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a b s t r a c t

Active shape models (ASMs) are widely used for applications in the field of image segmentation. Building
an ASM requires to determine point correspondences for input training data, which usually results in a
set of landmarks distributed according to the statistical variations. State-of-the-art methods solve this
problem by minimizing the description length of all landmarks using a parametric mapping of the target
shape (e.g. a sphere). In case of models composed of multiple sub-parts or highly non-convex shapes,
these techniques feature substantial drawbacks. This article proposes a novel technique for solving the
crucial correspondence problem using non-rigid image registration. Unlike existing approaches the new
method yields more detailed ASMs and does not require explicit or parametric formulations of the prob-
lem. Compared to other methods, the already built ASM can be updated with additional prior knowledge
in a very efficient manner. For this work, a training set of 3-D kidney pairs has been manually segmented
from 41 CT images of different patients and forms the basis for a clinical evaluation. The novel registration

cr
ipt
based approach is compared to an already established algorithm that uses a minimum description length
(MDL) formulation. The presented results indicate that the use of non-rigid image registration to solve
the point correspondence problem leads to improved ASMs and more accurate segmentation results. The
sensitivity could be increased by approximately 10%. Experiments to analyze the dependency on the user
initialization also show a higher sensitivity of 5–15%. The mean squared error of the segmentation results
and the ground truth manually classified data could also be reduced by 20–34% with respect to varying

les.
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. Introduction

The segmentation of medical images is an important prepro-
essing step for further medical analyses or diagnoses. Many
ifferent methods are used for the classification of struc-
ures or organs of interest, ranging from active shape models
ASMs) to region growing or level set segmentations. Due
o their inherent statistical regularization using prior knowl-
dge, ASMs are very robust to leaking problems if adjacent
mage structures are not clearly delineated from each other.
he core of ASMs is the statistical knowledge gained from
he variations in the shapes that are extracted from the

an
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raining input. Determining the correspondences between the
hapes is therefore a crucial aspect for the generation of the
ntire model. Errors made during this phase directly lead to
rong statistical values for the shape variation that has to be
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nown as exactly as possible to achieve a good regulariza-
ion.

A state-of-the-art solution consists of the optimization of the
inimum description length (MDL) measure between a set of

oints (landmarks) placed on a parametric surface onto which
ll training shapes are mapped. Although this technique allows
o process surface mesh representations of the training data with
otentially different numbers of vertices, finding a solution for the
roblem is highly complex and – even on newest hardware – may
e very time consuming. In fact, the procedure has to be rerun all
ver again if an existing model is updated with additional learning
ata. The mapping into the parametric space for the MDL optimiza-
ion may also pose a problem for some applications, e.g. if a suitable
ransformation cannot be found or if the objects highly deviate from
he parametric target space.
eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

From another perspective, the correspondence problem
etween the training shapes may also be regarded as an image reg-

stration task. Depending on the degrees of freedom of the spatial
ransform, the registration algorithm optimizes the match between
orresponding structures within multiple images. The main contri-
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utions of this article consist of introducing a non-rigid registration
tep into the ASM generation phase to solve the point correspon-
ence problem, formulating a suitable distance measure between
he training shapes and a comparison of the proposed approach
ith an already established MDL method. This article demonstrates

hat the proposed approach yields more detailed models and results
f high sensitivity that outperform a state-of-the-art MDL based
echnique.

. Related work

The clinical evaluation presented in this article focuses on the
pplication of the generated ASMs to kidney segmentation from CT
mages. The application is primarily used as a means for the com-
arison of different algorithms to solve the point correspondence
roblem, however, there is a clinical need for such a segmentation
ystem. Nephrologists are actually interested in some properties of
he kidneys, e.g. the size, volume or perfusion. In literature, several
pproaches towards kidney segmentations can be found that make
se of adaptive region-growing, knowledge-based or deformable
odels. The first class of algorithms is, for instance, described in

ohle and Tönnies [1]. They developed a region-growing algorithm
hat optimizes a homogeneity criterion automatically from char-
cteristics of the area to be segmented. Kobashi and Shapiro [2]
resent a knowledge-based recognition system that utilizes the

nformation about properties of the CT images and the anatomy.
he very popular deformable model approach has previously been
pplied to kidney imaging by Tsagaan and Shimizu [3,4]. Their pro-
osed method is based on a non-uniform rational B-spline surface
epresentation and prior knowledge about the shape of the organ,
.g. mean and variation, which is then incorporated into the objec-
ive function for the model fitting process as an additional energy
erm.

Compared to rather heuristic approaches like region growing
r threshold based segmentations that may easily leak into adja-
ent image structures, ASMs have been introduced by Cootes et
l. [5] to achieve a regularization using prior knowledge about the
tatistical variation of the target shape. ASMs may therefore yield
obust results also on images with low signal to noise ratio or at
lurry organ boundaries. The incorporation of information about
tatistical organ characteristics additionally addresses the problem
f segmenting structures from different patients. As introductory
entioned, the successful application of ASMs heavily depends on

he quality of the solution for the point correspondence problem
f the training data, which is the major challenge in the model
eneration phase. Difficulties arise from explicit representations
f the surfaces as meshes with potentially varying triangulations
r numbers of vertices. Davies et al. [6] published a description
f an automatic method for the construction of optimal 3-D sta-
istical shape models. The authors propose a technique to deduce
orrect point correspondences between different training shapes
y estimating a parameterization of each shape surface that is opti-
al according to the description length measure [7]. Unfortunately,

his technique does not establish dense and uniform correspon-
ences across the set of training shapes and may result in poor
odes of variation. Heimann et al. [8,9] address this drawback by

xtending a parametric re-meshing technique that ensures uni-
ormly distributed landmark positions across the training data. A

DL criterion is optimized to distribute point correspondences
ithin the parameter space to optimally describe the statistical

M
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ariations.
Taking the another direction and realizing the idea of image

egistration to solve the correspondence problem is challeng-
ng. The training data is usually acquired from different patients,

hich requires a non-rigid spatial transform with a large num-
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er of degrees of freedom. In order to incorporate inter-patient
hape variations, the applied registration algorithm has to estimate

non-rigid transform for each correspondence problem. Suit-
ble non-rigid registration approaches can mainly be divided into
arametric and non-parametric techniques. Parametric approaches

ncorporate an inherent regularization by the choice of the
arametric model, whereas non-parametric methods have to be
onstrained by additional regularization terms. Comprehensive
escriptions about this topic can be found, for instance, in the
orks of Modersitzki [10], Hermosillo et al. [11] or Clarenz et al.

12]. Among various non-rigid transformations, dense deformation
elds provide the largest flexibility regarding the spatial trans-

orm. They allow to specify a translation vector for each image
lement. In the following formulation this leads to a highly ill-
osed optimization problem that needs further regularization.
ischer and Modersitzki [13] proposed a curvature regularization
or the usage of their non-rigid technique within the field of med-
cal imaging. In the following sections, this non-rigid curvature
egularized image registration is incorporated into the ASM gen-
ration to compute the shape variations between the meshes of
he training set. The major steps of the proposed segmentation
ystem for the evaluation are depicted in Fig. 1. Note that this arti-
le focuses on a solution for the point correspondence problem
uring the model generation phase, which is accentuated in the
gure.

. Methods

The beginning of this section provides an overview of the main
rinciples of ASMs followed by a brief description of a well estab-

ished MDL criterion based approach. The core part of this section
eals with a novel registration based method for estimating the
oint correspondences.

.1. Basics of statistical shape models

The point distribution model by Cootes et al. [5] forms the
asis of an ASM that is built from a set of N training shapes.
ach shape is represented by n sampled surface points. For 3-D
ype problems, the components of their position vectors pk ∈R3,
= 1,. . ., n are used to create a representation for a single shape
as follows: first all the x-components of the n position vectors

k are given followed by all y-components and z-components, i.e.
= (p1,x, p2,x, . . . , pn−1,z, pn,z)T ∈R3n. Denoting the shape repre-

entations xi, i = 1, . . ., N, for the training set as column vectors, one
an obtain a landmark configuration matrix L = [x1x2. . .xN]. Apply-
ng a principal component analysis (PCA) to L yields the principal

odes of variation of the training data, i.e. the eigenvectors ej. The
utually orthogonal eigenvectors ej are sorted in descending order

f their respective eigenvalues �j. If the number of eigenvectors is
estricted to the vectors that belong to the T largest eigenvalues, a
inear combination of these T principal modes of variation with the

ean shape x̄ = 1
N

∑N
i=1xi spans the subset of shapes composed of

he given modes of variation. A new shape x* contained within this
ubspace can therefore be expressed by

∗ = x̄ +
T∑

i=1

eibi, (1)

sc
rip

t

eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

here bi ∈R is the weighting factor for the corresponding ith vari-
tion.

A very important precondition to solve the PCA for the matrix
is the knowledge about the corresponding points of the train-

ng shapes. These correspondences determine the order of the

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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Fig. 1. The proposed kidney segmentation system.

oint coordinates within the shape representations xi and also
heir dimensionality. It is therefore not possible to select points
hat occur only in a subset of the training shapes, which directly
eads to gaps in L. If the information about the location of
hese points is not given by construction, computing the bound-
ry conditions for the correspondences is a highly non-trivial
ask. Nonetheless, it is crucial for the quality of the resulting
SM.

.2. Description length

This section briefly describes an MDL criterion based method for
reating 3-D statistical shape models, which was first introduced by
avies et al. [7]. This MDL technique leads to a reformulation of the
oint correspondence problem to find an optimal mapping of each

M
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raining shape onto a sphere. This mapping is manipulated such
hat the description length of all points becomes a minimum. Thod-
erg [14] provides a simplified and more efficient version of the
DL approach that is based on a cost function F of the description
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ength for the generated model being defined as follows:

=
∑

m

Lm (2)

ith

m =
{

1 + log(�m/�cut) for �m ≥ �cut

�m/�cut for �m < �cut
(3)

here �m denotes an eigenvalue of L and m is the number of used
odes of variation. �cut specifies a free parameter that represents

he expected noise in the training data. Heimann et al. [8,9] made
se of Thodberg’s cost function F and extended the commonly
nown MDL approach by a procedure that modifies the landmark
ositions locally while trying to preserve already established cor-
espondences.

All of the mentioned MDL methods apply a mesh parameteri-
ation of the object to be segmented. They implicitly assume that
he target object can be topologically mapped onto a sphere. An
verview of various mesh parameterizations can, for instance, be
ound in [15]. The entire parameterization approach has previously
een described by Gu et al. [16] and adapted for the context of
edical image processing by Heimann et al. [8].
It is worth mentioning that the cost function F is defined within

he domain of the landmark points. Hence, the accuracy of the
ptimization correlates with the number of landmark points. Like-
ise, the more landmarks are used for the representation, the more
emanding the computation of the correspondences will be.

.3. Registration of shape models

There exist several equivalent ways of representing the shape of
n object. A shape may, for instance, be defined as a set of points
hat form a surface mesh, as it was discussed in the previous section.
r it can be described by a bi-valued function ˚ in a discrete image
omain ˝ that is specified by spatial sampling properties. Let ˝x

enote the image domain of the shape x, with ˝x ⊂ ˝. The corre-
ponding discrete representation of x within this image domain is
efined as a spatial region X ∈ ˝x with an appropriate resolution
nd size such that x ∈ ˝x. As X contains the discretization of x, ˚
ay be denoted as

: ˝ �→ {0, 1} (4)

here

(p) =
{

1, p ∈ ˝x

0, otherwise
, p ∈ ˝

ence, X may be regarded as a discrete binary image of the shape
. Let y denote a different shape and Y its corresponding repre-
entation in the image domain. The point correspondence problem
etween x and y can now be formulated as the problem of finding a
uitable spatial transform between X and Y that maps correspond-
ng structures onto each other. That means for every point pj ∈ ˝x a
orresponding point pk has to be found with pk ∈ ˝y. This is the clas-
ical image registration problem. The non-rigid registration used in
his work yields a dense deformation field u : ˝x �→ ˝y that pro-
ides a solution for the following point correspondence problem:

j − u(pj) = pk (5)

The transformation is represented as a spatial function u(p) that

sc
rip

t

eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

It is worth noticing that this formulation of the point corre-
pondence problem within the image domain does not require an
xplicit representation of an extracted shape. It can be applied
o both implicit and explicit segmentation results, whereas the

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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Fig. 2. The top row shows two shapes for a registration task. The bottom row illus-
trates on the left side a likely result with the standard SSD measure that minimizes
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reviously mentioned methods rely on an explicit surface repre-
entation. This is an advantageous property, since it allows to relate
hapes that are composed of several closed sub-shapes (e.g. as a
esult of an implicit level set segmentation). Commonly, the train-
ng data is usually acquired by a supervised segmentation of the
mages and stored either as an image or a surface mesh. Both rep-
esentations may be transformed into each other, however, some
ttention has to be paid to the discretization of the image domain
n order to avoid a loss of substantial structural information due to
ndersampling.

This article focuses on a regularized, non-parametric, non-rigid
egistration formulation based on the work of Fischer and Moder-
itzki [10] who proposed a framework which we will now briefly
ummarize. The registration problem can be stated as the search for
non-parametric mapping from one image domain into another,
sually referred to as reference R and template space T with their
orresponding image domains ˝R and ˝T. We will refer to the
eformation field between R and T simply as u. An objective func-
ion has to be formulated with respect to u which accounts for the
imilarity between R(p) and T(p − u(p)) with p ∈ ˝R. In an intensity
ased energy formulation, this similarity is expressed by a distance
easure D being explained later on, that is minimal if the mapping

ields the best result between the two images:

[R, T, u]
u−→ min (6)

In general, this problem is ill-posed and the solution may not
e unique or even continuous. An additional regularization term,
alled the smoother S, is introduced to address this drawback. With
n appropriate regularization it is now possible to penalize trans-
ormations that do not seem to be suitable for the given application.
ence, the overall registration problem is to find a spatial mapping
that minimizes the joint functional T:

rgmin
u

T(u) = argmin
u

∫
˝R

D[R, T, u](p) + ˛S[u](p) dp (7)

[u](p) = (�pu)2 =
(

∂2u

∂p2
x

+ ∂2u

∂p2
y

+ ∂2u

∂p2
z

)2

(8)

here the curvature term (8) weighted by the scalar ˛ ∈ IR deter-
ines the amount of regularization applied to the deformation, i.e.

t controls the smoothness of the resulting deformation field. The
arger the value for ˛, the more rigid the registration will be. The
ransform u defines a dense deformation field that assigns a trans-
ation vector to each element of the reference image. The nonlinear
ptimization of the objective functional (7) is driven by a suitable
istance measure. The calculus of variations is then applied to solve
he minimization problem. The functional T yields a global energy
nd a minimum is obtained when small changes in the solution u
o not increase the energy. This means that the Gâteaux derivative
dT[R, T, u], v〉 vanishes for all perturbations v. The weak form of
he global energy T is directly related to the Gâteaux derivative and
eads to the Euler–Lagrange equation:

[u](p) − f (p, u(p)) = 0, ∀p ∈ ˝ (9)

ith the matrix A being the discretized partial derivative opera-
or resulting from S and f the derivative of the distance measure,
lso called force. A solution of this semi-linear partial differential
quation fulfills the necessary condition for the minimization of T.

Computing a solution u for (7) usually involves three steps: (a)

M
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n initial placement that results in an overlap between the image
omains, (b) a rigid registration for rotational and translational
arts and (c) the non-rigid registration to solve the point corre-
pondence problem. In practice, there exist many possibilities for
n initial placement, for example the alignment using the center

t
a
i
p

ust the distance. On the contrary, the lower right image shows a result where the
urvature of the surfaces is incorporated into the distance measure. Here, the points
ith the most similar curvature are mapped onto each other and therefore, shape
roperties are incorporated into the mapping.

oints of the bounding boxes of the shapes or their centers of grav-
ty, just to name a few. Step (b) is primarily required if the initial
lignment has to be substantially improved in order to get a good
tarting point for the numerical optimization in (c).

Besides choosing the smoother and a numerical optimization
cheme, a crucial step of the shape registration approach is the
election of a suitable distance measure. Regarding the point corre-
pondence problem, the distance measure has to operate on binary
mages that represent the shapes in the image domain. Points on the
urface of the shapes have to be registered correctly and intrinsic
roperties (e.g. the curvature) have to be retained between cor-
esponding surface regions as closely as possible. As the image
omains are of the same modality and intensity, the straight for-
ard sum of squared differences (SSD) distance measure can be
sed. Its definition for a specific point in the image domain is pro-
ided in the following equation:

SSD[R, T, u](p) = 1
2 (T(p − u(p)) − R(p))2 (10)

A drawback of the SSD in the context of finding shape corre-
pondences is that it does not account for any surface properties.
n order to account for this information in addition, we therefore
ropose a novel extended form of the pure SSD distance measure.

t incorporates the surface property of the mean curvature of the
hape at a specific point as used by Sethian [17]:

(p) = −∇ · ∇˚(p)∣∣∇˚(p)
∣∣ , p ∈ ˝ (11)

The novel distance measure for the shape registration includes
oth the similarity between the discrete shape representations (10)
nd their surface curvature (12), abbreviated by CSSD:

CURV [R, T, u](p) = 1
2 (�T (p − u(p)) − �R(p))2 (12)

CSSD[ˇ] = (1 − ˇ)DSSD + ˇDCURV (13)

here �R(p) denotes the curvature of the reference image at
osition p ∈ ˝R and �T(p − u(p) the curvature of the template

mage at the mapped position, respectively. As depicted in Fig. 2,
he curvature extension results in a deformation field that maps
etween regions with corresponding surface properties. In con-
rast, optimizing the SSD distance alone results in the most efficient
eformation field with respect to the regularization energy. For
xample, a standard SSD approach might just smooth out a bulge
hile the CSSD would try to match it with a corresponding bulge
rst.

sc
rip

t

eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

It is worth noting for implementation purposes that the curva-
ure is calculated on the original (i.e. undeformed) template image
nd interpolated using the current deformation field within each
teration. Computing the curvature on the already deformed tem-
late image is incompatible with the objective of retaining surface

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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ig. 3. The registration scheme for a reference X1 and the remaining N − 1 training
hape images leads to N − 1 deformation fields that determine the point correspon-
ences. The direction of the deformation is always from the space of X1 to the target
hapes. This allows to map the surface x1 through the deformation fields later.

roperties. In practice, solving Eq. (11) can be very sensitive to noise
ue to the second order derivatives involved. Well known tech-
iques for low pass filtering, e.g. with a Gaussian kernel, help to
lleviate these problems. The derivatives should be computed by
nalytically derived versions of the corresponding filtering kernel
n order to reduce noise. However, the kernel width has to be chosen

ith care in order to retain the details of the shape.
The registration scheme for the point correspondence problem

s depicted in Fig. 3. X1 is used as the reference, which is succes-
ively registered with the remaining N − 1 shapes images of the
raining set. The resulting deformation field ui then specifies the
oint correspondences between the shapes X1 and Xi with i = 2,
. ., N. The registration problems have to be formulated so that
he shapes Xi are mapped onto X1. The shape X1 has to be chosen
arefully and ideally it should be close to the mean of the training
amples. As affine transformations are contained in the kernel of
he curvature regularization [13], initial rigid mis-alignments up
o a certain degree should be of no concern for the registration.

state-of-the-art multi resolution optimization strategy increases
he global character of the entire deformation. The influence of the
eference shape on the resulting ASM is therefore reduced. For the
onducted experiments of this article, choosing a reference shape
ust by looking at the smoothness of the surface (mean curvature)
orked fine for the registration of the entire training set.

Finally, the estimated solution for the point correspondence
roblem is incorporated into the ASM model generation by cre-
ting a registered matrix L. In Section 3.1 we briefly described how
his matrix is composed of the shape representations xi, i = 1, . . ., N.
owever, this implies that the correspondence problem is already

ncorporated into these point distributions on the surfaces. This
equirement can now be addressed by applying the deformation
elds to the point distribution of the reference shape x1. If only the

mage domain representation x1 is known, its explicit surface repre-
entation can be created using a suitable mesh extraction technique
e.g. the Marching Cubes algorithm [18]). The point corresponding
urface representations of the remaining set of training samples
an now be achieved by transforming x1 according to the non-rigid
eformation fields:

= [x1x2· · ·xN] (14)

ith

i = x1 ◦ ui, i = 2, . . . , N (15)

The operator ◦ denotes the interpolated application of the defor-

M
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ation field to the points of the surface representation x1. As
he point correspondences have been established for all training
amples using the novel registration approach, the PCA on the reg-
stered L can now be applied to compute the principal modes of
ariation.
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.4. Gray-level appearance model

Once the correspondence problem is properly solved the sta-
istical shape model can be generated incorporating the variations
een within the training data. The applied segmentation system
see Fig. 1) incorporates the gray-level appearance model intro-
uced by Cootes et al. [19] to establish a link between the shape
ariations and the intensities within the images. In this context, a
ierarchical multi-resolution approach is applied to improve the
fficiency and robustness of the search for the boundary of the
hape within the image space. Hence, it is necessary to examine
he gray values along the normal direction at each registered model
oint for all training samples and each level of the resolution hier-
rchy. The resulting vectors of gray values with intensity samples
long the positive and negative normal direction are normalized
ver all training samples to form a mean gray-level profile for each
odel point. A gray-level appearance model is thus given by the

ntensity distributions along the surface normals at the correspond-
ng points for all training shapes. One challenge during the ASM
egmentation is the spatial adaption of the model points to mini-
ize a distance criterion between the learned and the intensities

bserved at their current locations.

.5. Image search and segmentation

The gray-level appearance model is placed into the image
omain of the target object that is to be segmented by a user pro-
ided seed point. Usually, the model does not coincide with the
arget object due to variations between the patients and also the
lacements of the seed. Therefore, a displacement for each model
oint has to be estimated, that moves the surface of the model
owards the boundary of the target shape. This movement is cal-
ulated for each point given its trained gray-level profile and a new
ector of gray values computed for the current spatial location in
he image. The similarity between the jth element of the gray-level
ppearance model dj and its current observation oj is assumed to
e maximal if the model surface is located exactly at the bound-
ry of the shape. The Mahalanobis distance is used to measure this
imilarity:

(oj) = (oj − dj)
T
∑−1

j
(oj − dj) (16)

here
∑

j is the covariance matrix of the jth model profile. It can be
egarded as a distance measure that has to be minimized for each
bject location. The discrete displacement �j of the jth model point
or each iteration step has to minimize the Mahalanobis distance
16):

j = argmin
�̂j

D(o
j+�̂j

). (17)

As the observed gray-level profiles are computed only for a spe-
ific sampling range, the problem usually does not have a closed
orm solution. A nonlinear optimization scheme is applied in order
o adapt the model gradually to the shape of the new object. Within
ach iteration of the nonlinear optimization, the jth element of
he gray-level appearance model is displaced by �j along its nor-

al direction to minimize (16). A corresponding displacement is
alculated for each of the n points of the ASM. The nonlinear dis-
lacement of the model points minimizes (17), however, it does
ot incorporate the prior knowledge about the statistical variation
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ithin the training shapes. As a result, the displaced model has to be
apped back into the space that is spanned by the modes of varia-

ion (see also Eq. (1)). The linear part of this iteration step estimates
he pose and shape parameters of the model in a least-squares man-
er with respect to the training set variations, i.e. determining the

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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eighting factors for the eigenvectors. The computational details
f the least-squares update scheme can be found in Cootes and
aylor [20]. Various numerical schemes may be applied to solve
he nonlinear problem, for instance the first order gradient descent
lgorithm or higher order techniques like the quasi-Newton meth-
ds.

. Results

Three different algorithms to solve the point correspondence are
ompared to each other based on an evaluation using 3-D medical
mages. Each algorithm has been embedded into the described ASM
ramework. The medical data consists of 3-D abdominal CT images
f kidneys from 41 different patients of mixed gender and age. The
mages have been acquired using two different Siemens CT scan-
ers (Sensation 10 and Sensation 16) with a resolution in x/y/z from
.6/0.6/5 to 0.75/0.75/5 (in mm) and provided in Dicom format. The
olume sizes for the experiments range between 512 × 512 × 120
nd 512 × 512 × 300. In order to evaluate differences in the point
orrespondence algorithms, all 41 kidney pairs have been manu-
lly segmented and approved by a nephrologist. In all experiments,
he manual segmentation results are used as the gold standard. The
ntire set of labeled segmentation data is divided into two disjoint
arts: one set of varying size between 10 and 20 is used for the
raining of the ASM and the remaining one for testing.

The novel idea of using a non-rigid registration based algorithm
o solve the point correspondence problem (see 3.3) is compared
o an established MDL approach (see Section 3.2) from Heimann et
l. [8]. For the non-rigid registration, two distance measures are
pplied: a straight-forward SSD criterion-based implementation
sing (10) and the novel surface curvature extended SSD (13). In
he following text, we will refer to the resulting ASMs as MDL, SSD
nd CSSD. All ASMs have been created on the same training sets and
valuated on the same test data with equal initialization parame-
ers. Table 1 provides a brief description of the properties for the

DL approach for one side of the kidney pairs. For the other two
ethods the surface mesh for x1 has been extracted from X1 with

000 vertices using the Marching Cubes algorithm. The resulting
SM therefore consists of 2000 vertices, as well.

.1. Methods of evaluation

The evaluation of the ASMs for the segmentation of kidneys is
ased on the comparison with the gold standard. The differences to
he optimal segmentations are measured with respect to the gen-
ralization of the model and the error to the gold standard. The
eneralization assessment yields information about the ability of
he model to adapt to a new shape that deviates from the train-
ng data. This depends on both the number of used eigenvectors
nd the diversity of variations within the training samples. A set of
odels with different numbers of training samples is constructed
ith all three approaches. A series of leave-one-out cross valida-

an
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ions on the testing data is used to measure the distance to the gold
tandard using two measures: the mean squared error (MSE) and
he sensitivity.

The MSE is used to estimate the error between the segmenta-
ion result of the ASM and the corresponding gold standard. This

able 1
haracteristics of the clinical datasets for one side of the kidney pairs used for the
DL approach.

ean radius in voxels 22
umber of samples 41
ample complexity for the MDL (# vertices) 2000–3000
odel complexity for the MDL (# landmarks) 2562
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easure depends on the resolution that is used for the discretiza-
ion. Therefore, the same image parameters have been applied that
ere used for the manual segmentation to achieve the gold stan-
ard (i.e. the same image resolution, size, position and orientation).

n the following formula, this is simply denoted by the domain ˝:

SE[X, Y ] = 1
|˝|

∫
˝

(X(p) − Y (p))2 dp (18)

ere, X and Y are the image domain representations of two seg-
ented shapes x1 and y. X is always a gold standard segmentation

nd the second input is the result from the corresponding model.
The sensitivity is used as the second evaluation criterion, which

s defined by

.E. = TP
TP + FN

(19)

here TP is the number of true positives and FN the number of
alse negatives. In our case, TP is given by the number of voxels that
re segmented consistently as kidney tissue both by the specific
SM and within the gold standard. FN is the number of voxels that
ave been falsely classified as background. The sensitivity is used
o measure the conditional probability that the given shape model
as classified kidney structure that actually belongs to the kidney
ccording to the gold standard. Therefore, this measurement states
ow well the shape model generalizes to new kidneys that are not
ontained within the training set.

In literature, the specificity is often used as an additional cri-
erion for quantifying segmentation results. In practice, however,
here is a problem with this particular measure, due to a normal-
zation issue: if the background of a segmented shape is arbitrarily
nlarged, the specificity values can be driven close to 1.0. This is due
o the fact that background voxels are usually recognized as lying
utside the structure anyway. For this reason, the specificity is not
sed as a criterion in our evaluation.

.2. Experimental results

This section presents the segmentation results for the gener-
ted ASMs. All experiments have been performed on a Pentium
, 2.8 GHz with 2 GB of main memory. A single registration for
oth the SSD and CSSD approach took approximately 8 min on the
iven hardware. The complete registration for the largest train-
ng set with 20 kidneys took approximately 170 min, compared
o 16–20 h using the MDL approach. The runtimes refer to a non-
ptimized implementation of the algorithms and are only used as
rough indication of the efficiency of the ASM generation algo-

ithms. As several tasks may be performed in parallel, further
mprovements can be achieved by utilizing multi-core processor
rchitectures or graphics hardware. Since the presented segmen-
ation system (see Fig. 1) has been initialized by a seed point, the
xperimental phase was divided into two parts. The ASMs have
rstly been tested for sensitivity according to varying seed point

ocations on one test sample volume. Secondly, the seed points
ere placed ideally into the center of gravity of the correspond-

ng test images in order to analyze the models with respect to a
arger test set and different numbers of training shapes. The train-
ng and test samples, as well as the parameters for the ASM, were
he same for all three models throughout the corresponding exper-
ment. As mentioned in Section 3.4, a multi-resolution technique
as been applied to increase the attraction range for the optimiza-
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ion and the efficiency. The numerical convergence criterion for
ach level of detail is based on the variation of the MSE of the
hape between two subsequent iterations. In general, the image
earch algorithm converged in less than 30 s, where at most 70
terations in each level were allowed. Analyzing the results, 30 iter-

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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Table 2
Results of a left kidney segmentation for 13 different starting positions around
the point (78.67 ± 3.58/−140.70 ± 1.98/−318 ± 4.14) using the MDL, SSD and CSSD
methods for the generation of the ASM based on 20 training samples.

Initialization sensitivity—left kidney
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Fig. 4. Comparison of the three different ASMs based on 10 and 20 training sam-
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= 20 MDL SSD CSSD

.E. 0.67 ± 0.12 0.94 ± 0.02 0.95 ± 0.01
SE 100,490 ± 33,599 22,991 ± 3545 22,835 ± 3046

tions for one level were generally sufficient to achieve numerical
onvergence.

.2.1. Sensitivity to seed point variations
As the ASM segmentation relies on a manually specified seed

oint, a series of tests has been applied to evaluate the robust-
ess of this initialization. The proposed ASMs are evaluated for
arious seed positions with respect to the MSE (18) and the sen-
itivity (19). The modes of variation have been chosen to cover
9.9% of the training set. 13 different positions for the seed point
ave been chosen to reflect typical user inputs. From the test set,
ne left and right kidney were chosen for this experiment. Results
or the left and right kidney ASMs generated from 20 training
amples are presented in Tables 2 and 3. As can be seen, the registra-
ion approaches yield better results compared to the MDL method,
ith a slight improvement with the curvature extension. Accord-

ng to these experiments, the models generated by the registration
pproach are less sensitive to variations in the seed points. For
he right kidney model, the sensitivity results were additionally
ompared between a learning set size of 10 and 20. The values for
he sensitivity presented in Table 3 between the different size of
he training set are also illustrated in Fig. 4. The generalization
bility of the models clearly benefits from a larger training set.
egarding the relative increase in performance due to a larger set
f training shapes, the registration approaches seem to exploit the
earning data more efficiently than the MDL model. Fig. 5 shows
n example from the test set used to generate the results for vary-
ng seed locations. It illustrates the progress on one slice through
he volume during the segmentation of a right kidney using the
SSD model trained with 20 samples. The figures show the ini-
ial placement of the mean shape, intermediate results after 10
nd 20 iterations and the finally converged segmentation. Fig. 6
resents a 3-D visualization of the corresponding segmentation
esult. n
Please cite this article in press as: Spiegel M, et al. Segmentation of kidn
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.2.2. Cross validation segmentation results
In the second part of the experimental results, the 41 kidney

airs have been divided into two disjoint groups using a cross vali-
ation strategy. Each method for the model generation has been
sed to generate ASMs from 7, 10, 15 and 20 different training

able 3
esults corresponding to table\reftab:20left for a right kidney segmentation.

nitialization sensitivity—right kidney

= 10 MDL SSD CSSD

.E. 0.69 ± 0.18 0.74 ± 0.13 0.74 ± 0.12
SE 79,330 ± 44,930 61,064 ± 33,263 60,084 ± 33,043

= 20 MDL SSD CSSD

.E. 0.77 ± 0.15 0.91 ± 0.01 0.91 ± 0.01
SE 54,680 ± 37,344 13,866 ± 2159 13,501 ± 1098

he starting positions varied around the point (−77.62 ± 3.04/−
48.89 ± 1.98/−330.19 ± 4.14). In addition to the results for the training set of
0 samples, the sensitivity values for the ASMs generated from 10 samples are
resented, as well.
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les for varying starting positions in a right kidney. The graph reflects the results
f Table 3. The registration approaches seem to have an increased generalization
enefit from a larger training set than the MDL model.

amples. The remaining samples have been used as the test set.
onsidering the MDL, SSD and CSSD approaches, this results in a
otal of 12 models. Compared to the previous tests where the initial
lacement was varied, the seed point is now automatically placed

nto the center of gravity of the gold standard segmentation of the
orresponding test sample. This initializes the image search and
egmentation phase (see also Fig. 1) in an equal manner for all
ompared models.

Figs. 7 and 8 show graphs of the sensitivity and the MSE for mod-
ls from different numbers of training samples. The corresponding
umerical values for each data point are given in the Table 4. It is
lear from these results that the ability of an ASM in general to adapt
o a new shape depends on the number of training samples used
or its creation. The graphs show that both registration approaches
eliver better results for models trained with 10 or more samples.

n the case of seven training samples, the SSD distance measure
erforms better than its competitors. However, for 10 or more mod-
ls, the values for the CSSD approach lead to better results. The
raph in Fig. 8 illustrates that the MSE made with the models cre-
ted using the registration approaches is smaller for all numbers of
raining samples. Considering ASMs trained with 10, 15 or 20 train-
ng samples, the MSE values decrease almost linearly for SSD and
SSD, whereas it seems that the MDL mesh is not capable of further
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mprovements with more learning data. One reason for this effect
ay become clearer by comparing the mean shapes between the

SSD and the MDL models created from 20 samples. Fig. 9 illustrates
hat the CSSD model provides more morphological detail on con-

able 4
ensitivity and MSE of the models with respect to varying numbers of training
amples for the ASM generation.

MDL SSD CSSD

ensitivity
7 0.8 0.81 0.78
10 0.88 0.9 0.92
15 0.89 0.92 0.92
20 0.88 0.91 0.91

SE
7 40,037 26,366 31,930
10 18,892 15,883 15,162
15 16,955 13,425 13,357
20 19,820 12,635 13,043

dx.doi.org/10.1016/j.compmedimag.2008.10.002
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Fig. 5. Iterative segmentation progress of a right kidney using an ASM built with the novel registration approach using the curvature extension. The image sequence illustrates
the advances during the optimization: the initial placement of the mean shape for the provided seed point, two intermediate results during the iteration (10 and 20 iterations)
and the result after numerical convergence (30 iterations).

Fig. 6. 3-D view of the segmentation result depicted in Fig. 5. The purple colored
image region indicates the segmentation result.

Fig. 7. A comparison of the sensitivity for the MDL, SSD and CSSD model generated
by a different number of training samples. For 10 or more training samples, both
registration approaches yield better results on the test data than the model created
with MDL point correspondences.
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ig. 8. The MSE for the three compared model with respect to the number of training
amples. Again, the registration approaches outperform the MDL approach in terms
f registration accuracy.

ave parts of the surface compared to the MDL approach. Although
he surface of the MDL model features the same number of ver-
ices, the distribution of points on the surface of the CSSD model
eads to a better representation of the surface properties of the kid-
eys. The higher detail of the registration based meshes and the
esulting accuracy in concave areas is visualized in Fig. 10, which
hows a comparison between CSSD and MDL for a typical segmen-
ation result from the test set. Here, the displayed surface outlines
he corresponding gold standard segmentation. The colors indicate
he distance between the ASM segmentation to the gold standard
iven in mm. The registration approach features a higher accuracy
t detailed surface structures. The resolution of the MDL mesh is
uch coarser at concave surface areas, for example at areas around

he renal hilus, which leads to larger errors.
To get an impression of the statistical information contained
Please cite this article in press as: Spiegel M, et al. Segmentation of kidn
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ithin the training samples, Fig. 11 illustrates the variations along
he three most significant principal modes. The model has been
reated from 20 training samples using the CSSD approach.

ig. 9. A comparison of the mean shapes between the CSSD and the MDL models
reated from 20 training samples. Left: CSSD registration approach model. Right:
DL model.
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ig. 10. Distance from the surface of a gold standard kidney within the test set to the
esulting segmentations of with the CSSD (left) and the MDL model (right) trained
ith 20 samples. The colors indicate the distance in mm between the closest points

n the corresponding surface meshes.

. Discussion

A novel approach has been presented to solve the point cor-
espondence problem between the training samples for an ASM
egmentation by the application of non-rigid image registration
echniques. For comparison, an already established method using
n MDL criterion for this task has been applied. Results have
een presented for the automatic segmentation of kidneys from
T images. Compared to an already established MDL method, the
egistration based solution for the correspondence problem not
nly allows to include more surface detail within the model itself,
ut it also provides the ability to easily update the model with
ew training samples. In comparison, the objective function for
he MDL formulation contains dependencies to all model points,
hich leads to a high computation effort if new training data has to

e incorporated. This effort is drastically reduced if the registration
pproach is applied for the learning. The conducted experiments
how that the accuracy of the models generated with both reg-
stration approaches lead to slightly more accurate segmentation
esults compared to the MDL mesh.

The overall performance of ASMs for the task of kidney seg-
entation was very good. The interaction with the algorithms is

ather simple and reduces to just placing a seed point as the desired
tart position for segmentation. This leads to a high acceptance
mong physicians using ASM based segmentation applications e.g.,
or perfusion analyses, size or volume measurements or to acquire
tatistical information. Even if the contrast of the image at the organ
oundary is very low, which may happen if the kidney and the liver
re touching each other, the image search algorithm regularized by
he ASM is robust enough to handle these cases and does not leak
nto adjacent tissue. Moreover, the image search algorithm is based
n a multi-level resolution approach that delivers a large attrac-
ion range even if the seed point is misplaced. The execution time
f a full segmentation run currently takes less than 1.5 min, which
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ay still fit into the time-frame of a physician’s examination with-
ut causing unacceptable delay. Nonetheless, the accuracy of the
pecific ASM depends on the statistical information of the training
ata. The point correspondence problem therefore has to be solved
ccurately. Parametric models to describe the shapes or mappings
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ig. 11. Deformation of a kidney mean model shape from 20 training samples and
reated with the CSSD registration approach. The figures show the three major
odes of variation.

nto parametric spaces may sometimes be too restrictive. In case
f the kidneys, the concave parts pose the biggest problem for a
arametric mapping onto a sphere in order to solve the point cor-

M
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espondences using an MDL formulation. Despite these structural
roblems, the advantage of the MDL method is the opportunity
o optimize the location of the points in order to cover the most
tatistical variation. This is not yet incorporated into the registra-
ion based approach, however, the resulting deformation fields in

[

[
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he image domain already provide the necessary information to
stimate such a distribution.

. Conclusion

The novel approach to solve the point correspondence problem
sing a non-rigid, curvature-based image registration provides an
ttractive alternative to MDL based techniques. It leads to models
ith higher segmentation accuracy and a considerably faster model

eneration. In practice, the need for updating an established model
ith new training data may easily be met, as the proposed approach

nly requires one additional registration per added sample. Com-
ared to the relatively time consuming MDL methods, this allows
o update the models right within a clinical workflow. In the exper-
ments with the given MDL software, the registration approach led
o models with an increased segmentation accuracy. The general-
zation quality was also shown in comparisons to gold standard
egmentations using a cross validation comparison.

cknowledgements

The authors would like to thank Dr. med. R. Zeltner (Medical
linic IV—Nephrology and Hypertensiology, FAU) for his medi-
al advice and for helping to manually segment the kidneys. The
uthors are also thankful to HipGraphics for providing the vol-
me rendering software InSpace and Tobias Heimann (German
ancer Research Center Heidelberg) for supplying the software

rom his segmentation workshop [21] to solve the point corre-
pondence problem based on the MDL. Our special thanks go to
rof. E. Angelopoulou (Chair of Pattern Recognition, FAU) for exten-
ive proof-readings and helpful suggestions. The authors gratefully
cknowledge funding of the Erlangen Graduate School in Advanced
ptical Technologies (SAOT) by the German National Science Foun-
ation (DFG) in the framework of the excellence initiative.

eferences

[1] Pohle R, Tönnies KD. A new approach for model-based adaptive region growing
in medical image analysis. In: Skarbek W, editor. CAIP, vol. 2124 of lecture notes
in computer science. Springer; 2001. p. 238–46.

[2] Kobashi L, Shapiro M. Knowledge-based organ identification from CT images.
In: Loew M, editor. Proceedings of SPIE on medical imaging, vol. 1652. 1992. p.
544–54.

[3] Tsagaan B, Shimizu A, Kobatake H, Kunihisa M, Hanzawa Y. Segmentation of kid-
ney by using a deformable model. In: ICIP: international conference on image
processing, Part 3. 2001. p. 1059–62.

[4] Tsagaan B, Shimizu A, Kobatake H, Miyakawa K. An automated segmentation
method of kidney using statistical information. In: MICCAI ‘02: proceedings of
the 5th international conference on medical image computing and computer-
assisted intervention—Part I. 2002. p. 556–63.

[5] Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models—their training
and application. Computer Vision and Image Understanding 1995;61(1):38–59.

[6] Davies R, Twining C, Cootes T, Waterton J, Taylor C. 3D statistical shape models
using direct optimisation of description length. In: European conference on
computer vision, vol. 3; 2002. p. 3–20.

[7] Davies R, Twining C, Cootes T, Waterton J, Taylor C. A minimum description
length approach to statistical shape modelling. IEEE Transactions on Medical
Imaging 2002;21(5):525–37.

[8] Heimann T, Wolf I, Williams T, Meinzer H. 3D active shape models using gra-
dient descent optimization of description length. In: Christensen GE, Sonka M,
editors. IPMI, vol. 3565 of lecture notes in computer science. Springer; 2005. p.
566–77.

[9] Heimann T, Wolf I, Williams T, Meinzer H. Optimal landmark distributions for
statistical shape model construction. In: Reinhardt J, Pluim J, editors. Proceed-
ings of SPIE on medical imaging, vol. 6144. 2006. p. 518–28.

10] Modersitzki J. Numerical methods for image registration. Oxford: Oxford Uni-
versity Press; 2004.

sc
rip

t

eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

11] Hermosillo G, Chefd’Hotel C, Faugeras O. Variational methods for multimodal
image matching. International Journal of Computer Vision 2002;50(3):329–43.

12] Clarenz U, Droske M, Henn S, Rumpf M, Witsch K. Computational methods for
nonlinear image registration. In: Scherzer O, editor. Mathematical method for
registration and applications to medical imaging, mathematics in industry, vol.
10. 2006. p. 81–101.

dx.doi.org/10.1016/j.compmedimag.2008.10.002


 ING Model
C

l Imag

[

[

[

[

[

[

[

[

[

M
2
N
p
H
t
b
t
n

D
d
s
D
m
t
o

V
d
h
d
P
a

J
s
p
s

J
(
U
l
s
1
t

ARTICLEMIG-882; No. of Pages 11

M. Spiegel et al. / Computerized Medica

13] Fischer B, Modersitzki J. A unified approach to fast image registration and a
new curvature based registration technique. Linear Algebra and its Applications
2004;380:107–24.

14] Thodberg HH. Minimum description length shape and appearance models. In:
Taylor CJ, Noble JA, editors. IPMI, vol. 2732 of lecture notes in computer science.
Springer; 2003. p. 51–62.

15] Floater MS, Hormann K. Surface parameterization: a tutorial and survey. In:
Dodgson NA, Floater MS, Sabin MA, editors. Advances in multiresolution for
geometric modelling. Springer-Verlag; 2005. p. 157–86.

16] Gu X, Wang Y, Chan T, Thompson P, Yau S. Genus zero surface conformal map-
ping and its application to brain surface mapping. IEEE Transactions on Medical
Imaging 2004;23(8):949–58.

17] Sethian JA. Level set methods and fast marching methods. Cambridge University
Press; 1999.

18] William EL, Harvey EC. Marching cubes: a high resolution 3D surface construc-
tion algorithm. Computer Graphics 1987;21(4):163–9.

19] Cootes TF, Hill A, Taylor CJ, Haslam J. The use of active shape models for locating
structures in medical images. Image and Vision Computing 1994;12(6):355–66.

20] Cootes T, Taylor C. Statistical models of appearance for computer vision. Tech.
Rep., Imaging Science and Biomedical Engineering, University of Manchester;
March 2004.

21] Heimann T, Oguz I, Wolf I, Styner M, Meinzer H. Implementing the automatic
generation of 3D statistical shape models with ITK. In: IJ-MICCAI open science
workshop; 2006.

artin Spiegel was born in Ingolstadt, Germany, in 1981. Between 2002 and
007 he studied computer science at the Friedrich-Alexander University Erlangen-
uremberg (FAU) with main subjects in pattern recognition and medical image
Please cite this article in press as: Spiegel M, et al. Segmentation of kidn
non-rigid image registration. Comput Med Imaging Graph (2008), doi:10.1

rocessing. Currently, he is working on his Ph.D. thesis in collaboration with Siemens
ealthcare Sector, the department of neuroradiology Erlangen and the Chair of Pat-

ern Recognition of Prof. Dr.-Ing. J. Hornegger concerning vessel segmentation and
lood flow simulations. His research interests focus on model-based segmentation
echniques, mesh generation methods and blood flow simulations in the field of
euroradiology.

w
l
a
i
o
m

M
an

u

 PRESS
ing and Graphics xxx (2008) xxx–xxx 11

ieter A. Hahn was born in Kronach, Germany, in 1979. He received his diploma
egree in computer science at the FAU in 2005. Since 2005 he is working as a Ph.D.
tudent for Prof. Dr.-Ing. J. Hornegger at the Chair of Pattern Recognition at the
epartment of Computer Science of the FAU. His research interests besides general
edical image processing include in particular image registration and segmenta-

ion. He currently works in collaboration with the Clinics of Nuclear Medicine (FAU)
n multi modal image processing techniques for CT, MR and SPECT images.

olker Daum was born in Bavaria, Germany in 1978. In 2004 he received his diploma
egree in computer science at the FAU. From 2004 to 2006 he worked at the Fraun-
ofer Institute IIS in Erlangen-Tennenlohe. Since 2006 he is pursuing his doctoral
egree in Computer Science at the Chair of Pattern Recognition (FAU) as a Max-
lanck fellow. His research interests in the field of medical imaging include rigid
nd nonrigid registration, as well as variational techniques for image processing.

akob Wasza was born in Munich, Germany, in 1982. Since 2003 he studies computer
cience at the FAU with major interest in pattern recognition and medical image
rocessing. His student thesis was focusing on the application of registration for
hape model generation.

oachim Hornegger graduated in Theoretical Computer Science/Mathematics
1992) and received his Ph.D. degree in Applied Computer Science (1996) at the
niversity of Erlangen-Nuremberg (Germany). His Ph.D. thesis was on statistical

earning, recognition and pose estimation of 3D objects. Joachim was a visiting
cholar and lecturer at Stanford University (Stanford, CA, USA) in the academic year
997/98, and a visiting professor at Stanford’s Radiological Science Lab (RSL) in win-
er 2007/2008. In 1998 he joined Siemens Medical Solutions Inc. where he was

ipt
eys using a new active shape model generation technique based on
016/j.compmedimag.2008.10.002

orking on 3D angiography. In parallel to his responsibilities in industry he was a
ecturer at the Universities of Erlangen (1998–1999), Eichstaett–Ingolstadt (2000),
nd Mannheim (2000–2003). In 2003 Joachim became Professor of Medical Imag-
ng Processing at the FAU and since 2005 he is a chaired professor heading the Chair
f Pattern Recognition. His main research topics are currently pattern recognition
ethods in medicine and sports.sc

r

dx.doi.org/10.1016/j.compmedimag.2008.10.002

	Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration
	Introduction
	Related work
	Methods
	Basics of statistical shape models
	Description length
	Registration of shape models
	Gray-level appearance model
	Image search and segmentation

	Results
	Methods of evaluation
	Experimental results
	Sensitivity to seed point variations
	Cross validation segmentation results


	Discussion
	Conclusion
	Acknowledgements
	Reference


