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Sinograms
What is a projection?

Mathematically, a projection is a line integral of a function
We use projection synonymous with X-ray projection

projection
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A stack of all acquired projections sorted by their angle
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necessary information to reconstruct one 2-D slice
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Sinograms
What is a sinogram and how does it relate to projections?

A stack of all acquired projections sorted by their angle
A 2-D sinogram contains information from 1-D projections, i.e. all 
necessary information to reconstruct one 2-D slice

Why is it called sinogram?
Because an off-centred object creates a trace that looks like a
sine-wave



Sinograms
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Sinograms
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Sinograms
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Sinograms

14



Scan Simulation
We will scan a Shepp-Logan phantom

im = phantom(64);
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Scan Simulation
Scanning is simulated by summing up columns
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Scan Simulation
We rotate the image instead of the detector
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Scan Simulation
Note: If we don’t crop after rotation, we get different scan sizes 
and (unnatural) translations of the detector
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Scan Simulation
Task: Setup the scan parameters

% angleIncrement = ???;

% startAngle = ???;

phi = startAngle;

% numberOfProjections = ???;
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Scan Simulation
Task: Implement the actual scan simulation: Rotate the image, 
sum up the columns, save the current projection and set the 
next rotation angle.

for i=1:numberOfProjections

...

% rI = ???;

...

% Sum up columnwise -> parallel beam

% projs{i} = ???;  

% Compute the next rotation angle

% phi = ???;  

end
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Reconstruction
Used Filtered Backprojection scheme:
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Convolution in spatial domain

Backprojection onto detector



Reconstruction
Used Filtered Backprojection scheme:
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Convolution in spatial domain

Backprojection onto detector



Filtered Backprojection for Parallel Beam
For the Filtered Backprojection, why do we need a high pass 
filter? What would the reconstruction look like without filter?

23

1 2 4

6416 256



Filtered Backprojection for Parallel Beam
For the Filtered Backprojection we can use different filter 
kernels. List them!
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Filtered Backprojection for Parallel Beam
For the Filtered Backprojection we can use different filter 
kernels. List them!

Most important are Ram-Lak and Shepp-Logan

25

1 2 4

6416 256



Reconstruction
Three convolution options are implemented.

if(fltr == 1)

fltm = RamLak(60);

proj = conv(proj, fltm, 'same');

elseif(fltr == 2)

fltm = SheppLogan(60);

proj = conv(proj, fltm, 'same');

else

proj = proj;

end
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Reconstruction
Task: Implement the discrete spatial version of the RamLak
filter.

function [ramlak] = RamLak(width)

% 

% 

% 

% ??? 

% 

% 

% 

%  

end
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Reconstruction
Task: Implement the discrete spatial version of the RamLak
filter.
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Reconstruction
Task: Implement the discrete spatial version of the Shepp-
Logan filter.

function [shepp] = SheppLogan(width)

%

%

% ???

%

%

%

end
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Reconstruction
Task: Implement the discrete spatial version of the Shepp-
Logan filter.

30

0 10 20 30 40 50 60-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y
Shepp-Logan filter



Filtered Backprojection for Parallel Beam
What is the maximal angle that makes sense to acquire 
projections at?
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Filtered Backprojection for Parallel Beam
What is the maximal angle that makes sense to acquire 
projections at?

180° – after that, the same data is acquired twice
Which artefacts appear if you use 110 projections at 
1°increment?
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Filtered Backprojection for Parallel Beam
What is the maximal angle that makes sense to acquire 
projections at?

180° – after that, the same data is acquired twice
Which artefacts appear if you use 110 projections at 
1°increment?

View-undersampling artefacts
Manifestation in CT: Streaks, “rough” edges, wrong grey values and 
(most important) missing parts
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Filtered Backprojection for Parallel Beam
Which artefacts appear if data gets truncated?

Cupping artefacts, bright ring artefacts
Wrong grey values
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Reconstruction
Used Filtered Backprojection scheme:
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Backprojection
Two different approaches are common

1. Detector driven: “Smear” detector values over the image.
Problem: Interpolation in 2D!

2. Pixel driven: Sample where you expect the outcome!
Go over all pixel centers
Project center points to the detector
Interpolate on the detector and assign to corresponding pixel

Both approaches are repeated for each projection
Output is the mean over all results
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Backprojection
We rotate the detector border points. The coordinate system’s 
origin is shifted according to the rotation center.

Po = [-dimensions(1)/2; -dimensions(2)/2];

Pt = [-dimensions(1)/2; dimensions(2)/2];

R = [cos(rad), -sin(rad); 

sin(rad), cos(rad)];

pPo = (R*Po); 

pPt = (R*Pt);
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Backprojection
We rotate the detector border points. The coordinate system’s 
origin is shifted according to the rotation center.

Po = [-dimensions(1)/2; -dimensions(2)/2];

Pt = [-dimensions(1)/2; dimensions(2)/2];

R = [cos(rad), -sin(rad); 

sin(rad), cos(rad)];

pPo = (R*Po); 

pPt = (R*Pt);
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Backprojection
We use the Hesse normal form to calculate the distance of 
each point to the detector.

1. Derive the normal form for the detector

= 0
dirDet = pPt-pPo;

dirDet = dirDet/norm(dirDet);

normalDet = [-dirDet(2);dirDet(1)];

normalDet = normalDet/norm(normalDet);

d = pPo'*normalDet;
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Backprojection
Projection is done using the detector normal and the distances

dd = imInd*normalDet-d*ones(nInd,1);

pDet = imInd-repmat(normalDet',nInd,1).*repmat(dd,1,2);

dis = pDet-repmat(pPo',nInd,1);

ts = sqrt((dis(:,1).*dis(:,1))+

(dis(:,2).*dis(:,2)));
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Backprojection
Points do not necessarily hit a detector cell. Thus, we have to 
interpolate between the lower cells li and the upper cells ui
using distance weights ld and ud.
li = floor(ts);

li(li<1)=1;

li(li>dimensions(2))=dimensions(2);

ui = li+1;

ui(ui>dimensions(2))=dimensions(2);

ld = abs(ts-li);

ud = abs(ts-ui);

fbpv = (ones(nInd,1)-ld).*proj(li)'+(ones(nInd,1)-ud).*proj(ui)';
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