Then the 2D driven 3D segmentation result is forward projected against these three 2D
projections and the overlap is measured. This measurement allows us to come up with a
statement about the overall fit of the 2D adapted 3D segmentation result toward other 2D
projections.

4.2. Experimental results

This section describes the segmentation results concerning the three different segmentation
approaches. All experiments were performed on a Intel Core2 CPU with 2 GHz, 4GB of main
memory and NVIDIA Quadro FX 2500M graphics card. The algorithms were completely
implemented in C++ whereas the computation of the forward projection was done using
OpenGL. The overall intension of incorporating 2D information into the 3D segmentation
process is to be able to come up with quantitative measurements in 3D that are taken on a
valid base. Therefore, our experimental setup is split into two categories, i.e. phantom-based
and patient-specific experiments.

4.2.1. Phantom experiment. Our vessel phantom (see figure 5) is made up of a plastic
tube exhibiting an inner diameter of 3.6 mm and a wall thickness of 1.3 mm. The
phantom experiment was conducted in order to set up an ideal acquisition environment.
This environment eliminates some disturbing factors in contrast to a real patient acquisition,
i.e. there is no patient movement, the plastic tube was completely filled with the contrast agent
such that it is homogenously distributed without air blebs and the vessel diameter is known
a priori. The phantom results are really promising. The quantitative results are illustrated
in tables 1 and 2 (column P). Looking at table 1 summarizing the results concerning the
optimization projections: the 2D driven 3D approach shows that an improvement of about 7%
points against the 3D ellipsoid-based segmentation and almost 13% over the result computed
by region growing. Also the results for those projections which were not used for optimization
show a clear outperformance of our 2D driven 3D method over the other two methods (see
table 2).

4.2.2. Patient-specific experiments. This section describes our experiments that were
conducted with patient-specific data. An overview on the segmentation results is given in
table 1. Figure 3 illustrates the qualitative results. Considering the quantitative results given
in table 1, it turns out that the 2D driven 3D vessel segmentation approach outperforms the
other two segmentation methods.
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Figure 5. Qualitative results concerning the phantom experiments. The projections shown in
this figure were part of the optimization set. The yellow boxes represent the zoomed region for
illustration purposes.

Regarding the evaluation measurements within the optimization set (1), the region growing
approach achieves an overall fit of 89.1% (Dice) and 83.2% (precision). The 3D ellipsoid
segmentation shows a slightly better result, i.e. 89.4% (Dice) and 87.0% (precision). A major
improvement, however, could be achieved by the 2D driven 3D segmentation approach, i.e.
95.2% (Dice) and 94.2% (precision).

Moreover, table 2 and figure 4 show that this novel 2D/3D segmentation method delivers
better results than the other two techniques even for projections that have not been part of the
optimization set. There, the average Dice coefficient and precision reveal 91.6% and 89.2%,
respectively. The region growing and 3D ellipsoid-based segmentation end up on average
with 90.0% and 90.9% for Dice—83.5% and 86.8% for precision, respectively.

Comparing the qualitative segmentation results of the region growing approach with the
3D ellipsoid method, the vessel diameters appear slightly thicker within the region growing
results (see figure 3, blue circles). The 2D/3D adapted ellipsoid segmentation result is shown
within the fourth column of figure 3. The new algorithm deforms smoothly toward the
boundary of the given 2D gold standard segmentation. The deformations are depicted using
the Hausdorff distance before and after 2D/3D optimization. The orange and yellow circles
within figure 3 illustrate exemplarily the differences between the three segmentation results.
The 2D driven 3D approach is able to fit to the gold standard segmentations in almost all
regions. Those remaining regions that are not covered by the 2D/3D model originate due to
external influence factors, e.g. vessel movement due to the beating heart or patient movement.

5. Discussion

When it comes to measurements of vessel diameters during treatment planning, 2D DSA
projections denote the gold standard image modality to perform these measurements.
Therefore, this 2D driven 3D vessel segmentation method can be considered as a general
approach to validate 3D vessel segmentations based on 3D DSA image data. Independent
of the applied segmentation algorithm, it is possible to judge the 3D segmentation result
by means of forward projection and comparison with corresponding 2D DSA projections.
The new external energy force introduced in section 3.2 can be applied as a regularizer for
various 3D vessel segmentation methods based on different mathematical principles, e.g.
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Table 1. Summary of the 2D/2D evaluation results. The numbers are average values given in % which measure the overlap (Dice, precision) between the forward projection of a 3D
segmentation method and the corresponding ground truth vessel segmentation of the selected 2D DSA projection images. Here, the result against the incorporated 2D DSA projections
is shown. P, D and Std. Dev. abbreviate phantom, dataset and standard deviation, respectively.

Method Average 2D/2D measurements—part of the optimization set

Dataset P D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Avg. Std. Dev.

Dice Region growing 86.1 91.4 91.4 89.7 90.1 90.4 88.6 85.8 88.6 85.8 89.2 89.1 2.0
3D ellipsoid 91.4 89.8 92.9 90.4 89.7 91.8 87.0 86.0 89.8 88.5 88.4 89.4 2.1
2D driven 3D 98.1 96.7 96.1 95.0 96.2 95.6 93.4 93.2 96.9 93.9 95.0 95.2 1.3

Precision Region growing 76.3 87.1 86.2 84.9 86.1 84.7 82.4 77.9 83.3 78.0 81.4 83.2 3.3
3D ellipsoid 85.8 91.9 91.1 85.0 85.1 90.5 84.2 83.9 88.4 85.4 84.6 87.0 3.1
2D driven 3D 97.2 96.0 95.9 94.7 95.8 95.8 90.4 90.0 96.1 93.4 94.3 94.2 2.3
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Table 2. Summary of the 2D/2D evaluation results. The numbers are average values given in % which measure the overlap (Dice, precision) between the forward projection of a 3D
segmentation method and the corresponding ground truth vessel segmentation of the selected 2D DSA projection images. Here, three other 2D DSA projections were selected that are
not part of the optimization set in order to measure the overall match of our 2D driven 3D method. P, D and Std. Dev. abbreviate phantom, dataset and standard deviation, respectively.

Method Average 2D/2D measurements—not part of the optimization set

Dataset P D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Avg. Std. Dev.

Dice Region growing 86.7 92.0 91.0 90.2 92.7 91.9 91.1 85.4 91.2 85.9 88.5 90.0 2.6
3D ellipsoid 90.8 91.3 92.0 89.1 92.6 93.4 91.2 85.5 93.6 88.8 91.8 90.9 2.5
2D driven 3D 95.0 93.4 92.0 91.0 92.8 92.4 91.9 89.6 89.8 92.6 90.2 91.6 1.3

Precision Region growing 77.5 88.5 84.0 84.6 87.9 86.2 84.4 77.6 84.1 76.9 80.1 83.5 4.0
3D ellipsoid 85.6 89.6 88.0 81.5 87.1 92.1 85.9 83.2 90.2 84.2 86.3 86.8 3.3
2D driven 3D 93.1 92.9 89.2 87.1 91.5 92.2 87.9 85.9 87.1 89.8 87.9 89.2 2.4
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other parametric segmentation algorithms, level sets or graph cuts. We applied the SSD as
a cost function due to the fact that we dealt only with segmentations in 2D as well as in
3D.Within the evaluation, three 2D DSA projections were used to adapt the 3D segmentation
but this approach is open to incorporate as many projections as the user wants to be used.
Another approach would be not to manually segment the vessel of interest within the 2D DSA
projections but to incorporate the projections as is. This would imply use of different cost
functions for the 2D/3D external force, e.g. normalized cross-correlation, pattern intensity,
gradient difference, etc. One might argue that the original 2D edge information can be already
integrated within the reconstruction process by manual outlining of all 133 2D DSA projections
used for reconstruction, and finally reconstructing a binary image volume. This, however, is
not feasible within clinical routine because this manual outlining will take several hours. Our
2D driven 3D approach has been developed with respect to clinical workflows and aspects,
i.e. during stent or coil planning, physicians choose selected 2D DSA projections to measure
the vessel diameter or aneurysm neck size to decide which stent or coil type has to be used to
get an optimal therapeutic outcome. Within our integrated 2D/3D segmentation framework,
the adaptation of the 3D vessel segmentation to the chosen 2D projection can be easily
done.

Moreover, this segmentation approach helps to reduce the influence of acquisition-
and reconstruction-related factors as described in the introduction. Different reconstruction
kernels (Buzug 2008, Kak and Slaney 1988) exhibit inherently different edge enhancement
leading to varying edge ramps (see figure 1), i.e. the original edge information which
is present within the 2D DSA projections (being used for reconstruction) has not been
used so far to drive the segmentation algorithm toward the real vessel edge. With the
incorporation of the 2D projections, however, this information is now used a second time
(first for reconstruction and second for vessel segmentation) within our new 2D driven 3D
ellipsoid segmentation approach to ensure that the vessel edges of the 3D fit to the edges given
in 2D. The 2D data available are based either on dedicated 2D DSA acquisitions or on the 133
acquisition used for the 3D reconstruction, while both are different in dose and therefore in
the inherent noise level that will become a next step for an automatic segmentation approach
of the 2D data. Both cases are usable for our manual segmentation approach, proving the
concept.

A 3D ellipsoid-based segmentation is used to approximate the vessel structures with a
strong tubular regularizer. The advantages of this segmentation algorithm denote the ability
to adapt to local vessel branches and its deviations by interleaving ellipsoids, as already
mentioned in Tyrrell et al (2007). We enhanced this approach by using GMMs to perform
local adaptive threshold estimation which ensures that local intensity variations within vessels
are covered in a more accurate way. The results show (see table 3, rightmost column) that the
3D ellipsoid-based model outperforms the region growing approach.

While performing a forward projection onto the three selected 2D projections, the 3D
information is lost. The deformations computed within 2D may cause changes within the 3D
segmentation that may lead toward unrealistic vessel appearance. Now, the advantage of the
parametric 3D vessel segmentation comes into play because those deviations can be easily
avoided by the internal energy force introduced in section 3.1.2. This internal force watches
the parameter changes of the interleaved ellipsoids concerning rotation, scaling and translation
and penalizes those changes featuring highly non-tubular vessel structures.

The overall 2D driven 3D segmentation results look promising, even if there are still
some remaining areas where our 2D/3D adaptation could not properly deform toward the
2D vessel boundaries. There are three reasons which might cause this behavior: (1) patient
movement between the different 2D DSA projections may cause an area of conflict showing
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an inconsistent vessel situation. (2) The 2D DSA projections were arbitrarily selected with
the only condition that the vessel is depicted from different viewing angles. This may imply
vessel movement between the projections due to different phases of the cardiac cycle. (3)
The internal force keeps the model from deformation toward these areas because the gain of
cost reduction concerning the external force is too little compared to the increase of the costs
induced by the internal term.

6. Conclusion and outlook

The algorithm presented in this work illustrates the first attempt to incorporate 2D projection
information into a 3D vessel segmentation method for 3D DSA data. Our results show that
the match between the forward projection of 3D segmentation volume with manually outlined
2D DSA vessel segmentations is not identical as it is supposed to be for an ideal calibrated
case. This occurs because of the influence factors that appear during 3D DSA acquisition. Our
2D driven 3D method opens up the possibility of driving the 3D vessel segmentation results
toward previously selected 2D information. This step enables us to perform quantitative
vessel measurements in 3D on a more valid base. This approach serves as a key module
toward an automatic 2D/3D vessel segmentation framework. The next steps will be to extend
this approach by a semi-automatic 2D vessel segmentation algorithm such that the 2D gold
standard segmentations can be omitted (Schuldhaus et al 2011a, 2011b). This will boost the
feasibility of this approach within a clinical environment.
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