Corner Detection

We are interested in corner points of an image, rather than edge information.

- 1. Implement the Kanade-Tomasi/Shi-Tomasi Corner Detector.
 - Sobel Gradient
 - **Structure Tensor** Compute the structure tensor A(x, y) for each image point of an area of $n \times n$:

$$A(x,y) = \sum_{u=-n/2}^{n/2} \sum_{v=-n/2}^{n/2} \begin{bmatrix} I_x(x+u,y+v)^2 & I_x(x+u,y+v)I_y(x+u,y+v) \\ I_x(x+u,y+v)I_y(x+u,y+v) & I_y(x+u,y+v)^2 \end{bmatrix}$$

Compute a horizontal I_x and a vertical gradient image I_y using the *Sobel* filter masks.

- Kanade-Tomasi/Shi-Tomasi Corner Detection
 Compute the eigenvalues λ₁ and λ₂ of A(x, y). Mark (x, y) in the original image (use a circle or cross) if min(λ₁, λ₂) > t_c, where t_c is the threshold for corner detection.
 Put all corner candidates with λ₁>threshold in a list. Sort it by λ₁. Go through the list and remove all candidates in an m×m neighborhood from the list. Then remove the current value from the list and continue until the list is empty.
- 2. Discuss alternatives for corner detection.