DMIP – Exercise *Rigid Registration*

Marco Bögel, Bastian Bier, Yan Xia, Martin Berger Pattern Recognition Lab (CS 5)

TECHNISCHE FAKULTÄT

Registration – Overview

- Images from different modalities (CT, MR, PET, etc.) or from same modality but different exams (e.g., w/wo contrast) probably do not overlap
- Registration establishes a mapping between two coordinate systems to solve this
- *Rigid registration*: Assume a rigid body, only rotation, translation
- Deformable registration: Also allow non-rigid deformations (soft tissue!)

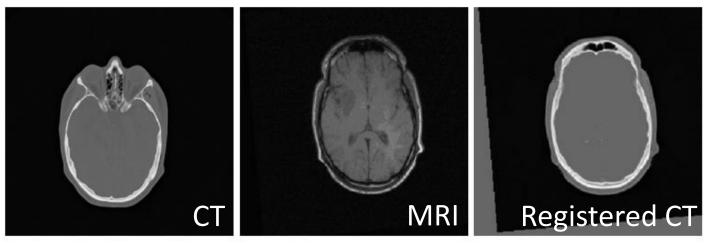


Image: ITK Software Guide

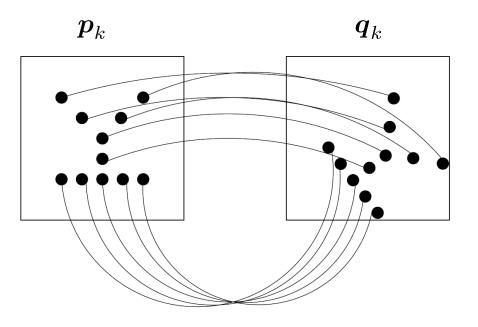
Registration – More Formal

Assume a set of corresponding 2-D points in two different images

$$C = \{ (\boldsymbol{p}_k, \boldsymbol{q}_k) ; k = 1, 2, \dots, N \}$$

where $\boldsymbol{p}_k, \boldsymbol{q}_k \in \mathbb{R}^2$ is the k-th pair of corresponding image points.

- How are correspondences established?
- How do you compute the transform that maps all p_k to all q_k ?



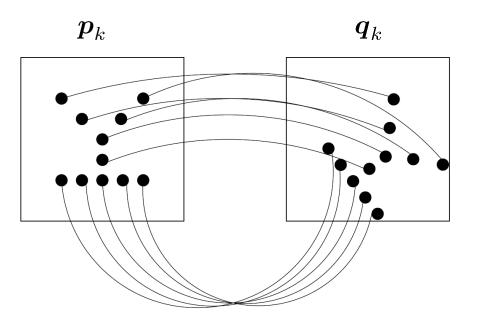
Registration – More Formal

Assume a set of corresponding 2-D points in two different images

$$C = \{ (\boldsymbol{p}_k, \boldsymbol{q}_k) ; k = 1, 2, \dots, N \}$$

where $\boldsymbol{p}_k, \boldsymbol{q}_k \in \mathbb{R}^2$ is the k-th pair of corresponding image points.

- How are correspondences established? Markers or similarity metrics
- How do you compute the transform that maps all p_k to all q_k ? Registration!



• A rigid transformation in 2-D:

 $oldsymbol{p}_k = oldsymbol{R} oldsymbol{q}_k + oldsymbol{t}$ where $oldsymbol{R}$ is the rotation matrix $oldsymbol{R} =$

$$\left(\begin{array}{cc}\cos\varphi & -\sin\varphi\\\sin\varphi & \cos\varphi\end{array}\right)$$

and t is the translation vector

• Least squares problem:

$$rgmin_{arphi, oldsymbol{t}} \sum_{k=1}^N \|oldsymbol{p}_k - oldsymbol{R}oldsymbol{q}_k - oldsymbol{t}\|^2$$

• But we would prefer a linear problem!

Rotations in 2-D – Complex Numbers

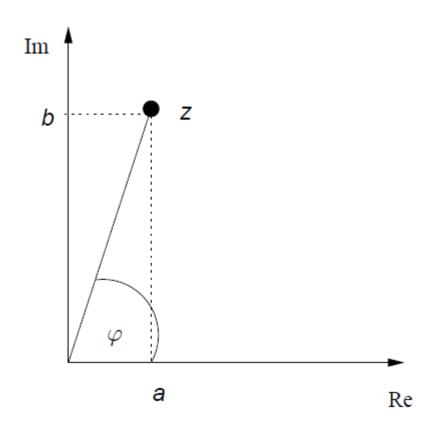
 A complex number can be seen as a (vector to a) point in 2-D:

 $\boldsymbol{z} = a + \mathrm{i}b$

 There is also the Euler representation of complex numbers:

$$oldsymbol{z} = oldsymbol{|z|} \, \mathrm{e}^{\mathrm{i}arphi}$$

where $|z| = \sqrt{a^2 + b^2}$ is the length of the vector and $\varphi = \operatorname{atan2}(b, a)$ the angle



Rotations in 2-D – Complex Numbers

 Multiplication of complex numbers: $\boldsymbol{z}_1 \cdot \boldsymbol{z}_2 = (a_1 + \mathrm{i}b_1) \cdot (a_2 + \mathrm{i}b_2)$ Z3 Im In Euler notation: $oldsymbol{z}_1 \cdot oldsymbol{z}_2 \ = \ oldsymbol{|z_1|} \, \mathrm{e}^{\mathrm{i}arphi_1} \cdot oldsymbol{|z_2|} \, \mathrm{e}^{\mathrm{i}arphi_2}$ b_1 Z_1 $= |\boldsymbol{z}_1| |\boldsymbol{z}_2| e^{\mathrm{i}(\varphi_1 + \varphi_2)}$ b_2 Z_2 $\varphi_3 = \varphi_1$ φ_2 φ_2 a_1 a_2 Re

Rotations in 2-D – Complex Numbers

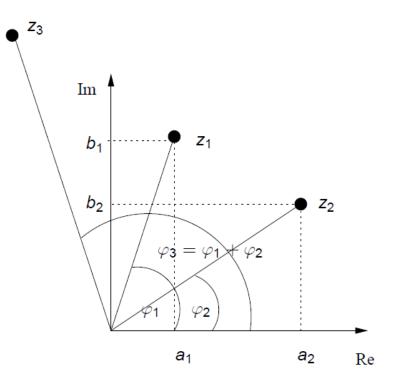
• Multiplication of complex numbers:

 $\boldsymbol{z}_1 \cdot \boldsymbol{z}_2 = (a_1 + \mathrm{i}b_1) \cdot (a_2 + \mathrm{i}b_2)$

• In Euler notation:

$$egin{array}{rcl} oldsymbol{z}_1 \cdot oldsymbol{z}_2 &=& |oldsymbol{z}_1| \, \mathrm{e}^{\mathrm{i} arphi_1} \cdot |oldsymbol{z}_2| \, \mathrm{e}^{\mathrm{i} arphi_2} \ &=& |oldsymbol{z}_1| \, |oldsymbol{z}_2| \, \mathrm{e}^{\mathrm{i} (arphi_1+arphi_2)} \end{array}$$

• If $|\boldsymbol{z}_2| = 1$, this is a rotation!



rotation translation • Now we get: $p_{k,1} + ip_{k,2} = (r_1 + ir_2)(q_{k,1} + iq_{k,2}) + t_1 + it_2$ where $r_1^2 + r_2^2 = 1$ This can be rewritten into two linear equations: $p_{k,1} = r_1 q_{k,1} - r_2 q_{k,2} + t_1 = (q_{k,1}, -q_{k,2}, 1, 0) \begin{bmatrix} r_2 \\ r_2 \\ t_1 \end{bmatrix}$ $= r_1 q_{k,2} + r_2 q_{k,1} + t_2 = (q_{k,2}, q_{k,1}, 0, 1) \begin{pmatrix} r_1 \\ r_2 \\ t_1 \\ r_4 \end{pmatrix}$ $p_{k,2}$

rotation translation • Now we get: $p_{k,1} + ip_{k,2} = (r_1 + ir_2)(q_{k,1} + iq_{k,2}) + t_1 + it_2$ where $r_1^2 + r_2^2 = 1$ This can be rewritten into two linear equations: $p_{k,1} = r_1 q_{k,1} - r_2 q_{k,2} + t_1 = (q_{k,1}, -q_{k,2}, 1, 0) \begin{bmatrix} r_2 \\ r_2 \\ t_1 \end{bmatrix}$ real $r_1 q_{k,2} + r_2 q_{k,1} + t_2 \neq (q_{k,2}, q_{k,1}, 0, 1) \begin{bmatrix} r_2 \\ t_1 \end{bmatrix}$ $p_{k,2}$ imaq

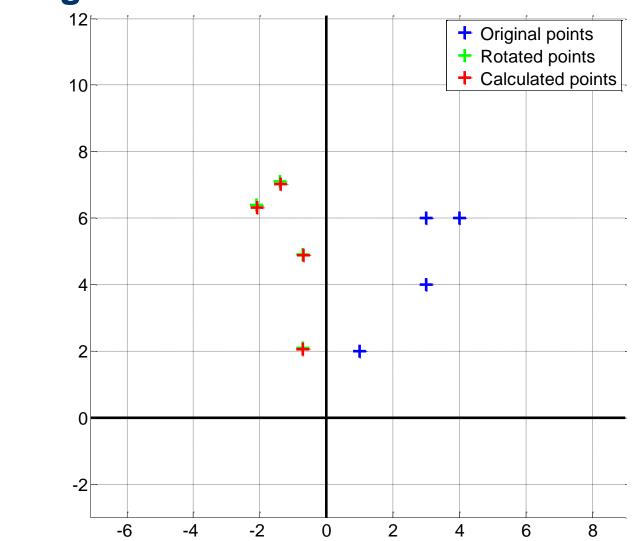
• Putting it all together, we get:

$$\boldsymbol{A}\boldsymbol{x} = \begin{pmatrix} q_{1,1} & -q_{1,2} & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ q_{N,1} & -q_{N,2} & 1 & 0 \\ q_{1,2} & q_{1,1} & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ q_{N,2} & q_{N,1} & 0 & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ t_1 \\ t_2 \end{pmatrix} = \begin{pmatrix} p_{1,1} \\ \vdots \\ p_{N,1} \\ p_{1,2} \\ \vdots \\ p_{N,2} \end{pmatrix} = \boldsymbol{b}$$

- Democratic algorithm: Rotation and translation are estimated simultaneously
- Linear problem! How do we solve it?
- The solution needs to be scaled so that $r_1^2 + r_2^2 = 1$

- Democratic algorithm: Rotation and translation are estimated simultaneously
- Linear problem! How do we solve it? Pseudoinverse (SVD)
- The solution needs to be scaled so that $r_1^2 + r_2^2 = 1$

Rigid Registration – Exercise



14

Rigid Registration – Intensity Based

- Point based: $\arg\min_{\varphi, \boldsymbol{t}} \sum_{k=1}^{N} \|\boldsymbol{p}_k \boldsymbol{R} \boldsymbol{q}_k \boldsymbol{t}\|^2$
- Intensity based:

$$rg\min_{arphi, oldsymbol{t}} D\left(oldsymbol{S}\left(oldsymbol{x}
ight), oldsymbol{M}\left(oldsymbol{R}oldsymbol{x}+oldsymbol{t}
ight)
ight)$$

where D is a similarity or distance function, S is the static or reference image, M is the moving or template image and x is a point in the image.

• Sum of Squared Distances (SSD)

$$SSD\left(\boldsymbol{I_1}\left(\boldsymbol{x}\right), \boldsymbol{I_2}\left(\boldsymbol{x}\right)\right) = \sum_{i=1}^{N} \left(\boldsymbol{I_1}\left(\boldsymbol{x}_i\right) - \boldsymbol{I_2}\left(\boldsymbol{x}_i\right)\right)^2$$

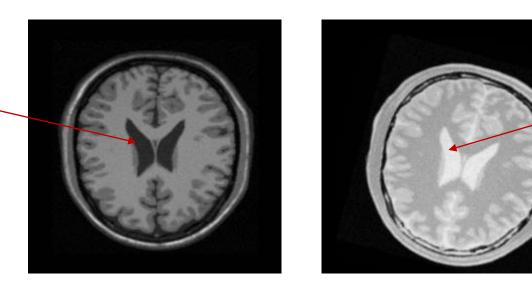
- Direct intensity comparison: Same intensities shown?
- Simple and fast
- Requires same intensity ranges for same tissues

Rigid Registration - Implementation

• Generate a Shepp-Logan phantom and transform it

- Now we want to start with the registration. Filter the image to avoid local minima during optimization.
- Implement SSD
- Use the optimizer to get the translation and the rotation

• How about for images that have the different intensity ranges?



180

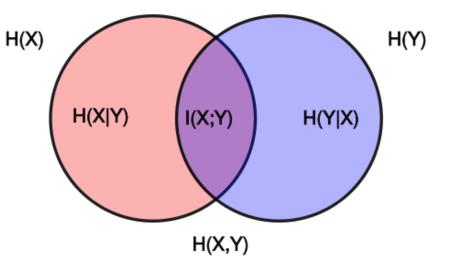
T1 MR

Proton Density MR

• Mutual Information (MI) – a measure of mutual dependence of images $MI \left(\boldsymbol{I_1} \left(\boldsymbol{x} \right), \boldsymbol{I_2} \left(\boldsymbol{y} \right) \right) = H \left(\boldsymbol{I_1} \right) + H \left(\boldsymbol{I_2} \right) - H \left(\boldsymbol{I_1}, \boldsymbol{I_2} \right)$ $= H \left(\boldsymbol{I_1}, \boldsymbol{I_2} \right) - H \left(\boldsymbol{I_1} | \boldsymbol{I_2} \right) - H \left(\boldsymbol{I_2} | \boldsymbol{I_1} \right)$

where $H(\cdot)$ is the marginal entropy, $H(\cdot, \cdot)$ is the joint entropy, $H(\cdot|\cdot)$ and is the conditional entropy

- Comparison of intensity distribution: Same information shared?
- Complex computation
- More robust, if intensities for same tissues differ between images



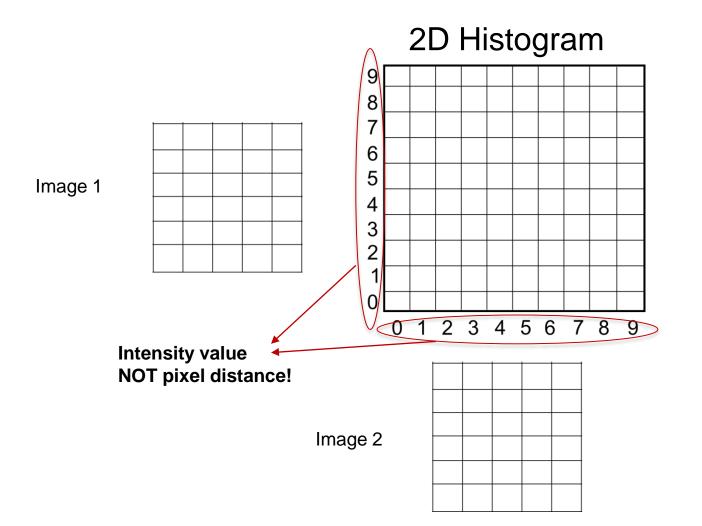
• Mutual Information (MI) – a measure of mutual dependence of images $MI(I_1(x), I_2(y)) = H(I_1) + H(I_2) - H(I_1, I_2)$ $= H(I_1, I_2) - H(I_1|I_2) - H(I_2|I_1)$ where $H(\cdot)$ is the marginal entropy $H(\cdot)$ is the joint entropy $H(\cdot)$ and

where $H\left(\cdot\right)$ is the marginal entropy, $H\left(\cdot,\cdot\right)$ is the joint entropy, $H\left(\cdot|\cdot\right)$ and is the conditional entropy

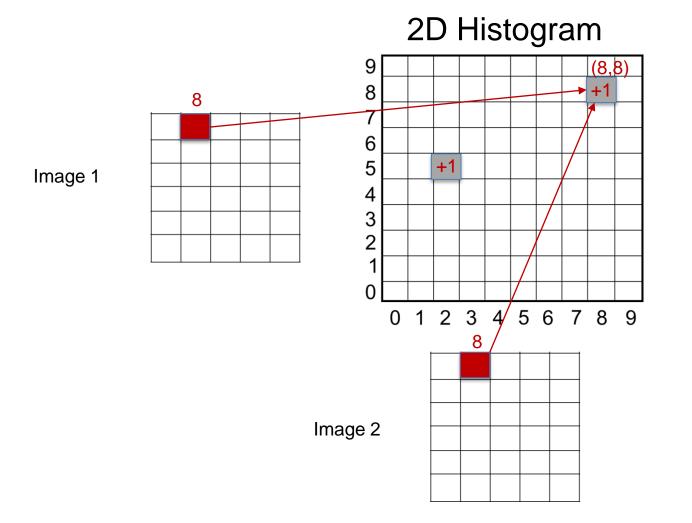
$$H\left(\boldsymbol{I}_{1}, \boldsymbol{I}_{2}\right) = -\sum \sum P\left(x, y\right) \log_{2}\left[P\left(x, y\right)\right]$$

where $P(\cdot, \cdot)$ is the probability of the values occurring together \rightarrow **Joint histogram**

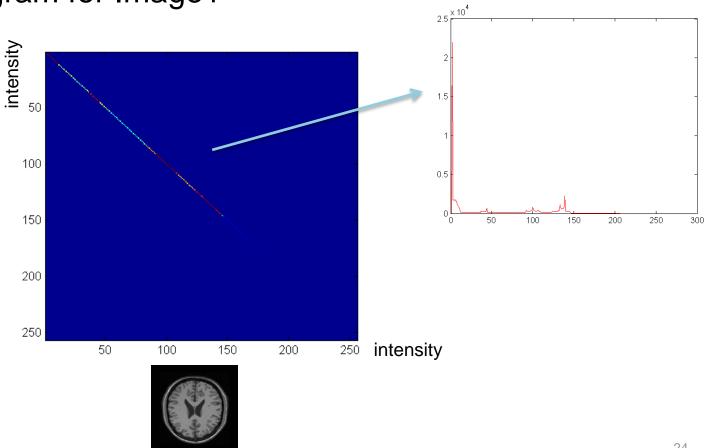
• ! The MI should be maximized, but we require a minimization problem !



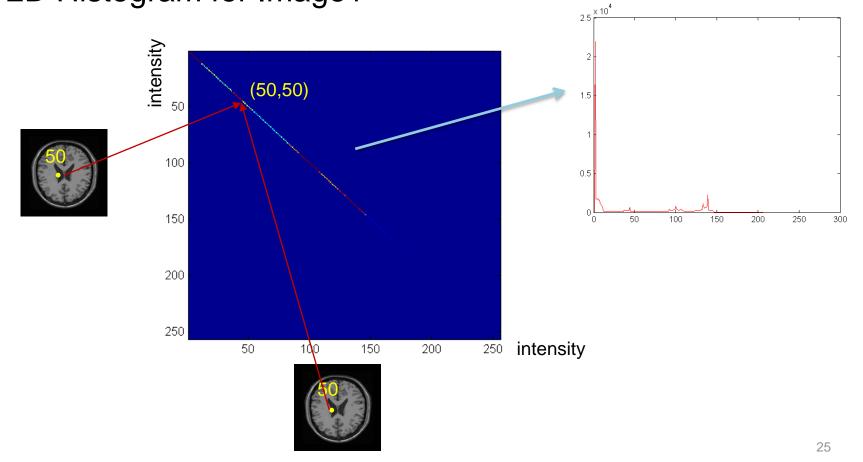




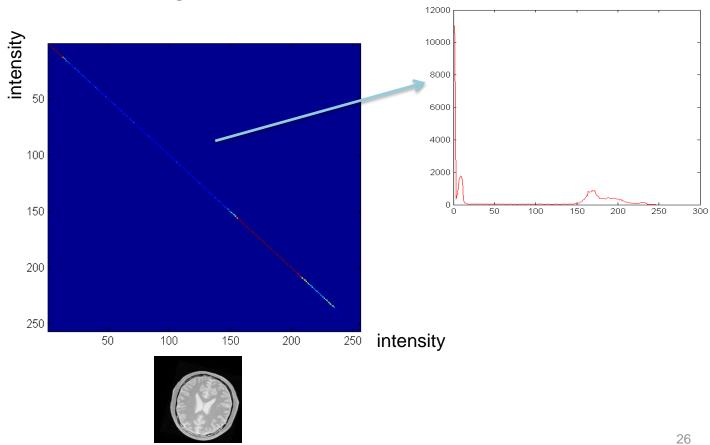
2D Histogram for Image1



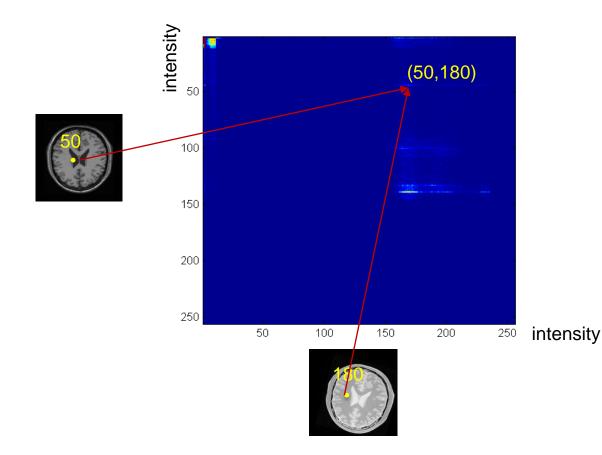
2D Histogram for Image1



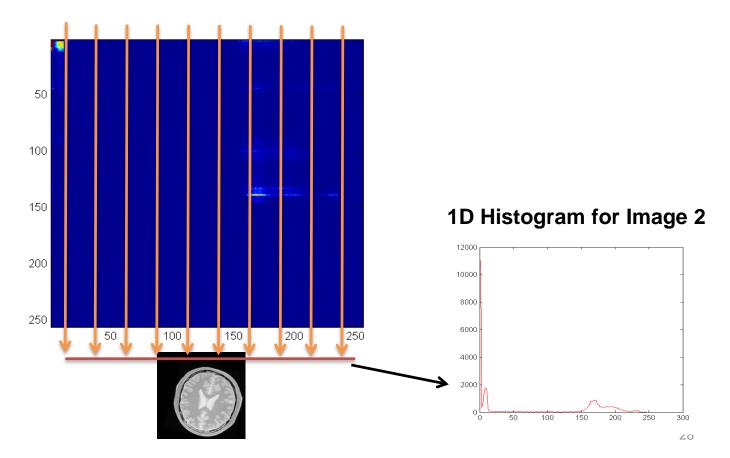
2D Histogram for Image2



2D Joint Histogram for both



2D Joint Histogram for both



2D Joint Histogram for both

