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Probability Density Estimation - Part II

Exercise 1 Adaptive binning techniques enable an automatic and adaptive selection of the
bin size in a discrete histogram. This exercise considers adaptive binning that
is based on a minimization of the approximation error of the discrete histogram
with respect to the underlying probability density p(x).

(a) Write down the approximation error for an histogram with adaptive bin size
as introduced in the lecture.

(b) How can we estimate the mean values and the bounds of the different bins
based on the approximation error as underlying objective function?

(c) Derive a binning scheme if p(x) is a uniform distribution.

Exercise 2 Matlab exercise The underlying probability density of the intensities in an im-
age can be approximated by the image histogram. However, the image histogram
is a discrete representation of this density. In order to obtain a continuous esti-
mate, we employ the Parzen window approach.

(a) Download the the image fundus.png which shows the optic nerve head
(bright, circular spot) on a human retina as well as retinal blood vessels
converging at the optic nerve head. Calculate the discrete histogram of the
image (Matlab hist).

(b) Estimate the probability density of the image intensities using the Parzen
window approach. For this purpose, use N randomly selected intensity
samples from the image to apply Parzen window estimation. Throughout
your experiments, use a Gaussian kernel of width (standard deviation) λ for
your experiments.

Implement the Parzen window estimation in Matlab and visualize the dis-
crete histogram along with the estimated density.

(c) Take a look at the results for

• λ = 0.25 and N = {10, 100, 1000},

• λ = 5 and N = {10, 100, 1000}, and

• λ = 10 and N = {10, 100, 1000}.



What happens if λ is chosen too small (too high) for a given N? Explain
your observations.

(d) Now, we perform an automatic and data-driven selection of an optimal kernel
width λ. Write down the log-likelihood function to estimate λ in a leave-
one-out cross validation scheme. Visualize your log-likelihood function for
N = 1000 samples and different parameters λ (e. g. 0.5 ≤ λ ≤ 10).

(e) Optimize the log-likelihood function for N = 1000 samples in Matlab to find
an optimal λ.

Hint: Use a gradient-based (first-order) optimization technique (Matlab:
fminunc)). Therefore, derive the derivative of the log-likelihood function
with respect to λ to provide a gradient for the optimization algorithm.


