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periodic functions (1)

e 2m-periodic functions can be identified with functions defined
on the interval | = [—7, 7)

o L2(—m,m): (Hilbert-)space of square-integrable functions in /,
i.e., functions f : | = C with [, |f(w)[?dw < oo and
(complex) inner product
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periodic functions (2)
e The functions (for k € Z)
Ex i w s el ke

form a complete orthonormal basis (Hilbert-basis) of the
space L?(—m,7)

e Proof of orthonormality:
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periodic functions (3)

e For any integrable 27-periodic function f, i.e.,
J; 1f(w)] dw < oo, its Fourier coefficients are defined by

1 i :
crp = (Flex) = / Flw) e~ % du

2r J_,

e For sufficiently well-behaved functions one has the expansion
into a Fourier series:

f(w) ~ Z Cf’k eikw

keZ



periodic functions (4)
e For functions f, g € £L?(—n,7) the Parseval identity holds

1 [7 —
ZCf,k’Cg,k:g f(w)g(w)dw:<f\g>,
keZ -

and so does the Plancherel identity

S lerul? = / ()2 de = [|F]3

kEZ

e Proof. It follows from orthonormality of the functions ¢, that

(flg)= Zcf,JEJ|ZCgk€k
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signals (1)

A (time-discrete) signal is a two-sided infinite sequence

x = (..., x[=2], x[-1],x[0], x[1], x[2], . . .) = (x[n]) pez

of complex numbers, i.e., x € CZ

C” is a C-vector space (of uncountable dimension) w.r.t.
component-wise addition and scalar multiplikation

(*-signals are signals x with ||x[[1 = >, [x[n]| < o

(2-signals are signals x with ||x||3 =3, [x[n]]? < oo

Every ¢-signal is a ¢-signal, but not conversely

¢t = (Y(Z) resp. £? = (?(7Z) denote the subspaces (with norm)
of C% of ¢1- resp. (*-signals. Both have countable dimension.
% is even a Hilbert space w.r.t. the inner product

(x,ly)=> xln-yln]

nezZ



signals (2)

e The frequency representation of a signal x is its Fourier series

X(w) =Y x[n]e™

nez

This is a 2m-periodic function

e The coefficients are obtained from X(w) by Fourier's integral:

«[n] = ;ﬂ/ﬂ X(w) e "“dw = (X|en)



signals (3)

e For /?-signals one has energy conservation
(see the Plancherel formula above)

1 ™
Ix[13 =Y x[n]* = 27T/ X (W)]* dw = [ X (w)[13,
nez -
e and more generally the Parseval identity holds:

™
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signals (4)

e The unit impulse at time 0 is the signal & given by

5[] = 1 forn=0
0 forn#0

e For any signal x and k € Z the k-shifted signal 7Kx
(by time or distance k) is given by

(Tkx) [ =x[n— k] (neZ)
e The linear mappings
k. C?t 5 C%: x— 7Fx

are also linear transformations of ¢} and of ¢2



convolution (1)

e The convolution x x y of two signals x = (x[n]),,; and
y = (y[n]) ez is defined by

(xx )] =Y x[k]-yln—k (n€N)

kEZ

(provided that the sums converge for all n € Z)

e Convolution is commutative and associative:

xxy=y*x and xx(yxz)=(xxy)xz



convolution (2)

e The most important special cases are these:
e If x = (x[n]),,z is a finite signal (finitely many x[n] are # 0),
then
— for any signal y the convolution x x y is again a signal, and
—for y € ¢! resp. € /7 the conv. xxy is again € ¢! resp. € (2.
The same is true if y is a finite signal.
e For x,y € £*, one has x x y € ¢*. This follows from

Ixxylls = 1(x* y)IK]]

=3 "> x[k] - yln— K]
neZ |kez

<SS UK lyln— ]|

=" IxIKI - S Iyl = lixl - Nyl
keZ neZ

e For £? the correct statement is a bit more complicated



convolution (3)

e The convolution theorem:
For signals x,y, z € ¢! with z = x x y one has

Vw : Z(w) = X(w) - Y(w)

for the corresponding Fourier series
e This follows from

Z(w)=)_ (Zx[k] y[n — k]) el "

n€Z \kezZ

_ Z X[k] eikwy[n o k] ei(n—k)w
n,keZ

_ Zx[k] eikw . Zy[n] el nw
keZ neZ

= X(w)-Y(w)



filter (1)

e A linear transformation T : CZ — C?Z (or of £* resp. £?) is
translation invariant, if it commutes with the shift 7:

Vx € CZ: T(rx) = 1(Tx),

in shorthand: Tor =70 T.
o If this holds, then To7k =7ko T forall k € Z



filter (2)

e A linear transformation T : ¢* — (1 is continuous (or stable),
if there is a constant C > 0 such that

Vx et ||Tx|l < C- x|

e An equivalent statement is:
for every sequence of signals (x(’"))

(<)

. 1 1 .
men 1N £t and x € ¢+ with

(m) i
men et X one has (Tx )meN —n Tx, ie,

1™ — x| 2 mase 0 = [ Tx™ — Tx|| =m0 0

e A similar definition is made for transformations of ¢2



Filter (3)

e Definition: An £1- filter resp. (?-filter is a linear
transformation of ¢! resp. ¢2 which is both translation
invariant and continuous

e For any h € ¢* the convolution mapping
Th:0t =0 x—x*h

is an (1-Filter

e translation invariance can be checked directly
e continuity follows from

[ Thx[lx = [lx bl <[]l - [|h]lx

The required constant C is just ||hl|;



filter (4)

e Theorem: For any /!-Filter T thereis an h € /! sth. T = Tp,.

e Sketch of proof:
e Write the signal x as a linear combination of shifted impulses:

x = Z x[k] 76
kez

e Now put h = T9.
It follows from linearity and translation invariance of T that

Tx ® Zx[k] Trk8 = Zx[k] “T6 = Zx[k] 7%h

e From (7%h)[n] = h[n — k] one has
(Tx)[n] = Zx[k] h[n — k].
keZ

and thus Tx =xxh
e Notabene: Continuity of T is needed in order to justify
switching of T with the infinite sum 3~ in (*)



filter (5)

About teminology: the signal h = T4 is called impulse
response of the filter. The corresponding Fourier series H(w)
is the frequency response or transfer function of the filter

In systems theory, the z-transform of a signal (or filter)
h = (h[k]) ¢y is the power series

h(z) = hlK] 2",

kEZ

so that the frequency response is H(w) = h(e'*)

Writing H(w) for real w is the same as considering h(z) only
for z from the complex unit circle, i.e. |z| = 1. In writing h(z)
one implicitly considers z as a general complex variable

Some authors define H(w) = h(e~'%), in which case
H(w) = 32, hlk] ™"k



filter (6)

e The "harmonic” signal x,, = (e_""“)nGZ belongs neither to
#1 nor to ¢?, but the convolution T}, x,, = x,, * h can be
computed for any h € ¢ :

(xw* h)[n] = e " “h[n — K]

keZ

_ e—inwzei(n—k)wh[n o k] _ H(w) . e—inw

kEZ
or  Tpx,=HWw)- x

e This means: each harmonic x,, = (e_""“)nGZ is an
eigenvector of T} with eigenvalue H(w)

e Conclusion: If T = Ty, is an ¢ -filter with frequency response
H(w), then for any ¢!-signal x and y = Tx = x x h one has

Vw : Y(w) = X(w) - Hw)



filter (7)

e The corresponding ¢?-theory is technically a bit more
complicated, but the results are essentially the same:

(?filters are precisely the convolution transformations
Th:x+— xxh,

for which H(w) € L®(—m,7), i.e. H(w) is bounded.



filter (8)

o Afilter T = Ty is real, if hjn] € R for all n € Z
e For a real filter h one has

H@) = 3" hlnle™ " = H(-w)

n

e Consequently |H(w)| = |H(—w)|, i.e., the function
w +— |H(w)| is an even function. It suffices to know this
function on the interval [0, 7]



filter (9)

o Afilter T = Ty is causal, if h[n] =0 for all n <0

e For a causal filter h one has for y = Tpx:

yIn = 3" x{k hln — Kl = 3" x[n - k] K],

k<n k>0

i.e., the response (output) y[n] at time n only depends on the
inputs x[n — k] at previous times n — k < n



filter (10)

o Afilter T = Ty is a FIR-filter (finite impulse response), if
h[n] # 0 only for a finite number of filter coefficients

o A FIR-Filter is specified by a finite vector of filter coefficients
(h[a], hla+ 1], ..., h[b]) with a < b and h[a] # 0 # h[b]



downsampling und upsampling (1)

e For any signal x one denotes by y = |2x (2-downsampling)
the signal given by

ylnl = x[2n] (n€Z)

(coefficients with odd index are eliminated)
e This is not a filtering operation because it is not
translation-invariant! In general:

(b2 7 x)[0] = x[—k] # x[-2K] = (7 |2 x)[0]

e As for the frequency representation, one has
(because of (—1)" =¢e'"™):

Y(w)=> x[2n] '™ = "x[n] taatm (2_1)n el nw/2
neZ neZ

e




downsampling und upsampling (2)

e For any signal x one denotes by y = Tox (2-upsampling) the
signal given by

x[n/2] if nis even,
yln = 102
0 if nis odd.

(inserting 0 between any two neighboring coefficients of x)

e This is not a filtering operation because it is not
translation-invariant!

e As for the frequency representation, one has

Y(w) =) x[n]e?" = X(2w)

neZ



downsampling und upsampling (3)

e Downsampling and upsampling do not commute!

One has |oTox = x, but for y = T5]ox one gets

(1] x[n] if nis even,
n| =
Y 0 if nis odd,

with frequency representation

Y(w) = = (X(w) + X(w + 7))

N =
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