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1. Introduction

tures or organs of intere
(ASMs) to region growin
to their inherent statistical

knowledge gained from
are extracted from the
training input. Determin e correspondences between the
shapes is therefore a crucia ct for the generation of the
entire model. Errors made during this phase directly lead to
wrong statistical values for the shape variation that has to be

the variations in t

* Corresponding author. Tel.: +49 9131 8527874, fax: +49 9131 303811.
E-mail address: dieter.hahn@informatik.uni-erlangen.de (D.A. Hahn).

0895-6111/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compmedimag.2008.10.002

known as exactly as possible to achieve a good regulariza-
tion.

A state-of-the-art solution consists of the optimization of the
minimum description length (MDL) measure between a set of
points (landmarks) placed on a parametric surface onto which
all training shapes are mapped. Although this technique allows
to process surface mesh representations of the training data with
potentially different numbers of vertices, finding a solution for the
problem is highly complex and - even on newest hardware - may
be very time consuming. In fact, the procedure has to be rerun all
over again if an existing model is updated with additional learning
data. The mapping into the parametric space for the MDL optimiza-
tion may also pose a problem for some applications, e.g. if a suitable
transformation cannot be found or if the objects highly deviate from
the parametric target space.

From another perspective, the correspondence problem
between the training shapes may also be regarded as an image reg-
istration task. Depending on the degrees of freedom of the spatial
transform, the registration algorithm optimizes the match between
corresponding structures within multiple images. The main contri-

Please cite this article in press as: Spiegel M, et al. Segmentation of kidneys using a new active shape model generation technique based on
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1016/j.compmedimag.2008.10.002
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butions of this article consist of introducing a non-rigid registration
step into the ASM generation phase to solve the point correspon-
dence problem, formulating a suitable distance measure between
the training shapes and a comparison of the proposed approach
with an already established MDL method. This article demonstrates
that the proposed approach yields more detailed models and results
of high sensitivity that outperform a state-of-the-art MDL based
technique.

2. Related work

The clinical evaluation presented in this article focuses on the
application of the generated ASMs to kidney segmentation from CT
images. The application is primarily used as a means for the com-
parison of different algorithms to solve the point correspondence
problem, however, there is a clinical need for such a segmentation
system. Nephrologists are actually interested in some properties of
the kidneys, e.g. the size, volume or perfusion. In literature, several
approaches towards kidney segmentations can be found that make
use of adaptive region-growing, knowledge-based or deformable
models. The first class of algorithms is, for instance, described in
Pohle and Tonnies [1]. They developed a region-growing algorithm
that optimizes a homogeneity criterion automatically from char-
acteristics of the area to be segmented. Kobashi and Shapiro [2]
present a knowledge-based recognition system that utilizes the
information about properties of the CT images and the anatomy.
The very popular deformable model approach has previously been
applied to kidney imaging by Tsagaan and Shimizu [3,4]. Their pro-
posed method is based on a non-uniform rational B-spline surface
representation and prior knowledge about the shape of the organ,
e.g. mean and variation, which is then incorporated into the objec-
tive function for the model fitting process as an additional ene
term.

Compared to rather heurlstlc approaches llke reglon rowmg

statistical variation of the target shape. ASMs may
robust results also on images with low signal to
blurry organ boundaries. The incorporation of j

the quality of the solution for the poin
of the training data, which is the maj
generation phase. Difficultieg, arise fro sentations
i ngulations
description

nd uniform correspon-
shapes and may result in poor
modes of variation. Heimann 9] address this drawback by
extending a parametric re-meshirg technique that ensures uni-
formly distributed landmark positions across the training data. A
MDL criterion is optimized to distribute point correspondences
within the parameter space to optimally describe the statistical
variations.

Taking the another direction and realizing the idea of image
registration to solve the correspondence problem is challeng-
ing. The training data is usually acquired from different patients,
which requires a non-rigid spatial transform with a large num-

dences across the set of

ber of degrees of freedom. In order to incorporate inter-patient
shape variations, the applied registration algorithm has to estimate
a non-rigid transform for each correspondence problem. Suit-
able non-rigid registration approaches can mainly be divided into
parametric and non-parametric techniques. Parametric approaches
incorporate an inherent regularization by the choice of the
parametric model, whereas non- parametrlc methods have to be
constrained by additional reg ion terms. Comprehensive
descriptions about this topic ¢ ound, for instance, in the
works of Modersitzki [10], Herm 1. [11] or Clarenz et al.
[12]. Among various non-rigid transform e deformation
e spatial trans-
n vector for each image

form. They allow to speci
element. In the following

regularized ima

g of this section provides an overview of the main
Ms followed by a brief description of a well estab-
terion based approach. The core part of this section
novel registration based method for estimating the
int correspondences.

asics of statistical shape models

he point distribution model by Cootes et al. [5] forms the
basis of an ASM that is built from a set of N training shapes.
Each shape is represented by n sampled surface points. For 3-D
type problems, the components of their position vectors p, e R3,
k=1,..., n are used to create a representation for a single shape
x as follows: first all the x-components of the n position vectors
Dy are given followed by all y-components and z-components, i.e.
X=(pP1x:P2.x>-- .,pn,LZ,pn,Z)TeR“. Denoting the shape repre-
sentations x;,i=1, .. ., N, for the training set as column vectors, one
can obtain a landmark configuration matrix L=[x1X>...Xy]. Apply-
ing a principal component analysis (PCA) to L yields the principal
modes of variation of the training data, i.e. the eigenvectors e;. The
mutually orthogonal eigenvectors e; are sorted in descending order
of their respective eigenvalues A,. If the number of eigenvectors is
restricted to the vectors that belong to the T largest eigenvalues, a
linear combination of these T principal modes of variation with the
mean shape X = %Zﬁvﬂxi spans the subset of shapes composed of

the given modes of variation. A new shape x* contained within this
subspace can therefore be expressed by

(1)

+I
tﬁﬂ
>

i=1

where b; e R is the weighting factor for the corresponding ith vari-
ation.

A very important precondition to solve the PCA for the matrix
L is the knowledge about the corresponding points of the train-
ing shapes. These correspondences determine the order of the

Please cite this article in press as: Spiegel M, et al. Segmentation of kidneys using a new active shape model generation technique based on
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1016/j.compmedimag.2008.10.002
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ary conditions
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3.2. Description length

This section briefly describes an MDL criterion based method for
creating 3-D statistical shape models, which was first introduced by
Davies et al. [7]. This MDL technique leads to a reformulation of the
point correspondence problem to find an optimal mapping of each
training shape onto a sphere. This mapping is manipulated such
that the description length of all points becomes a minimum. Thod-
berg [14] provides a simplified and more efficient version of the
MDL approach that is based on a cost function F of the description

length for the generated model being defined as follows:

Ly = { 1 +log(Am/Acur) forim > Acur (3)

)\-m /)\-cut

known MDL approach by
positions locally whilgfg
respondenc

5 apply a mesh parameteri-
hey implicitly assume that
the target obj
overview of

ndmark points. Hence, the accuracy of the
s with the number of landmark points. Like-
arks are used for the representation, the more
mputation of the correspondences will be.

ion of shape models

ist several equivalent ways of representing the shape of
. A shape may, for instance, be defined as a set of points
at form a surface mesh, as it was discussed in the previous section.
an be described by a bi-valued function @ in a discrete image
main §2 that is specified by spatial sampling properties. Let £2
note the image domain of the shape x, with 2, c £2. The corre-
sponding discrete representation of x within this image domain is
defined as a spatial region X e 2y with an appropriate resolution
and size such that x € £2y. As X contains the discretization of x, @
may be denoted as

®: 2 10,1} (4)
where

)1, pef
2(p) = {O, otherwise pel?

Hence, X may be regarded as a discrete binary image of the shape
x. Let y denote a different shape and Y its corresponding repre-
sentation in the image domain. The point correspondence problem
between x and y can now be formulated as the problem of finding a
suitable spatial transform between X and Y that maps correspond-
ing structures onto each other. That means for every point p; € £2x a
corresponding point py has to be found with p, € £2. This is the clas-
sical image registration problem. The non-rigid registration used in
this work yields a dense deformation field u : £2x — 2, that pro-
vides a solution for the following point correspondence problem:

p; —u(p;) = P« (5)

The transformation is represented as a spatial function u(p) that
maps between the image domains of the shapes x and the x.

It is worth noticing that this formulation of the point corre-
spondence problem within the image domain does not require an
explicit representation of an extracted shape. It can be applied
to both implicit and explicit segmentation results, whereas the

Please cite this article in press as: Spiegel M, et al. Segmentation of kidneys using a new active shape model generation technique based on
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1016/j.compmedimag.2008.10.002
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previously mentioned methods rely on an explicit surface repre-
sentation. This is an advantageous property, since it allows to relate
shapes that are composed of several closed sub-shapes (e.g. as a
result of an implicit level set segmentation). Commonly, the train-
ing data is usually acquired by a supervised segmentation of the
images and stored either as an image or a surface mesh. Both rep-
resentations may be transformed into each other, however, some
attention has to be paid to the discretization of the image domain
in order to avoid a loss of substantial structural information due to
undersampling.

This article focuses on a regularized, non-parametric, non-rigid
registration formulation based on the work of Fischer and Moder-
sitzki [10] who proposed a framework which we will now briefly
summarize. The registration problem can be stated as the search for
a non-parametric mapping from one image domain into another,
usually referred to as reference R and template space T with their
corresponding image domains §2g and £27. We will refer to the
deformation field between R and T simply as u. An objective func-
tion has to be formulated with respect to u which accounts for the
similarity between R(p) and T(p — u(p)) with p € £2g. In an intensity
based energy formulation, this similarity is expressed by a distance
measure D being explained later on, that is minimal if the mapping
yields the best result between the two images:

D[R, T, u] % min (6)

In general, this problem is ill-posed and the solution may not
be unique or even continuous. An additional regularization term,
called the smoother S, is introduced to address this drawback. With
an appropriate regularization it is now possible to penalize trans-
formations that do not seem to be suitable for the given application.
Hence, the overall registration problem is to find a spatial mappi
u that minimizes the joint functional 7:

u

argmin’](u):argmin/ DIR, T, u](p) + aS[ul(p)dp
u 28

Pu Pu o)’
dpz  dp;  Op?

where the curvature term (8) weighted by the
mines the amount of regularization applied to t
it controls the smoothness of the resulting deforma
larger the value for «, the more rigid the ion

transform u defines a dense deformatio i
lation vector to each element of the refe,

Slul(p) = (Apu)* = (

distance measure. The calc
the minimization problem.
and a minimum is obtained

the global energy
leads to the Euler

Alul(p) - f(p, u(p)) =0 (9)

with the matrix A being the ized partial derivative opera-
tor resulting from S and f the deriVitive of the distance measure,
also called force. A solution of this semi-linear partial differential
equation fulfills the necessary condition for the minimization of 7.

Computing a solution u for (7) usually involves three steps: (a)
an initial placement that results in an overlap between the image
domains, (b) a rigid registration for rotational and translational
parts and (c) the non-rigid registration to solve the point corre-
spondence problem. In practice, there exist many possibilities for
an initial placement, for example the alignment using the center

J o\

Ussp

UCSSD

e bottom row illus-
re that minimizes
s a result where the
ance measure. Here, the points
h other and therefore, shape

just the distance. On the contrary, tk
curvature of the surfaces is incorpg

points of the boundi
ity, just to name
alignment has t
starting point

Besides choo
scheme, a i

es or their centers of grav-
ily required if the initial

distance measure has to operate on binary
shapesin the image domain. Points on the
ve to be registered correctly and intrinsic

e regions as closely as possible. As the image
the same modality and intensity, the straight for-
uared differences (SSD) distance measure can be
ion for a specific point in the image domain is pro-

mnnmm=%nw—um»—mmf (10)

awback of the SSD in the context of finding shape corre-
sp/ ldences is that it does not account for any surface properties.
rder to account for this information in addition, we therefore
ropose a novel extended form of the pure SSD distance measure.
It incorporates the surface property of the mean curvature of the
shape at a specific point as used by Sethian [17]:

V&(p)

K(p):—V~W, pes2 (11)

The novel distance measure for the shape registration includes
both the similarity between the discrete shape representations (10)
and their surface curvature (12), abbreviated by CSSD:

Deurv[R, T, ul(p) = 1 (kr(p — u(p)) — kr(p))* (12)
Desspl Bl = (1 — B)Dssp + BDcurv (13)

where kg(p) denotes the curvature of the reference image at
position pe 2z and «r(p —u(p) the curvature of the template
image at the mapped position, respectively. As depicted in Fig. 2,
the curvature extension results in a deformation field that maps
between regions with corresponding surface properties. In con-
trast, optimizing the SSD distance alone results in the most efficient
deformation field with respect to the regularization energy. For
example, a standard SSD approach might just smooth out a bulge
while the CSSD would try to match it with a corresponding bulge
first.

It is worth noting for implementation purposes that the curva-
ture is calculated on the original (i.e. undeformed) template image
and interpolated using the current deformation field within each
iteration. Computing the curvature on the already deformed tem-
plate image is incompatible with the objective of retaining surface

Please cite this article in press as: Spiegel M, et al. Segmentation of kidneys using a new active shape model generation technique based on
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1016/j.compmedimag.2008.10.002
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X,
X, X, | | X,

Fig. 3. The registration scheme for a reference X; and the remaining N — 1 training
shape images leads to N — 1 deformation fields that determine the point correspon-
dences. The direction of the deformation is always from the space of X; to the target
shapes. This allows to map the surface x; through the deformation fields later.

properties. In practice, solving Eq. (11) can be very sensitive to noise
due to the second order derivatives involved. Well known tech-
niques for low pass filtering, e.g. with a Gaussian kernel, help to
alleviate these problems. The derivatives should be computed by
analytically derived versions of the corresponding filtering kernel
inorder to reduce noise. However, the kernel width has to be chosen
with care in order to retain the details of the shape.

The registration scheme for the point correspondence problem
is depicted in Fig. 3. X7 is used as the reference, which is succes-
sively registered with the remaining N—1 shapes images of the
training set. The resulting deformation field u; then specifies the
point correspondences between the shapes X; and X; with i=2,

., N. The registration problems have to be formulated so that
the shapes X; are mapped onto X;. The shape X; has to be chose
carefully and ideally it should be close to the mean of the training
samples. As affine transformations are contained in the ker

to a certain degree should be of no concern for the registration.
A state-of-the-art multi resolution optimization strategwincreases

surface represe
can now be ac

L =[x1x;- -XN] (14)
with
X,‘:X]Olli,izz,...,N (15)

The operator o denotes the interpolated application of the defor-
mation field to the points of the surface representation x;. As
the point correspondences have been established for all training
samples using the novel registration approach, the PCA on the reg-
istered L can now be applied to compute the principal modes of
variation.

3.4. Gray-level appearance model

Once the correspondence problem is properly solved the sta-
tistical shape model can be generated incorporating the variations
seen within the training data. The applied segmentation system
(see Fig. 1) incorporates the gray-level appearance model intro-
duced by Cootes et al. [19] to establlsh a link between the shape
variations and the intensitie the images. In this context, a
hierarchical multi-resolution ch is applied to improve the
efficiency and robustness of t for the boundary of the
shape within the image space. Hence, sary to examine
the gray values along the registered model
point for all training sa evel of the resolution hier-

along the pogiti
over all traini

segmentation

pearance model is placed into the image
t object that is to be segmented by a user pro-
point. Usually, the model does not coincide with the
due to variations between the patients and also the
f the seed. Therefore, a displacement for each model
be estimated, that moves the surface of the model
e boundary of the target shape. This movement is cal-
culated for each point given its trained gray-level profile and a new
or of gray values computed for the current spatial location in
mage. The similarity between the jth element of the gray-level
pearance model d; and its current observation o; is assumed to
e maximal if the model surface is located exactly at the bound-
ary of the shape. The Mahalanobis distance is used to measure this
similarity:

-1
D(0;) = (0 7dj)TZj (0, — d;) (16)

where ) "; is the covariance matrix of the jth model profile. It can be
regarded as a distance measure that has to be minimized for each
object location. The discrete displacement Aj of the jth model point
for each iteration step has to minimize the Mahalanobis distance
(16):

Aj = argmin D(
Aj

) (17)

As the observed gray-level profiles are computed only for a spe-
cific sampling range, the problem usually does not have a closed
form solution. A nonlinear optimization scheme is applied in order
to adapt the model gradually to the shape of the new object. Within
each iteration of the nonlinear optimization, the jth element of
the gray-level appearance model is displaced by Aj along its nor-
mal direction to minimize (16). A corresponding displacement is
calculated for each of the n points of the ASM. The nonlinear dis-
placement of the model points minimizes (17), however, it does
not incorporate the prior knowledge about the statistical variation
within the training shapes. As aresult, the displaced model has to be
mapped back into the space that is spanned by the modes of varia-
tion (see also Eq. (1)). The linear part of this iteration step estimates
the pose and shape parameters of the model in a least-squares man-
ner with respect to the training set variations, i.e. determining the

Please cite this article in press as: Spiegel M, et al. Segmentation of kidneys using a new active shape model generation technique based on
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1016/j.compmedimag.2008.10.002
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weighting factors for the eigenvectors. The computational details
of the least-squares update scheme can be found in Cootes and
Taylor [20]. Various numerical schemes may be applied to solve
the nonlinear problem, for instance the first order gradient descent
algorithm or higher order techniques like the quasi-Newton meth-
ods.

4. Results

Three different algorithms to solve the point correspondence are
compared to each other based on an evaluation using 3-D medical
images. Each algorithm has been embedded into the described ASM
framework. The medical data consists of 3-D abdominal CT images
of kidneys from 41 different patients of mixed gender and age. The
images have been acquired using two different Siemens CT scan-
ners (Sensation 10 and Sensation 16) with a resolution in x/y/z from
0.6/0.6/5 t00.75/0.75/5 (in mm) and provided in Dicom format. The
volume sizes for the experiments range between 512 x 512 x 120
and 512 x 512 x 300. In order to evaluate differences in the point
correspondence algorithms, all 41 kidney pairs have been manu-
ally segmented and approved by a nephrologist. In all experiments,
the manual segmentation results are used as the gold standard. The
entire set of labeled segmentation data is divided into two disjoint
parts: one set of varying size between 10 and 20 is used for the
training of the ASM and the remaining one for testing.

The novel idea of using a non-rigid registration based algorithm
to solve the point correspondence problem (see 3.3) is compared
to an established MDL approach (see Section 3.2) from Heimann et
al. [8]. For the non-rigid registration, two distance measures are
applied: a straight-forward SSD criterion-based implementation
using (10) and the novel surface curvature extended SSD (13).
the following text, we will refer to the resulting ASMs as MDL, S
and CSSD. All ASMs have been created on the same training sets and
evaluated on the same test data with equal initialization parame-
ters. Table 1 provides a brief description of the properti
MDL approach for one side of the kidney pairs. For the oth
methods the surface mesh for #; has been extracted
2000 vertices using the Marching Cubes algorith
ASM therefore consists of 2000 vertices, as well.

4.1. Methods of evaluation

The evaluation of the ASMs for the seg

eralization of the model an
generalization assessment
the model to adapt to a ne
ed eigenvectors
ing samples. A set of
les is constructed
ve-one-out cross valida-
the distance to the gold
quared error (MSE) and

models with differ
with all three ap
tions on the testin
standard using two m
the sensitivity.

ror between the segmenta-
tion result of the ASM and the cort€sponding gold standard. This

Table 1
Characteristics of the clinical datasets for one side of the kidney pairs used for the
MDL approach.

Mean radius in voxels 22
Number of samples 41
Sample complexity for the MDL (# vertices) 2000-3000
Model complexity for the MDL (# landmarks) 2562

measure depends on the resolution that is used for the discretiza-
tion. Therefore, the same image parameters have been applied that
were used for the manual segmentation to achieve the gold stan-
dard (i.e. the same image resolution, size, position and orientation).

In the following formula, this is simply denoted by the domain §2:
MSE[X, Y] = i‘ / (X(p)- Y (18)
Q

))* dp

|$2

resentations of two seg-
andard segmentation

Here, X and Y are the image do
mented shapes ¥, and y. X is alwa
and the second input is the resu

The sensitivity is used as
is defined by

TP
E=—
R e
where TP is the nu
false negatives. |

are segmented
ASM and withi

el generalizes to new kidneys that are not
ining set.

em with this particular measure, due to a normal-
the background of a segmented shape is arbitrarily
ecificity values can be driven close to 1.0. This is due

e structure anyway. For this reason, the specificity is not
s a criterion in our evaluation.

Experimental results

This section presents the segmentation results for the gener-
ated ASMs. All experiments have been performed on a Pentium
4, 2.8 GHz with 2GB of main memory. A single registration for
both the SSD and CSSD approach took approximately 8 min on the
given hardware. The complete registration for the largest train-
ing set with 20 kidneys took approximately 170 min, compared
to 16-20 h using the MDL approach. The runtimes refer to a non-
optimized implementation of the algorithms and are only used as
a rough indication of the efficiency of the ASM generation algo-
rithms. As several tasks may be performed in parallel, further
improvements can be achieved by utilizing multi-core processor
architectures or graphics hardware. Since the presented segmen-
tation system (see Fig. 1) has been initialized by a seed point, the
experimental phase was divided into two parts. The ASMs have
firstly been tested for sensitivity according to varying seed point
locations on one test sample volume. Secondly, the seed points
were placed ideally into the center of gravity of the correspond-
ing test images in order to analyze the models with respect to a
larger test set and different numbers of training shapes. The train-
ing and test samples, as well as the parameters for the ASM, were
the same for all three models throughout the corresponding exper-
iment. As mentioned in Section 3.4, a multi-resolution technique
has been applied to increase the attraction range for the optimiza-
tion and the efficiency. The numerical convergence criterion for
each level of detail is based on the variation of the MSE of the
shape between two subsequent iterations. In general, the image
search algorithm converged in less than 30s, where at most 70
iterations in each level were allowed. Analyzing the results, 30 iter-
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Table 2 ) , _ _ » Initialization Sensitivity
Results of a left kidney segmentation for 13 different starting positions around 1

the point (78.67 +3.58/—140.70 + 1.98/—-318 + 4.14) using the MDL, SSD and CSSD
methods for the generation of the ASM based on 20 training samples.

I MDL
[ ssp
[_Jcssp

o
©

Initialization sensitivity—left kidney 08
N=20 MDL SSD CssD 07
=
SE. 0.67 + 012 0.94 + 0.02 0.95 + 0,01 S U6
MSE 100,490 + 33,599 22,991 + 3545 22,835 + 3046 % 05
3
w 0.4
ations for one level were generally sufficient to achieve numerical 0.3
convergence.

o
o

4.2.1. Sensitivity to seed point variations 0.1

As the ASM segmentation relies on a manually specified seed 0
point, a series of tests has been applied to evaluate the robust-
ness of this initialization. The proposed ASMs are evaluated for
various seed positions with respect to the MSE (18) and the sen- ig. 4. i i ased on 10 and 20 training sam-
sitivity (19). The modes of variation have been chosen to cover ples for varying s i The graph reflects the results
99.9% of the training set. 13 different positions for the seed point of Table 3. The g i ve an increased generalization
have been chosen to reflect typical user inputs. From the test set,
one left and right kidney were chosen for this experiment. Results
for the left and right kidney ASMs generated from 20 training
samples are presented in Tables 2 and 3. As can be seen, the registra-
tion approaches yield better results compared to the MDL method,
with a slight improvement with the curvature extension. Accord-
ing to these experiments, the models generated by the registration
approach are less sensitive to variations in the seed points. For
the right kidney model, the sensitivity results were additionally,
compared between a learning set size of 10 and 20. The values fo
the sensitivity presented in Table 3 between the different size of
the training set are also illustrated in Fig. 4. The generalizg
ability of the models clearly benefits from a larger training
Regarding the relative increase in performance due to a larger set
of training shapes, the registration approaches seem to

amples have been used as the test set.
SSD and CSSD approaches, this results in a
pared to the previous tests where the initial
, the seed point is now automatically placed
ravity of the gold standard segmentation of the
ing test sample. This initializes the image search and
phase (see also Fig. 1) in an equal manner for all

umerical values for each data point are given in the Table 4. It is
from these results that the ability of an ASM in general to adapt
new shape depends on the number of training samples used
r its creation. The graphs show that both registration approaches
eliver better results for models trained with 10 or more samples.
In the case of seven training samples, the SSD distance measure
performs better than its competitors. However, for 10 or more mod-
els, the values for the CSSD approach lead to better results. The
graph in Fig. 8 illustrates that the MSE made with the models cre-
ated using the registration approaches is smaller for all numbers of
training samples. Considering ASMs trained with 10, 15 or 20 train-
ing samples, the MSE values decrease almost linearly for SSD and
CSSD, whereas it seems that the MDL mesh is not capable of further
improvements with more learning data. One reason for this effect
may become clearer by comparing the mean shapes between the
CSSD and the MDL models created from 20 samples. Fig. 9illustrates
that the CSSD model provides more morphological detail on con-

ing seed locations. It illustrates the progress on
the volume during the segmentation of a righ
CSSD model trained with 20 samples. The fi

dation strategy. Each meth ration has been
used to generate ASMs fro d 20 different training

Table 3
Results correspon right kidney segmentation. Table 4

Sensitivity and MSE of the models with respect to varying numbers of training
samples for the ASM generation.

Initialization sensitivity—

N=10 MDL Cssb # MDL SSD CSSD
SE. 0.69 + 0.18 74 + 013 0.74 + 0.12 Sensitivity
MSE 79,330 + 44,930 61,064 + 33,263 60,084 + 33,043 - 0e o o
10 0.88 0.9 0.92
N=20 MDL SSD CSSD 15 0.89 0.92 0.92
SE. 0.77 + 015 0.91 + 0.01 091 + 0.01 20 0.88 0.1 0.1
MSE 54,680 + 37,344 13,866 + 2159 13501 = 1098 MSE
7 40,037 26,366 31,930

The starting positions varied around the point (—77.62+3.04/—
148.89 +1.98/—330.19 £ 4.14). In addition to the results for the training set of 10 18,892 15,883 15,162

20 samples, the sensitivity values for the ASMs generated from 10 samples are 15 16,955 13,425 13,357
presented, as well. 20 19,820 12,635 13,043
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(c) After 20 iterations (d) After 30 iterations and convergence.
Fig. 5. Iterative segmentation progress of a right kidney using a:
the advances during the optimization: the initial placement
and the result after numerical convergence (30 iterations).

vel registration approach using the curvature extension. The image sequence illustrates
rovided seed point, two intermediate results during the iteration (10 and 20 iterations)

Sensitivity compared to Gold Standard

0.95
0.9+ b
2
=
‘w 0.85¢ R
=
()
[05]
08+ J
- —+ - 8SD
@+ CSSD
075 1 1 L 1
7 10 15 20

Number of Training Samples

Fig. 7. A comparison of the sensitivity for the MDL, SSD and CSSD model generated

i . ) . o by a different number of training samples. For 10 or more training samples, both

Fig. 6. 3-D view of the segmentation result depicted in Fig. 5. The purple colored registration approaches yield better results on the test data than the model created
image region indicates the segmentation result. with MDL point correspondences.
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x 10% MSE compared to Gold Standard

——&—— MDL
al --+-- 88D

MSE

7 10 15 20
Number of Training Samples

Fig. 8. The MSE for the three compared model with respect to the number of training
samples. Again, the registration approaches outperform the MDL approach in terms
of registration accuracy.

cave parts of the surface compared to the MDL approach. Although
the surface of the MDL model features the same number of ver-
tices, the distribution of points on the surface of the CSSD model
leads to a better representation of the surface properties of the kid-
neys. The higher detail of the registration based meshes and the
resulting accuracy in concave areas is visualized in Fig. 10, whic
shows a comparison between CSSD and MDL for a typical segmen-
tation result from the test set. Here, the displayed surface ou
the corresponding gold standard segmentation. The colors indi
the distance between the ASM segmentation to the gold standar
given in mm. The registration approach features a high
at detailed surface structures. The resolution of the

the renal hilus, which leads to larger errors.
To get an impression of the statistical infor

Fig. 9. A comparison of the mean shapes between the CSSD and the MDL models
created from 20 training samples. Left: CSSD registration approach model. Right:
MDL model.

pproach has been presented to solve the point cor-
problem between the training samples for an ASM
n by the application of non-rigid image registration
. For comparison, an already established method using
L criterion for this task has been applied. Results have
presented for the automatic segmentation of kidneys from
ages. Compared to an already established MDL method, the
gistration based solution for the correspondence problem not
nly allows to include more surface detail within the model itself,
but it also provides the ability to easily update the model with
new training samples. In comparison, the objective function for
the MDL formulation contains dependencies to all model points,
which leads to a high computation effort if new training data has to
be incorporated. This effort is drastically reduced if the registration
approach is applied for the learning. The conducted experiments
show that the accuracy of the models generated with both reg-
istration approaches lead to slightly more accurate segmentation
results compared to the MDL mesh.

The overall performance of ASMs for the task of kidney seg-
mentation was very good. The interaction with the algorithms is
rather simple and reduces to just placing a seed point as the desired
start position for segmentation. This leads to a high acceptance
among physicians using ASM based segmentation applications e.g.,
for perfusion analyses, size or volume measurements or to acquire
statistical information. Even if the contrast of the image at the organ
boundary is very low, which may happen if the kidney and the liver
are touching each other, the image search algorithm regularized by
the ASM is robust enough to handle these cases and does not leak
into adjacent tissue. Moreover, the image search algorithm is based
on a multi-level resolution approach that delivers a large attrac-
tion range even if the seed point is misplaced. The execution time
of a full segmentation run currently takes less than 1.5 min, which
may still fit into the time-frame of a physician’s examination with-
out causing unacceptable delay. Nonetheless, the accuracy of the
specific ASM depends on the statistical information of the training
data. The point correspondence problem therefore has to be solved
accurately. Parametric models to describe the shapes or mappings
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(a) First mode of variation.

(b) Second mode of variation.

Fig. 11. Deformation of
created with the CSSD regi
modes of variation.

om 20 training samples and
gures show the three major

into parametric spaces may sometimes be too restrictive. In case
of the kidneys, the concave parts pose the biggest problem for a
parametric mapping onto a sphere in order to solve the point cor-
respondences using an MDL formulation. Despite these structural
problems, the advantage of the MDL method is the opportunity
to optimize the location of the points in order to cover the most
statistical variation. This is not yet incorporated into the registra-
tion based approach, however, the resulting deformation fields in

the image domain already provide the necessary information to
estimate such a distribution.

6. Conclusion

The novel approach to solve the point correspondence problem
using a non-rigid, curvature-based image registration provides an
attractive alternative to MDL b niques. It leads to models
with higher segmentation accura considerably faster model
generation. In practice, the need f an established model
with new training data may easil

ed sample. Com-

to update the models rig
iments with thefiven MD%
to models with a¥ in
ization quality was
segmentations usg

gistration approach led
accuracy. The general-
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