
Wavelets for progressive
transmission/compression of images

The SPIHT method

WTBV WS 2016/17

January 25, 2017

I Methods for data compression, including wavelet methods for
image compression, are treated in an encyclopedic way in

D. Salomon, G. Motta, Handbook of Data
Compression, Springer-Verlag London, 2010.

1360 pages, more that 120 pages devoted to wavelet methods
(Chap. 8).
The SPIHT algorithm is in Section 8.14 (12 pages).

I A shorter presentation of both wavelet methods in general and
SPIHT in particular is contained in Chapter 4 and Section 4.8 of

D. Salomon, A Guide to Data Compression
Methods, Springer-Verlag New York, 2002.

I Another recent source is
K. Sayood, Introduction to Data Compression,
4-th ed., Elsevier, 2012.

Chap. 12: Fourier techniques
Chap. 13: Transform Coding
Chap. 14: Sub-band coding (including filter banks)
Chap. 15: Concise treatment of wavelets
Chap. 16: Wavelet-based Image Compression
SPIHT in Sec. 16.4.
JPEG2000 detailed discussion in Sec. 16.5

I A wavelet book with special attention to data compression is

R.M. Rao, A.S. Bopardikar, Wavelet Transforms,
Introduction to Theory and Applications,
Springer, Addison-Wesley, 1998.

Chapter 5 is on Wavelet Transform and Data Compression,
Sec. 5.3.2 presents the SPIHT algorithm, including an
example that is reproduced in this lecture

I It is always worthwile to look into

S. Mallat, A Wavelet Tour of Signal Processing,
3rd. ed., Elsevier, 2009.

Mathematically more demanding than all the others.
Chap. 10 is devoted to Compression. Sec. 10.4.2 gives a
compact presentation of embedded coding and SPIHT

I The SPIHT algorithm is due to

A. Said, W.A. Pearlman, A new, fast, and efficient
image codec based on set partitioning in hierarchical
trees, IEEE Trans. Circ. Syst. Video Technol. 6(3):
243–250, 1996.

The authors have establishes a web page cipr.rpi.edu with
lots of material (descriptions, demos, code, applications, . . .)
and you can also download the mentioned article (very
readable!). There have been many approaches to the use of
wavelets in data compression. SPIHT undeniably belongs to
the most efficient ones

I Introductory remarks:
I SPIHT (= set partitioning in hierarchical trees)

is prototypical for the application of wavelet transform
methods in the field of image compression

I SPIHT combines two ideas:
I progressive transmission: frequently found in signal

transmission and data compression methods:
digital data (like pixel values of an image) are organized in
bit-planes, thus giving preference in the transmission process
to high significant bits over less significant bits

I embedded trees, makes use of dependencies that exist in
wavelet transformed data over several layers of resolution
(sub-bands) so that pixels that relate to the same position in
the original image are organized in quaternary trees

image orthog. transform

quantization

encoding

decoding

inverse transform

dequantization

approx.
image

DWT, DCT, KLT, ...

Huffman, arithm.C.,
run length, LZW, ...

demean

real matrix

discrete values

discrete values

rescaling to [0,255]

values in [0,255]

Figure: Structure of a wavelet transform image codec

I Heuristics for progressive transmission
I p = {pi,j}(i,j)∈I : an image, which is transform-coded by

applying an orthogonal transform T to it,
which yields the data c = {ci,j}(i,j)∈I

I ĉ = {ĉi,j}(i,j)∈I : an approximation of c
(e.g., the k most significant bits of each coefficient) obtained
by transforming and rearranging using a procedure S

I p̂ = {p̂i,j}(i,j)∈I : an approximation of the original input p
obtained by coefficient-wise back-transforming using T−1

I Schematically

p T−→ c S−→ ĉ T−1

−→ p̂

I By orthogonality of T ,

‖p − p̂ ‖2 =
∑

(i,j)∈I

|pi,j − p̂i,j |2 =
∑

(i,j)∈I

|ci,j − ĉi,j |2 = ‖ c − ĉ ‖2

I The mean-squared error of approximation:

DMSE =
1

N
‖p − p̂ ‖2 =

1

N
‖ c − ĉ ‖2

where N =]I is the total number of coefficients

I Heuristics for progressive transmission (contd.)
I Now assume that for a subset J ⊆ I one has

ĉi,j =

{
ci,j if (i , j) ∈ J

0 if (i , j) 6∈ J

Then

DMSE =
1

N

∑

i,j 6∈J

|ci,j |2

I Considering all subsets J of I of the same cardinality N0

the one(s) which yield(s) the minimum DMSE is obtained by
I sorting the coefficients ci,j ((i , j) ∈ I) according to their

(decreasing) absolute value
I taking for J the initial N0 positions of the sorted sequence

I In practice:
1. order the elements ci,j according to the bitlength
blog2 |ci,j |c+ 1 of their absolute values

2. transmit positions and signs of the elements of maximal
bitlength r

3. for k = r − 1, r − 2, . . .
3.1 transmit positions and signs of the elements of bitlength k
3.2 transmit the k-th bit of all elements of bitlength > k

(i.e., transmitted in earlier rounds)

Progressive transmission, the procedures

procedure scan(L,C,N,LIP,LSP)

(* (L,C): a list (C (ξ))ξ∈L of integers
N: significance level
LIP, LSP: lists that are updated during the execution*)

for ξ in LIP do
if |C (ξ)| ≥ N then

output(ξ,sgn(C (ξ)))
remove(LIP,ξ)
append(LSP,ξ)

end if
end for
return (LIP,LSP)

procedure progtrans(L,C) (* (L,C): a list (C (ξ))ξ∈L of integers*)

(*initialization*)
r ← blog2 maxξ∈L |C (ξ)|c
output(r)
N ← 2r

LIP ← L
LSP ← empty list

(*sorting*)
(LIP,LSP) ← scan(L,C,N,LIP,LSP)
oldLSP ← LSP
repeat

r ← r − 1, N ← N/2
(*sorting*)
(LIP,LSP) ← scan(L,C,N,LIP,LSP)
(*refinement*)
for ξ ∈ oldLSP do

output(r -th bit of |C (ξ)|)
end for
oldLSP ← LSP

until “as needed”

Example for progressive transmission:

Output of progtrans(3, -12, 4, 9, -5, 0, -1, -8, 8, 0)

round position sign bit values
1 {2, 4, 8, 9} {1, 0, 1, 0} {}
2 {3, 5} {0, 1} {1, 0, 0, 0}
3 {1} {0} {0, 0, 0, 0, 0, 0}
4 {7} {1} {0, 1, 0, 0, 0, 1, 1}

Array representation of progressive transmission

pos sgn bit1 bit2 bit3 bit4

2 1 1 1 0 0

4 0 1 0 0 1

8 1 1 0 0 0

9 0 1 0 0 0

3 0 0 1 0 0

5 1 0 1 0 1

1 0 0 0 1 1

7 1 0 0 0 1
6 0 0 0 0 0

10 0 0 0 0 0

Successive approximations

1 2 3 4 5 6 7 8 9 10 error

1 bit 0 −11 0 11 0 0 0 −11 11 0 8.60233

2 bit 0 −13 5 9 −5 0 0 −9 9 0 3.74166

3 bit 2 −12 4 8 −4 0 0 −8 8 0 2.00000

4 bit 3 −12 4 9 −5 0 −1 −8 8 0 0

Zig-zag ordering

I Progressive transmission is a sequential procedure, so when
applying it to image data, one has to serialize the
2-dimensional data somehow

I There are many ways to do that...
I zig-zag-ordering of the elements of N× N is a particular

convenient method, that is adapted to work well with DWT
I Notation for initial 2D-segments of N× N

�n = {0, . . . , 2n − 1} × {0, . . . , 2n − 1}

and for 0 ≤ i , j ≤ 1

�i ,j
n = {2i ·n +0, . . . , 2i ·n +2n−1}×{2j ·n +0, . . . , 2j ·n +2n−1},

so that schematically

�n+1 =



�0,0

n �0,1
n

�1,0
n �1,1

n




I �n is identified with the upper-left square �0,0
n+1 of �n+1.

Thus one has an order-compatible inclusion chain

�1 ⊂ �2 ⊂ �3 . . .↗ N× N

I It suffices to define the zig-zag ordering on each �n

1. Order the elements of �1 = {0, 1} × {0, 1} in Z -form

0 1
0 0 → 1

↙
1 2 → 3

2. If the ordering has been defined for �n for some n ≥ 1.
Then the ordering on �n+1 is given by

2.1 The ordering on each of �i,j
n+1 (0 ≤ i , j ≤ 1) is “the same” as

the ordering of �n

2.2 The ordering among the elements of different �i,j
n+1 is again

given by zig-zag, as symbolized by

�0,0
n+1 < �

0,1
n+1 < �

1,0
n+1 < �

1,1
n+1

I So the zig-zag ordering of �2 is

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

I The functions
I m2l : N× N→ N, where m2l(i , j) is the ordinal number of

(i , j) in the zig-zag ordering, and its inverse
I l2m = N→ N× N, where l2m(k) gives the position of the

element with ordinal number k in N× N,

can easily described in terms of the binary expansions of the
numbers involved

I Embedded trees in DWT-data

I The 1D-case

{}

{0} {1}

{0, 0} {0, 1}

{0, 0, 0} {0, 0, 1}

Figure: The decomposition scheme of a 3-level 1D-DWT (analysis)

I The various parts of the wavelet decomposition tree are
henceforth named sub-bands and denoted as indicated as
sub-bands 0k or 0k1.

I The embedded trees in the case of a data vector of length 32
for a 3-level transform.

a0 a1 a2 a3 a4 . . . a30 a31

b0 b1 b2 b3 b4 . . . b14 b15 b16 b17 b18 b19 b20 . . . b30 b31

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

d0 d1 d2 d3 d4 d5 d6 d7

Figure: Embedded binary trees in context

I Motivation
I Positions joined by black arrows refer to same position in the

original data, hence the wavelet coefficients should be related.
E.g., if d5 is small, then most probably its descendants c10, c11

and also b20,. . . ,b23 will be small too.
In the case of smooth signal data there should be strongly
decreasing tendency as the resolution increases.
In particular: if a wavelet coefficient is 0, the most probably
the coefficients of all its descendants will be 0 too.
This phenomenon can be used profitably in tasks like data
compression and progressive transmission.

I The embedded trees graph as drawn by Mathematica.

01

23

4 5

6 7

8 9 10 11

12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Figure: Embedded binary trees

I Such a forest can be described linearly by giving a list of
predecessor labels (i.e., reversing the arrows, with the
convention that each root label is its own predecessor):

0, 0, 0, 0, 1, 1, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,

10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15

I This list is just the bottom row in

0 1 2 3 4 5 6 . . . 31 32
↓ ↓ ↓ ↓ ↓ ↓ ↓ . . . ↓ ↓
0 0 0 0 1 1 3 . . . 15 15

I General rule for constructing these embedded trees for a data
vector of length N that represents data from an `-level DWT:

I Index the data from 0 to N − 1
I Set a = N/2`: this is the length of the 0` and of the 0`−11

components (sub-bands) – this must be an even integer
I All even indexed positions in the 0` sub-band will be isolated

vertices
I All odd indexed positions 2k + 1 in the 0` sub-band have

successors a + 2k and a + 2k + 1 in the 0`−11 sub-band
(0 ≤ k < ba/2c)

I Each position k for the transformed data which does not
belong to the 0` sub-band or to the 1-sub-band has 2k and
2k + 1 as its successors.

This procedure gives a/2 complete binary trees of depth `.

I Embedded trees for the 2D-DWT (spatial orientation trees)

{}

{0} {1} {2} {3}

{0, 0} {0, 1} {0, 2} {0, 3}

Figure: Decomposition scheme for a 2-level 2D-DWT (analysis)

I Construction of the embedded quaternary trees

– The image is assumed to be square of size 2n × 2n.
Numbering of rows and columns starts at 0.

– ` : the number of levels of a 2D-DWT
Then the four sub-bands on the lowest level 0` and
0`−11, 0`−12, 0`−13 have size a× a with a = 2n−`.
a is assumed to be even, i.e., ` < n.

– Partition the 0`-sub-band into 2× 2 squares.
The upper left position (i , j) with 0 ≤ i , j < a and i , j even of
each square is an isolated vertex.

I Construction contd.

(A) All other positions in the 0` sub-band become roots of
quaternary trees of height `. These roots have their four
successors in the sub-bands 0`−11, 0`−12, 0`−13.
Precisely:

(i , j) −→





(i , a + j − 1) + ε if i even and j odd

(i + a− 1, j) + ε if i odd and j even

(i + a− 1, j + a− 1) + ε if i and j odd

where ε ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
(B) From then on, each vertex in a sub-band (other than the

sub-bands 1, 2, 3, where positions are “leaf” positions, i.e.,
positions without successors) has four successors in one of the
sub-bands of the next higher frequency “in the same relative
position”, as indicated in the graphical sketch.
Precisely

(i , j) −→ (2i , 2j) + ε

An example with n = 4, ` = 2, a = 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure: Embedded spatial orientation trees

The exemplary arrows drawn in the example figure are

(0, 1) −→ (0, 4) + ε = {(0, 4), (0, 5), (1, 4), (1, 5)} by (A)
(1, 3) −→ (4, 6) + ε = {(4, 6), (4, 7), (5, 5), (5, 7)} by (A)
(1, 5) −→ (2, 10) + ε = {(2, 10), (2, 11), (3, 10), (3, 11)} by (B)
(3, 2) −→ (6, 2) + ε = {(6, 2), (6, 3), (7, 2), (7, 3)} by (A)
(4, 7) −→ (8, 14) + ε = {(8, 14), (8, 15), (9, 14), (9, 15)} by (B)
(7, 2) −→ (14, 4) + ε = {(14, 4), (14, 5), (15, 4), (15, 5)} by (B)

Besides the 4 isolated vertices (0, 0), (0, 2), (2, 0), (2, 2) (shaded in
the figure) there are 12 quaternary trees of height 2, rooted in the
remaining 12 vertices of the 02-sub-band.

A convenient way to linearly encode the structure of these
embedded trees is by referring to the zigzag-ordering.

As an example: in an (8× 8)-array the positions are numbered by
the zigzag-ordering as shown here:




0 1 4 5 16 17 20 21
2 3 6 7 18 19 22 23
8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31
32 33 36 37 48 49 52 53
34 35 38 39 50 51 54 55
40 41 44 45 56 57 60 61
42 43 46 47 58 59 62 63




The embedded trees relevant for a 2-level DWT can be displayed
in a matrix that for each position gives the position of its
tree-predecessor vertex




0 1 1 1 4 4 5 5
2 3 1 1 4 4 5 5
2 2 3 3 6 6 7 7
2 2 3 3 6 6 7 7
8 8 9 9 12 12 13 13
8 8 9 9 12 12 13 13

10 10 11 11 14 14 15 15
10 10 11 11 14 14 15 15




and the zigzag-ordering would give a 1-dimensional representation
of this information

0, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, . . . , 15, 15, 15, 15

I A nice and useful feature of the zigzag-ordering is apparent:

positions that are offsprings of the same position w.r.t. the
embedded quaternary trees a neighbors in the matrix and the
linear version of the predecessor information.

I The SPIHT method: General description (1)
I The data

I The procedures scantree and spiht operate on forests T of
rooted trees.

I T is specified by a list of root vertices and a function which to
every vertex lists its immediate successors.

I The vertices of T carry an integer valuation given by a
function C .

I C -values are thought of as binary strings of some common
length r together with an extra sign bit.

I The purpose of spith
I is to compute a signed k-bit approximation of C for some

value k ≤ r that may or may not be fixed in advance.
I scantree is used to compute a (k + 1)-bit approximation from

a k-bit approximation (for k = 1, 2, . . .) using information
accumulated during the computation of the latter.

I The idea of progressive transmission is used, together with a
systematic exploration of the tree structures of T in view of
the mapping C .

I The SPIHT method: General description (2)
I Encoding and decoding

I Running spith produces a bit stream as output.
I This stream contains significance and sign information about

(T ,C), which encode the branchings of spith and its
procedure scantree when exploring T

I This stream contains all the information for exactly simulating
the action of spith by just knowing the tree (or forest)
structure T and reading the stream, but not knowing C

I If one considers spith as an encoder, then replacing all
output-commands in spith and scantree by input-commands
(thus reading elements of the bit stream precisely where in
spith they where produced) gives the view of a decoder who
wants to compute C to a certain degree of accuracy with as
little information as possible. This is where the aspect of data
compression comes into play

I The SPIHT method: General description (3)
I The spith algorithm is given below in an abstract form, i.e., the

structure of T occurs only implicitly by referring to a successor
map which is assumed to be known, but not further specified

I SPITH for images and wavelets

I The main application of spith is with images, notably their
wavelet transforms with the structure of embedded trees made
explicit

I In this situation T is a forest consisting of a certain number of
isolated points and a set of quaternary trees (all of the same
height)

I The typical properties of coefficient value arrays produced
with DWT are exploited profitably when using these
embedded trees in the spiht algorithm

I Data for and verbal description of the SPIHT-algorithm (1)

– For each vertex ξ of T one defines
I O(ξ) : the (ordered) set of offsprings (immediate successors)

of ξ
I D(ξ) : the set of descendants of ξ (i.e., offsprings and their

descendants)
I L(ξ) = D(ξ) \ O(ξ) : the set of grandchildren of ξ and their

descendants

I Data for and verbal description of the SPIHT-algorithm (2)

– Given a significance level N, the significance map σN is defined
as

σN : ξ 7→
{

1 if |C (ξ)| ≥ N

0 if |C (ξ)| < N

– Using σN one defines significance (w.r.t the significance level
N) for sets D(ξ) and L(ξ) by mappings δN and λN :

δN : ξ 7→
{

1 if σN(η) = 1 for at least one η ∈ D(ξ)

0 otherwise

λN : ξ 7→
{

1 if σN(η) = 1 for at least one η ∈ L(ξ)

0 otherwise

I Data for and verbal description of the SPIHT-algorithm (3)

– The functions σN , δN and λN can be efficiently computed: for
σN this is clear, for δN and λN this can be done inductively in
a bottom-up manner starting at the leaves of T :

δN(ξ) = λN(ξ) = 0 if ξ is a leaf of T , otherwise

λN(ξ) = max
η∈O(ξ)

δN(η)

δN(ξ) = max{λN(ξ), max
η∈O(ξ)

σN(η) }

I Data for and verbal description of the SPIHT-algorithm (4)

– The lists
I LIS (list of insignificant sets)
I LIP (list of insignificant points)
I LSP (list of significant points)

are used for bookkeeping during the execution of the
procedures scantree and spiht

I ξ ∈ LSP means : vertex ξ has been inspected by the algorithm
and has been classified as significant
(w.r.t. the current significance level, i.e., σN(ξ) = 1))

I ξ ∈ LIP means : vertex ξ has been inspected by the algorithm
and has been classified as insignificant
(w.r.t. the current significance level, i.e., σN(ξ) = 0)

I entries in LIS are either of type (ξ,A) or of type (ξ,B), where
(ξ,A) represents the set D(ξ)
(ξ,B) represents the set L(ξ)

I Data for and verbal description of the SPIHT-algorithm (5)

I The current entries of LIS, LIP and LSP during execution of
scantree constitute a partition of the vertex set of T into
disjoint subsets:

I entries ξ ∈ LIP and ξ ∈ LSP represent singleton sets {ξ}
I an entry (ξ,A) ∈ LIS represents the set D(ξ)
I an entry (ξ,B) ∈ LIS represents the set L(ξ)

I The partition and the three lists are updated (i.e., the partition
is refined) during the execution of scantree:

I Data for and verbal description of the SPIHT-algorithm (6)
I If the top element of LIS is (ξ,A) and if the set D(ξ) is

significant, i.e., δN(ξ)=1, then
– the offsprings η ∈ O(ξ) are examined for significance
– the set D(ξ) is split into

⊎

η∈O(ξ)

{η}] L(ξ)

– a new entry (ξ,B) added to LIS provided L(ξ) 6= 0
I If the top element of LIS is (ξ,B) and if the set L(ξ) is

significant, i.e., λN(ξ)=1, then
– the set L(ξ) is replaced by

⊎

η∈O(ξ)

D(η),

– entries (η,A) are added to LIS for all η ∈ O(ξ)
I Elements (ξ,B) or (ξ,A) thus added to LIS have to be

examined in the same execution round of scantree.

I Data for and verbal description of the SPIHT-algorithm (7)

I Algorithm spiht iterates the sorting procedure scantree
together with a refinement procedure in the spirit of
progressive transmission

I At the beginning of each execution of scantree
I the current elements of the list LIP are tested for significance

w.r.t. to the actual significance level N, which is supposed to
be lower than the level used in the previous execution of
scantree

I In case a vertex is found N-significant, it will be moved from
LIP to LSP

I During the execution of scantree
I information about the significance of vertices (and the

corresponding sign in the case of vertices found significant)
and D- and L-sets is encoded in the bit stream output

I Data for and verbal description of the SPIHT-algorithm (8)

I spith is initialized by
I computing the maximal number r of bits needed to represent

the absolute values of the C(ξ),
I setting the significance level for the first run of scantree to

N = 2r

(so that there are indeed entries C(ξ) with 2r ≤ |C(ξ)| < 2r+1

and no entries with 2r+1 ≤ |C(ξ)| in T)
I LIS and LIP are initialized using the root vertices of T ,

LSP is initially empty

I The first call of scantree examines T with N = 2r as
significance level.
T is explored only to the extent needed for discovering all
N-significant vertices of (T ,C).
After this first sorting phase there is no refinement phase
necessary since LSP was empty before calling scantree

I Data for and verbal description of the SPIHT-algorithm (9)

I The exploration of (T ,C) is then done by iteratively by
I sorting: calling scantree with the significance level halved at

every iteration
I refinement: enhancing the bit information of previous added

elements of LSP in a progressive transmission way

Each iteration uses the information accumulated in the lists
LIS, LIP, and LSP, and updates these lists

I Execution of spith can be stopped after every
sorting-refinement round.
The output stream produced up to this point is sufficient to
reconstruct the respective k-bit approximation of C .

(T, C)

bC

C

updating
N, �N , �N , �N

LIS, LIP, LSP

updating
N, LIS, LIP, LSP

a DWT-transformed
and quantized image

in parallel

an approximation of C

scantree(output) scantree(input)

bitstream
�N , �N , �N , sgn
refinement bits

T

spiht encoder

spiht decoder

Figure: The SPIHT encoding-decoding scheme

⇠

⇠

⇠

⌘1

⌘1

⌘2 ⌘3 ⌘4⌘1

⌘2

⌘2

⌘3

⌘3

⌘4

⌘4

D(⇠)

L(⇠)

D(⌘1) D(⌘2) D(⌘3) D(⌘4)

�N (⇠) = 1

�N (⇠) = 1

�N (⇠)

�N (⇠)

�N (⌘1)[+sgnC(⌘1)]

�N (⌘2)[+sgnC(⌘2)]

�N (⌘3)[+sgnC(⌘3)]

�N (⌘4)[+sgnC(⌘4)]

Figure: The set partitioning strategy of SPIHT

procedure scantree(T,C,N,LIS,LIP,LSP)

(* T: a forest of rooted trees, C: an integer valuation of the vertices of T, N: significance level
LIS, LIP, LSP: lists that are updated during the execution*)

for ξ in LIP do
output(σN (ξ))
if σN (ξ) = 1 then

output(sgn(C(ξ))), remove(LIP,ξ), append(LSP,ξ)
end if

end for
for ξ in LIS do

if type(ξ,A) then
output(δN (ξ))
if δN (ξ) = 1 then

for η in O(ξ) do
output(σN (η))
if σN (η) = 1 then

output(sgn(C(η))), append(LSP,η)
else

append(LIP,η)
end if

end for
remove(LIS,ξ-A)
if L(ξ) 6= ∅ then

append(LIS,ξ-B)
end if

end if
end if
if type(ξ,B) then

output(λN (ξ))
if λN (ξ) = 1 then

remove(LIS,ξ-B)
for η ∈ O(ξ) do

append(LIS,η-A)
end for

end if
end if

end for
return (LIS,LIP,LSP)

procedure spiht(T,C)

(* T: a forest of rooted trees
C: an integer valuation of the vertices of T *)

(*initialization*)
r ← blog2 maxξ∈T |C(ξ)|c
output(r)
N ← 2r

LIS← list of all ξ-A, where ξ is the root of a T -subtree with D(ξ) 6= ∅
LIP← list of all ξ, which are roots of subtrees of T ,

including isolated vertices
LSP← empty list

(*sorting*)
(LIS,LIP,LSP)← scantree(T,C,N,LIS,LIP,LSP)
oldLSP← LSP
repeat

r ← r − 1, N ← N/2
(*sorting*)
(LIS,LIP,LSP)← scantree(T,C,N,LIS,LIP,LSP)
(*refinement*)
for ξ ∈ oldLSP do

output(r -th bit of |C(ξ)|)
end for
oldLSP← LSP

until “as needed”

I Ex. 1
C

{v1, -4}

{v2, -3}

{v3, 1} {v4, 7}

{v5, -5} {v6, 2}

σ

{v1, 1}

{v2, 0}

{v3, 0} {v4, 1}

{v5, 1} {v6, 0}

δ

{v1, 1}

{v2, 1}

{v3, 0} {v4, 0}

{v5, 0} {v6, 0}

λ

{v1, 1}

{v2, 0}

{v3, 0} {v4, 0}

{v5, 0} {v6, 0}

Figure: A tree T , its valuation C and the σ, δ, λ mappings of (T ,C)
for significance level N = 4

Execution of scantree[T, C, 4, {{1, A}}, {1}, {}, 1]
out: σ[1] = 1
out: sign[−4]
LSP= {1} LIP= {}
LIS: {{1, A}}
out: δ[1] = 1
out: σ[2] = 0
LSP= {1} LIP= {2}
out: σ[3] = 0
LSP= {1} LIP= {2, 3}
LIS: {{1, B}}
out: λ[1] = 1
LIS: {{2, A}, {3, A}}
out: δ[2] = 1
out: σ[4] = 1
out: sign[7]
LSP= {1, 4} LIP= {2, 3}
out: σ[5] = 1
out: sign[−5]
LSP= {1, 4, 5} LIP= {2, 3}
LIS: {{3, A}, {2, B}}
out: δ[3] = 0
LIS: {{2, B}}
out: λ[2] = 0
new LIS: {{3, A}, {2, B}}
new LIP: {2, 3}
new LSP: {1, 4, 5}
output: {1, sign[−4], 1, 0, 0, 1, 1, 1, sign[7], 1, sign[−5], 0, 0}

I Ex 2

{v1, 18}

{v2, 6}

{v3, 3}

{v4, -5}

{v5, 8}

{v6, -7}

{v7, 13}

{v8, 1}

{v9, 2}

{v10, 1}

{v11, 2}

{v12, -2}

{v13, -6}

{v14, 3}

{v15, 4}

{v16, -2}

{v1, 1}

{v2, 1}

{v3, 0}

{v4, 1}

{v5, 1}

{v6, 1}

{v7, 1}

{v8, 0}

{v9, 0}

{v10, 0}

{v11, 0}

{v12, 0}

{v13, 1}

{v14, 0}

{v15, 1}

{v16, 0}

{v1, 1}

{v2, 1}

{v3, 0}

{v4, 1}

{v5, 0}

{v6, 0}

{v7, 0}

{v8, 0}

{v9, 0}

{v10, 0}

{v11, 0}

{v12, 0}

{v13, 0}

{v14, 0}

{v15, 0}

{v16, 0}

{v1, 1}

{v2, 0}

{v3, 0}

{v4, 0}

{v5, 0}

{v6, 0}

{v7, 0}

{v8, 0}

{v9, 0}

{v10, 0}

{v11, 0}

{v12, 0}

{v13, 0}

{v14, 0}

{v15, 0}

{v16, 0}

Figure: T ,C , σ, δ, λ for the second example

scantree[T2, C2, 16, {{1,A}}, {1}, {}, 1]

out: \[Sigma][1]= 1

out: sign[18]

LSP= {1} LIP= {}

LIS: {{1,A}}

out: \[Delta][1]= 0

new LIS: {{1,A}}

new LIP: {}

new LSP: {1}

output: {1,sign[18],0}

scantree[T2, C2, 8, {{1,A}}, {}, {1}, 1]

LIS: {{1,A}}

out: \[Delta][1]= 1

out: \[Sigma][2]= 0

LSP= {1} LIP= {2}

out: \[Sigma][3]= 0

LSP= {1} LIP= {2,3}

out: \[Sigma][4]= 0

LSP= {1} LIP= {2,3,4}

LIS: {{1,B}}

out: \[Lambda][1]= 1

LIS: {{2,A},{3,A},{4,A}}

out: \[Delta][2]= 1

out: \[Sigma][5]= 1

out: sign[8]

LSP= {1,5} LIP= {2,3,4}

out: \[Sigma][6]= 0

LSP= {1,5} LIP= {2,3,4,6}

out: \[Sigma][7]= 1

out: sign[13]

LSP= {1,5,7} LIP= {2,3,4,6}

out: \[Sigma][8]= 0

LSP= {1,5,7} LIP= {2,3,4,6,8}

LIS: {{3,A},{4,A}}

out: \[Delta][3]= 0

LIS: {{4,A}}

out: \[Delta][4]= 0

new LIS: {{3,A},{4,A}}

new LIP: {2,3,4,6,8}

new LSP: {1,5,7}

output: {1,0,0,0,1,1,1,sign[8],0,1,sign[13],0,0,0}

scantree[T2, C2, 4, {{3,A},{4,A}},{2,3,4,6,8},{1,5,7},1]

out: \[Sigma][2]= 1

out: sign[6]

LSP= {1,5,7,2} LIP= {}

out: \[Sigma][3]= 0

LSP= {1,5,7,2} LIP= {3}

out: \[Sigma][4]= 1

out: sign[-5]

LSP= {1,5,7,2,4} LIP= {3}

out: \[Sigma][6]= 1

out: sign[-7]

LSP= {1,5,7,2,4,6} LIP= {3}

out: \[Sigma][8]= 0

LSP= {1,5,7,2,4,6} LIP= {3,8}

LIS: {{3,A},{4,A}}

out: \[Delta][3]= 0

LIS: {{4,A}}

out: \[Delta][4]= 1

out: \[Sigma][13]= 1

out: sign[-6]

LSP= {1,5,7,2,4,6,13} LIP= {3,8}

out: \[Sigma][14]= 0

LSP= {1,5,7,2,4,6,13} LIP= {3,8,14}

out: \[Sigma][15]= 1

out: sign[4]

LSP= {1,5,7,2,4,6,13,15} LIP= {3,8,14}

out: \[Sigma][16]= 0

LSP= {1,5,7,2,4,6,13,15} LIP= {3,8,14,16}

new LIS: {{3,A}}

new LIP: {3,8,14,16}

new LSP: {1,5,7,2,4,6,13,15}

output: {1,sign[6],0,1,sign[-5],1,sign[-7],0,0,1,1,

sign[-6],0,1,sign[4],0}

scantree[T2, C2, 2, {{3,A}}, {3,8,14,16},{1,5,7,2,

4,6,13,15},1]

out: \[Sigma][3]= 1

out: sign[3]

LSP= {1,5,7,2,4,6,13,15,3} LIP= {}

out: \[Sigma][8]= 0

LSP= {1,5,7,2,4,6,13,15,3} LIP= {8}

out: \[Sigma][14]= 1

out: sign[3]

LSP= {1,5,7,2,4,6,13,15,3,14} LIP= {8}

out: \[Sigma][16]= 1

out: sign[-2]

LSP= {1,5,7,2,4,6,13,15,3,14,16} LIP= {8}

LIS: {{3,A}}

out: \[Delta][3]= 1

out: \[Sigma][9]= 1

out: sign[2]

LSP= {1,5,7,2,4,6,13,15,3,14,16,9} LIP= {8}

out: \[Sigma][10]= 0

LSP= {1,5,7,2,4,6,13,15,3,14,16,9} LIP= {8,10}

out: \[Sigma][11]= 1

out: sign[2]

LSP= {1,5,7,2,4,6,13,15,3,14,16,9,11} LIP= {8,10}

out: \[Sigma][12]= 1

out: sign[-2]

LSP= {1,5,7,2,4,6,13,15,3,14,16,9,11,12} LIP= {8,10}

new LIS: {}

new LIP: {8,10}

new LSP: {1,5,7,2,4,6,13,15,3,14,16,9,11,12}

output: {1,sign[3],0,1,sign[3],1,sign[-2],1,1,sign[2],

0,1,sign[2],1,sign[-2]}

scantree[T2, C2, 1, {}, {8,10}, {1,5,7,2,4,6,13,15,

3,14,16,9,11,12}, 1]

out: \[Sigma][8]= 1

out: sign[1]

LSP= {1,5,7,2,4,6,13,15,3,14,16,9,11,12,8} LIP= {}

out: \[Sigma][10]= 1

out: sign[1]

LSP= {1,5,7,2,4,6,13,15,3,14,16,9,11,12,8,10} LIP= {}

new LIS: {}

new LIP: {}

new LSP: {1,5,7,2,4,6,13,15,3,14,16,9,11,12,8,10}

output: {1,sign[1],1,sign[1]}

Ex 3 : execution of the SPIHT-algorithm
following Rao, Bopardikar: Wavelet Transforms, Addison-Wesley, 1998.




62 34 18 17 −4 1 −2 6
−31 24 −15 14 −11 0 4 −1
42 29 −35 10 29 10 6 9
−12 15 −9 15 −1 9 5 13

4 45 13 −1 26 −21 3 1
3 0 −2 21 −1 0 7 9
0 13 4 5 4 5 6 0
−1 7 −11 3 0 8 2 7




I 2-level DWT-decomposition

I bound for coefficient size: blog2(62)c = 5⇒ N = 25 = 32

(1,1)

(1,0)(1,1)-A

(1,0)-A (0,1)

(0,1)-A (0,0)

LSPLIPLIS

Figure: Initializing the lists

0

0

1,0

output

1,0

(1,1)

(1,0)(1,1)-A

(1,0)-A (0,1)

(0,1)-A (0,0)

LSPLIPLIS

Figure: Lists after the first N-significance test for LIP

1

(3,3) 0

0(3,2)

0(2,3)

(2,2) 1,1

(3,1) 0

(3,0) 0

(2,1) 0

1,0(2,0)

(1,1)-B 1

(1,0)-B 0

output

(1,1)

(1,0)(1,1)-A

(1,0)-A (0,1)

(0,1)-A (0,0)

LSPLIPLIS

Figure: Lists after the first scanning of LIS-entries of type A

(3,3)

(3,2)

0

1

(2,3)(3,1)-A

(2,2)(3,0)-A

(3,1)(2,1)-A

(3,0)(2,0)-A

(1,1)-B (2,1)

(1,0)-B (2,0)

output

(1,1)

(1,0)

(0,1)

(0,1)-A (0,0)

LSPLIPLIS

Figure: Lists after the first scanning of LIS-entries of type B

0

0

(5,1) 0

(5,0) 0

1,0(4,1)

(4,0) 0

(3,3)

(3,2)

0

1

(2,3)

(2,2)

(3,1)

(3,0)(3,1)-A

(3,0)-A (2,1)

(2,1)-A (2,0)

output

(2,0)-A (1,1)

(1,0)

(1,1)-B (0,1)

(0,1)-A (0,0)

LSPLIPLIS

Figure: Lists after finishing the first execution of scantree

I The first execution of scantree is finished.

I After this round there is no refinement done!

I The significance threshold for the next round is set to N = 16.

0

0

0

0

0(5,0)

0(4,0)

0

(5,1) 0

(3,3) (2,1) 1,0

(1,1)(3,2) 1,0

(2,3) (1,0) 1,1

(3,1) (4,1)(3,1)-A

(3,0)-A (2,2)(3,0)

(2,1)(2,1)-A (2,0)

output

(1,1)-B (0,1)(1,1)

(0,1)-A (0,0)(1,0)

LSPLIPLIS

Figure: Lists after the significance test for LIP in the second round

I Following slide: Lists after the second round of scantree

I This is followed by refinement: output of the 4th bits of the
LSP-entries from the first round: 1, 0, 1, 0, 1.

0

(3,5) 0

0(3,4)

0(2,5)

 (2,4) 1,0

 0

 0

0

(1,3)-A 0

(1,2)-A 0

(0,3)-A 0

(5,5)(0,2)-A 0

0(3,3)-A (5,4)

1,1 (4,5)(3,2)-A

 (2,3)-A (4,4) 1,0

1 (2,2)-A

 1

 0

 0

 1,0(5,3)

(5,2) 0

(4,3) 0

1

(0,1)-B 1

0(1,3)(3,1)-A

(1,2)(3,0)-A 0

1,0 (0,2)(1,1)-B

1 (0,1)-A

0(4,2)

(0,3) (2,1)-A 1,0

(5,1) (2,1)

(1,1)(5,0)

(4,0) (1,0)

(3,3) (4,1)

 (2,2)(3,2)

(2,3) (2,0)

output

 (0,1)(3,1)

 (0,0)(3,0)

LSPLIPLIS

	References

