

FACULTY OF ENGINEERING

Segmentation of the paper structure in historical prints

Master research project (5 ECTS)

Paper structure

- In the early modern period, paper was still scooped by hand
- Thus, analyzing the paper structure of historical documents can reveal information about the origin of the prints

Orange lines: warp wires

Image source: H-4763, Germanisches Nationalmuseum Nürnberg

Task

- Automatically segment the warp wires in the paper structure
- Compute some statistics regarding the lines (e.g. varying distance between the wires)
- Implementation in Python
- Master research project (5 ECTS)
- In cooperation with the Germanisches Nationalmuseum and TH Köln

Contact: Aline Sindel Room 10.138 aline.sindel@fau.de

FACULTY OF ENGINEERING

Computer Vision Project Assignments

Jul 22nd 2019

André Aichert Pattern Recognition Lab (CS 5) Friedrich-Alexander-Universität-Erlangen-Nürnberg

FACULTY OF ENGINEERING

Bundle-Adjustment for Calibration of FD-CT Scanners.

Multiple View Geometry in Computer Vision

Richard Hartley and Andrew Zisserman Cambridge University Press, March 2004.

Step 1: Factorization

- Factorization: Recover geometry AND projection
 - \rightarrow Given a set of images with the same points
 - \rightarrow Without additional information
 - \rightarrow Up to a single 3D projective transformtion
 - Optional: Stratification
 - → Add knowledge: angles
 - \rightarrow Undistort projective solution

Step 2: Bundle Adjustment

- Recover geometry AND projection
 - \rightarrow Given initial guess of projection and points
 - \rightarrow Determine optimal metric reconstruction and projection
 - \rightarrow Application: Computed tomography scanner calibration.

Topics

Compressing PHOC-like representations

- PHOC-like: An vector representation of a string that can be generated from word-images
- Can we compress them? Will standard compression techniques work?
- Do they preserve their their joint image-string searchability

Contact: anguelos.nikolaou@fau.de

ECTS: 5/10/MT (depends)

Deep regular expressions

- Regular expressions are easily compiled to NFA (Non-discrete Finite-state Automata)
- Typically regular expression engines are implemented by compiling NFA to larger DFA (Discrete Finite-state Automata)
- Can we work directly on NFA?
- Can we use it on top of a Deep Neural Network?
- What are the benefits?

Contact: anguelos.nikolaou@fau.de

ECTS: 5/10/MT (depends)

Decomposing 2D Convolutions

- 2D Convolutions complexity: N^2
- Two consecutive 1D Convolutions complexity N*2
- How much do we lose if we train on 2D and do inference on 2x1D?
- How much do we lose if we train on 2x1D and do inference on 2x1D?

Contact: anguelos.nikolaou@fau.de

ECTS: 5

Industrial Segmentation

5 / 10 ECTS Research/Master Project Contact: vincent.christlein@fau.de

Powertrain Solutions | PS/MFT-LBW TEF1.25 | 2019-03-25 © Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Procedure for metallographic grinding:

BOSCH

Computer Vision Task on Laser Welds

- Segmentation of the joint into joining partner and welding seam
- Dimensioning the seam at selected points
- Structure of a learning process using the example of one or two welding seams
- Representation of the detection reliability

Advanced Pooling

- Implementation and evaluation of advanced pooling techniques (e.g. alpha pooling, etc.)
- 5 ECTS
- Contact: <u>vincent.christlein@fau.de</u>
- Implementation in pytorch

Improved Binarization

 Content integration for binarization based on U-Net variation for binarization

- 5 ECTS
- Contact: vincent.christlein@fau.de
- Implementation in pytorch

Office for of Maryland day any thing this fore a

Keyword Spotting in Orca Sighting Journals

Family-ID

- HTR-based Keywpord Spotting
- Extract Date and Orca Family

- 5/10 ECTS Project / MT
- Contact: <u>vincent.christlein@fau.de</u>
- Implementation in pytorch

Vincent Christlein, vincent.christlein@fau.de

INTERNATIONAL AUDIO LABORATORIES ERLANGEN A joint institution of Fraunhofer IIS and Universität Erlangen-Nürnberg

DNN Optimization in Audio

Axel Plinge

DNN Optimization in Audio Motivation

- Training DNNs requires Graphical Processing Units (GPUs)
- They still need considerable resources (energy) at run-time
- Applications should run on embedded devices in real-time!
- It can be done: AlexNet (244MB) → SqueezeNet (5MB)

[I16] Iandola, F. N., Moskewicz, M. W., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size" <u>arXiv</u> 1602.07360

DNN Optimization in Audio Fraunhofer IIS

- Fraunhofer IIS in Erlangen is the "home of mp3"
- 250+ employees working on audio, video, multimedia, virtual reality and more

Prof. Dr. ir. Emanuël Habets, Dr.-Ing. Axel Plinge

DNN Optimization, Slide 3

DNN Optimization in Audio Master Thesis Topics

We want YOU to optimize our Applications!

Apply, investigate and develop state-of-the-art deep compression methods to one of the following:

- i. Speaker localization with microphone arrays & CNN
- ii. Speech separation using (B-)LSTM
- iii. Language modelling by RNN for natural language interfaces
- iv. Speaker verification with ResNet-like architecture

[H15] S. Han, H. Mao, et al., 2015, "Deep Compression: Compressing Deep Neural Networks with Pruning, trained Quantization and Huffman coding." ArXiv:1510.00149

FACULTY OF ENGINEERING

Multi-frame superresolution for defect detection on solar cells

Master project

Idea

- Low-resolution-images of solar modules
 high resolution images
- Enables detection of more defects

Caught you attention?

- Implement a classic CV pipeline
- Have **fun coding** C++ and CUDA ۲
- Method is known to work •

Contact: Mathis Hoffmann (09.153) mathis.hoffmann@fau.de

Quality Control of Solarparks -Failure detection and analysis using statistical methods

Thema – Projektarbeit – Bachelorarbeit - Masterarbeit

Mai 2019 ||| Dr.-Ing. Claudia Buerhop ||| High Throughput Methods in Photovoltaics

Quality control of solarparks

Inspection using imaging techniques, e.g. thermography

benefit:

Fast

Contactless – without operation interruption During real operating conditions – during sunshine Quality check on module level

Predicting the power the basing on IR-images is advantageous because time-consuming electrical measurements are avoided and no operating interruption is necessary.

Task:

- detection of thermal anomalies
- Identification of malperforming PV-modules inbetween mostly well-performing PV-modules
- Prediction of the module power basing on IR-images

TODOs:

- Machine learning techniques for power prediction, deep learning
- Processing the recorded IR-movies and -images of PV-systems recorded at field conditions
- Training a deep learning model on modules with known power
- Ensuring that it generalizes to unknown data under varying conditions

FACULTY OF ENGINEERING

Stitching of solar modules

Master project

PRIDERICS PRIDER

Idea

- Partial views of a solar module
- Obtain a higher resolution per cell

image of the complete module

Steps

- Detection:
 - Extend existing module detection pipeline
 - Alternatively: Code your own
- Match keypoints between images
- Compute stitched image

Caught you attention?

- Find a creative solution
- Code in whatever language you prefer
- Get 5-10 ECTS

Contact:

Mathis Hoffmann (09.153) mathis.hoffmann@fau.de

FACULTY OF ENGINEERING

Understanding the structure / geometry in art images

Masters' project (10 ECTS)

May 28, 2019

Idea

- Using the **gaze** and **pose** estimates, find the underlying structure within paintings.
- In the below shown two images, the left image is the input, while the right image is the expected output.

Steps

- Gaze Detection in Art images
- Pose Estimation in Art images
- Combine the information from the above two steps to suggest the **underlying structure** within a paiting.
- Programming skills required : python (preferrably)

Did you find it interesting?

Contact : Prathmesh Madhu (09.156) Email : prathmesh.madhu@fau.de

FACULTY OF ENGINEERING

Adversarial Examples for Emotion Analysis

Research Project (Bachelor/Master) 5/10 ECTS

Computer Vision Group, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg

Motivation

Can we generate realistic images that can elicit emotions like real images, with people as the main object of interest? ¹

(a) Image depicting the emotions: *Pleasure and Happiness*

(b) Adversarial Image that should show similar emotions...

¹Song, Yang, et al. "Constructing unrestricted adversarial examples with generative models." Advances in Neural Information Processing Systems. 2018.

Outline

- 1. Dataset Building Set up the emotion-based data to work with
- 2. Methods GANs (Generative Adversarial Networks), CycleGANs, more?
- 3. Implementation, Analysis and Conclusion

Interested? Contact for more information/discussion: Ronak Kosti (Room: 10.136) ronak.kosti@fau.de

FACULTY OF ENGINEERING

Emotion detection in Art

Research Project (Bachelor/Master) 5/10 ECTS

Computer Vision Group, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg

Motivation

It is challenging to detect emotions of people in art paintings:

(a) This person is in the state of *Anger* (b) What can be said about the emotion of this person?

Outline

Using current emotion recognition pipelines, modify various deep networks to detect emotions in Art images (or paintings in digital format).

- 1. **Current Research** Reviewing current state-of-art methods for emotion detection of people in images
- 2. Data Choosing an appropriate dataset for training (or already chosen !?)
- 3. **Implementation** Evaluate the performance of different models on the collected data
- 4. Analysis and Conclusion

Interested?

Contact for further information/discussion:

Ronak Kosti (Room: 10.136) ronak.kosti@fau.de

FACULTY OF ENGINEERING

Saliency detection for Emotions

Master Thesis

Computer Vision Group, Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg

Motivation

Detecting the regions of image that are salient for emotion recognition **AND/OR** sentiment elicitation ¹

(a) Source Image

(b) Expected Salient Region

Figure: An image has lot of information. Which regions have more significance for emotion analysis?

¹Fan, Shaojing, et al. "Emotional attention: A study of image sentiment and visual attention." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Outline

Using the background research/models, find the salient regions (objects, people, stuff) which elicits emotions - *Saliency as a bridge between low and high level vision.*

- 1. Literature review Emotion Recognition AND/OR Sentiment Analysis
- 2. Data Mining and building Datasets/Resources
- 3. Methods Attention Models, Context Analysis, etc
- 4. Implementation, Analysis and Conclusion

Interested? Contact for further information/discussion:

Ronak Kosti (Room: 10.136) ronak.kosti@fau.de

FACULTY OF ENGINEERING

Deep Learning based Noise Reduction for Hearing Aids

Hendrik Schröter Speech Processing Group, Friedrich-Alexander University of Erlangen-Nürnberg July 22th 2019

Hearing Aid Pipeline

Replace conventional noise reduction algorithms with deep learning based approach:

- AFB: Analysis Filterbank AGC: Automatic Gain Control
- SFB: Synthesis Filterbank
- FBC: Feedback Canceler

Figure: Typical hearing aid pipeline¹.

¹Figure from: Ehrensperger, Kai, "Deep Learning-based Noise Reduction for Hearing Instrument Applications", MA thesis (Friedrich-Alexander University Erlangen-Nürnberg, 2018)

Denoising using Deep Learning

Clean Spectrogram

Figure: Simplified schematic figure of the neural network training.

Example: Denoising using Deep Learning

FACULTY OF ENGINEERING

Distillation Learning for Noise Reduction

Research Project Master (10 ECTS) / Master Thesis

Hendrik Schröter Speech Processing Group, Friedrich-Alexander University of Erlangen-Nürnberg WS 2019/20

Distillation Learning

Improve an already existing deep-learning based noise reduction and reduce the number of parameters using distillation learning.

Concept distillation learning (or student/teacher networks):

- A powerful teacher network is trained on the data with hard labels.
- The student is trained to model the teacher's output distribution.
- I.e. the student does not try to predict the hard labels, but rather should learn to imitate the output of the teacher.

Distillation Learning

Clean Spectrogram

Requrirements:

- Deep learning basics
- Signal processing basics (complex numbers, Fourier transform)

Teacher network:

- Deeper network, more parameters
- "Easier" input, i.e. higher SNR
- Relaxed real-time constraints

Contact:

Hendrik Schröter (Room 10.138)

- +49 9131 85 27882
- ➢ hendrik.m.schroeter@fau.de

FACULTY OF ENGINEERING

Deep Learning based Beamforming for Hearing Aids

Master Thesis

Hendrik Schröter Speech Processing Group, Friedrich-Alexander University of Erlangen-Nürnberg WS 2019/20

Hearing Aid Pipeline

Improve an already existing deep-learning based noise reduction using multi-channel signals, which enables to exploit directional information.

Using this, we want to replace traditional directional signal processing and noise reduction with deep learning based approach:

¹Figure from: Ehrensperger, Kai, "Deep Learning-based Noise Reduction for Hearing Instrument Applications", MA thesis (Friedrich-Alexander University Erlangen-Nürnberg, 2018)

Data

- · Multi-channel noise signals from hearing aids
- Clean speech signals, transformed with HRTFs (Head-related transfer function)

Beamforming

- a) Use multiple channels to estimate a multi-channel Wiener filter
- b) Use multiple channels and positional information of the microphones to estimate beamforming coefficients

Requrirements:

- Deep learning basics
- Signal processing basics (complex numbers, Fourier transform)

Contact:

Hendrik Schröter (Room 10.138)

- +49 9131 85 27882
- hendrik.m.schroeter@fau.de

The Lottery Ticket Hypothesis Finding Sparse, Trainable Neural Networks

- New network pruning approach
- Removing up to 80 % of weights
- Produces networks as good/better

- Are resulting structures consistent?
- Is transfer learning possible?
- Can layers be resized?
- ... many other open questions

5-10 ECTS project - contact: mathias.seuret@fau.de

Based on a paper by Jonathan Frankle, Michael Carbin

Gradient-domain Data Augmentation : Degradation Model

- Data augmentation method
- Paste gradients of stains
- Pixels reconstructed from gradients
- "Fools" human experts
- 5-10 ECTS project contact: mathias.seuret@fau.de

- imamul paululü panıl & aquae · quia tat meliul consumare poterimul; $\frac{1}{12}$ necessitatem corport refectione per quicquam Ante quam dni mibilocum ndat; Ctille · Sicut inquit socu sum isolationis; $\frac{1}{11}$ is dictif. ceperunt tees iam declinabat · & solaris feritor p t Auté Adquendam fluuiolü qui ste esque per decursum ipsi ur Oum lem cum imperiu descendens gurgite
- Random noise location: unrealistic
- Fingerprints in margins, water stains top/bottom
- Degradation location, big (unlabeled) data
- \rightarrow location probability, more realistic results

- OCR for ancient documents: open problem
- Synthetic data needed
- Gradient-domain approach
- Toy-example proof of concept

- Character- & forme-level augmentation (GAN?)

- Automatic character & baseline extraction

- "Print" pages with multiple fonts
- Evaluation through OCR
- From 5 ECTS to Master project contact: mathias.seuret@fau.de

Weakly supervised multimodel lesion detection and classification in mammogram & ultrasound

Master's Project (10 ECTS)

Motivation

Mulitmodel breast image analysis for malignancy detection and classification

Figure 1: A 55 years old patient with a malignant lesion in left-side breast, diagnosed with BI-RADS 5

Steps

- Design weakly supervised multimodal learning method using cross-modality fusion
 - Feature learning level
 - Classifier/decision-making level
 - For learning: no manual annotation, but pathology label

Requirements:

- Programming skills: Python + Keras/TensorFlow
- Deep understanding of volumetric/high-dimensional data

Contact for further information/discussion:

Sulaiman Vesal M.Sc. (Room: 10.136) Sulaiman.vesal@fau.de

Left ventricle quantification using spatiotemporal feature learning

Master's Project (10 ECTS)

Motivation

- Assessing the heart's function, the left ventricle (LV) function, morphology and temporal dynamics is of clinical interest
 - Cavity and myocardium size
 - Cavity dimension
 - Regional wall thicknesses
 - Heart phase (systole or diastole)

Figure 1: Illustration of LV indices to be quantified for short-axis cardiac image.(a) Cavity (green) and myocardium (yellow) areas. (b) directional dimensions of cavity (black arrows). (c) Regional wall thicknesses (black arrows). (d) Phase(systole or diastole)

Steps

- Develop effective machine learning models that can estimate a set of clinically significant LV indices
 - Supervised localization of LVs in short-axis cine MR images
 - Investigate the use of spatiotemporal convolutions
 - Multi-task learning for both cardiac phase detection and LV indices estimation

Figure 2: Cine-MR image with segmented left ventricle and myocardium

Requirements:

- Programming skills: Python + Keras/TensorFlow
- Deep understanding of volumetric/high-dimensional data

Contact for further information/discussion:

Sulaiman Vesal M.Sc. (Room: 10.136) Sulaiman.vesal@fau.de

Multimedia Security Group

Image enhancement:

- Superresolution of compressed data
- Image/video forensics:
 - Has an image been retouched?
 - Is part of a video computer-generated?

What traces leave 0.0 manipulations in the -0.1compression container?

-01

How can we learn to detect manipulated faces from few training examples?

How

"dangerous" is GANgenerated

CGI?

Example Open Projects or Theses

Guess characters on unreadable licence plates	Statistical video manipulation detection	Physics-based image manipulation detection	How easily can DL-based forgery detectors be fooled?
-> CNN to deal with strongly compressed video frames of licencse plates	-> Deep anomaly detector / device parameter regressor	-> Learning- based methods for classical vision tasks, e.g., shadow segmentation	-> Can we construct a counter-forensics adversarial example image laundry just from "innocent" JPEG settings?

Who to talk to

- We run projects between the Pattern Recognition Lab, the Computer Graphics Lab, and the IT Security Infrastructures Lab
- Group Members

Amir Davari

Benjamin Hadwiger

kt Lorch Patrick Mullan

Benedikt Lorch

Franziska Schirrmacher

• For concrete Projects or Theses: Contact Franziska Schirrmacher, franziska.schirrmacher@fau.de