
Seminar Automatic Question Answering Using IBM Watson SS2015

S..StutterAn IBM Watson Approach to deal with Stuttering

Contents

- ► Introduction to Stuttering
- Current measures
- Our Idea
- ► Flow chart
- Demo
- Future plans
- References

Introduction to Stuttering and Disfluencies

- ► STUTTERING: characterized by disruptions in the production of speech sounds, also called "disfluencies"
- ► Two fundamental measures
 - frequency of disfluency
 - types of disfluency
- Basic procedure involves observing a speech sample and counting fluent and disfluent words (either video tape, audio tape or in person).

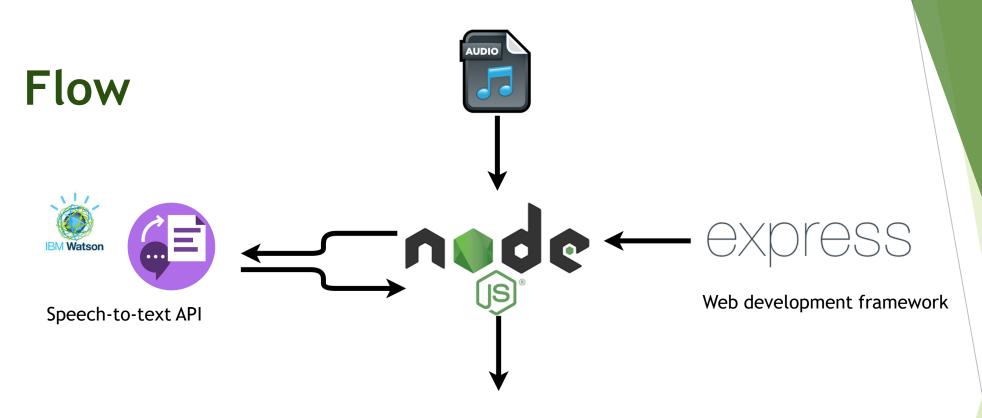
TYPES OF DISFLUENCIES

- Hesitations: silent pause of 1 second or longer (ie: I.. (pause)..want the red one)
- Interjections: meaningless words irrelevant to the message [um/like/well/uh] (ie: I um want the red one)
- Revisions: change in content, grammar, or pronunciation of a message (ie: I want the blue...the red one)
- <u>Unfinished words</u>: a word that is abandoned and not completed later in the message (ie: I want the oran....red one)
- Phrase repetitions: repetition of at least 2 complete words of the message (ie: I want...I want the red one)
- Word repetitions (up to 2x): repetition of a whole word in a slow casual way (ie: I I want the red one)

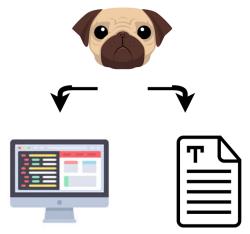
Current methods to measure stutter

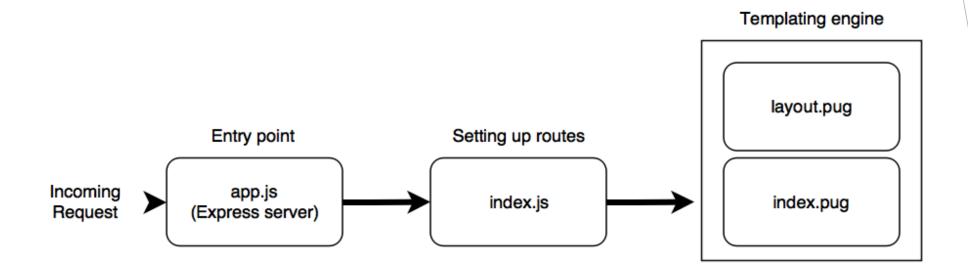
Utterance	Disfluency	Coding
1. S-s-s-see the duck.	part-word repetition	[PW3]SEE THE DUCK.
2. I-I-I want to go there.	single syllable word repetition	[WW2]I WANT TO GO THERE.
3. Where is it?	disrhythmic phonation [DP]WHERE IS IT?	
4. I - um – go there.	interjection	I [I] (UM) GO THERE.
5. I want the remo—remote.	multisyllabic word repetition	I WANT THE [M] REMOTE.
6. I go—I go to the store.	phrase repetition	[P] (I GO) I GO TO THE STORE.
7. I ride my bike—scooter.	revision I RIDE MY [R] (BIKE) SCOOTE	
8. I want to go to	abandoned	I WANT TO GO TO>.

PW (part-word repetition)	IJM JM III	= 13
WW (single-syllable word rep	etition)	
DP (disrhythmic phonation)		
I (interjection)		
M (multisyllabic word repetit	ion)	
P (phrase repetition)		
R/A (revision/abandonded)		
PW units (part-word repetition units)		
WW units (single-syllable wor	rd repetition units)	

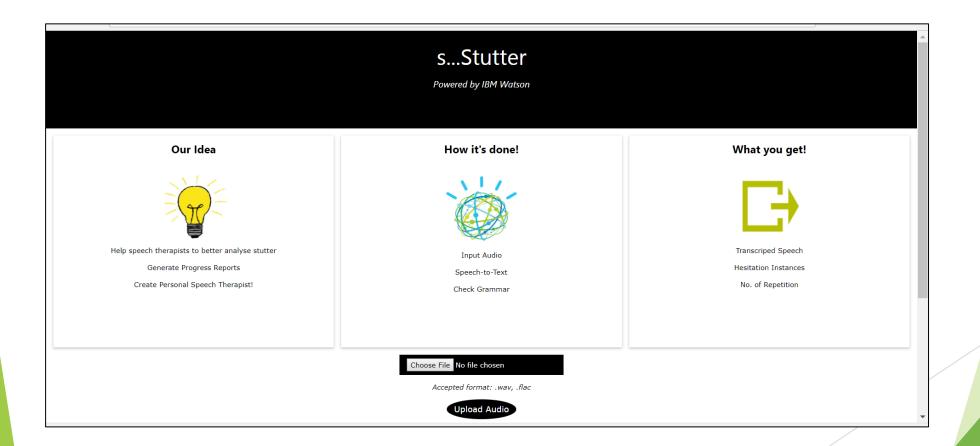

- To create a tool to be used by speech language pathologists for analyzing stutter patterns in the speech (AUTOMATIC ASSESSMENT)
- As a self-help tool to be used by patients themselves in order to understand their speech and disfluencies
 - Record your practice sessions and get detailed results at your own convenience
- Accurate time stamp markings of hesitations
- Documenting all the repetitions to get an idea of the syllables uttered incorrectly most of the time

IBM Watson's Speech-to-text API


- It uses speech recognition capabilities to convert following languages from speech into text
 - Arabic
 - English
 - Spanish
 - French
 - Brazilian
 - Portuguese
 - Japanese
 - Mandarin
- Upload pre-recorded audio (.wav, .flac, or .opus only)
- To transcribe the human voice accurately, the service uses machine intelligence to combine information about grammar and language structure with knowledge of the composition of the audio signal.



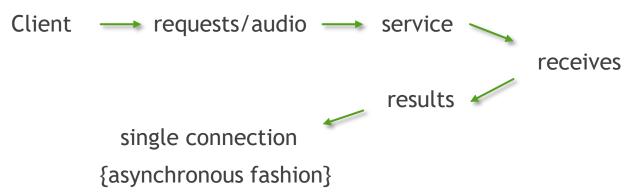
Pug - Templating Engine



Code Structure

https://s-stutter.mybluemix.net/ → Deployed to Bluemix

Dataset


<u>University College London's Archive of Stuttered Speech (UCLASS)</u>

- Recordings of speakers who stutter and background details about these speakers and the conditions in which the recordings were made
- DIVISION OF PSYCHOLOGY AND LANGUAGE SCIENCES SPEECH TEAM
 - Peter Howell, Stephen Davis, Jon Bartrip and Laura Wormald

Special thanks - Dr. Tino Haderlein (Researcher, Speech processing Group, FAU)

Future scope

- Creating a chatbot -> "Personal Speech pathologist"
 - Converses with the patient encouraging repetition of words detected through previous step
 - Or facebook Messenger chatbot
- Detect improvement in user's speech through repeated use and displaying graphs
- Extend for real-time analysis Websocket interface

- Audio streams directly from browsers (HTML5 WebSocket clients) to the service
- Reduces latency

References

- http://www.uclass.psychol.ucl.ac.uk/
- https://www.ibm.com/developerworks/cloud/library/clbluemix-fundamentals-create-and-deploy-a-node-app-to-thecloud/index.html#step2
- https://github.com/watson-developer-cloud/node-sdk
- https://docs.api.ai/docs/facebook-integration
- http://www.asha.org/uploadedFiles/asha/publications/cicsd/1 997ClinicalMeasurementofStutteringBehaviors.pdf
- http://www.fluencyfriday.org/realtimeanalysis.pdf
- http://www.mnsu.edu/comdis/isad13/papers/sawyer13.html

Jalil Ahmed (22062335) Prachi Govalkar (22062833)

