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Optical Flow 

The direction of the optical flow vectors is color 
coded as shown on this sphere. 
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Tracking Specific Objects 
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Tracking with Kalman Filter 
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New Paradigm - Prediction 

n  The image brightness equation does not explicitly incorporate 
previous knowledge.  

n  For example, based on what has been observed so far can we 
predict where the moving object will most probably be in the 
next frame? 

n  Such a method would work better: 

§  If we observe the scene for more than 2 or 3 frames.  

§  There are specific objects or regions whose motion is analyzed 
instead of estimating the motion of every pixel that has changed. 
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Tracking 

n  Tracking: the pursuit (of a person or animal) by following tracks 
or marks they left behind. 

n  Tracking in computer vision: following the motion of a particular 
object (or objects).  

n  Tracking in computer vision often involves predicting where the 
object(s) will appear in the next frame, based on:  

§  Previous observations, up to the current frame, on how the 
object(s) move. 

§  A model that describes how the motion of the object. 
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Dynamic System 

n  Motion is now analyzed in the context of a dynamic system. 
n  Typical attributes of such a system are: 

1.  We are dealing with a system that is changing over time, i.e. 
a dynamic system.  

2.  We have sensors observing the dynamic scene. The 
measurements of compute from them are noisy. 

3.  There is an uncertainty about how the system is changing. In 
other words we have an uncertain model of the system's 
dynamics. 

4.  We want to produce the best possible estimates of what is 
moving in which direction and at what speed. We want optimal 
estimates of the state of a dynamic system.  
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Optimality 

n  Our goal is to obtain optimal motion estimates. 
n  How do we know that our estimates are good approximations of 

what is really happening? 
n  Common method: Our estimates should come as close as 

possible to the real motion. The difference between the true and 
the estimated values should be as close to zero as possible. 

n  Soooo... out of all the possible solutions we want the one that 
minimizes the mean of the squared error (MSE). 

n  The idea of minimizing the mean squared error is not new. It 
has its roots as far back as Gauss (1795). 

n  R.E. Kalman introduced in 1960 an efficient recursive solution to 
minimizing least-squared error for discrete-data linear 
problems. 
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Rudolf Kalman 

 
n  Draper Prize by National Academy of Engineering 2008 
n  National Medal of Science on October 7th, 2009. 
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Kalman Filter 

n  His solution, known as Kalman filter is a set of mathematical 
equations that provides an efficient recursive solution to the 
least-squares method. 

n  It explicitly encompasses noise and uncertainty. 

n  Originally, Kalman filtering was designed as an optimal 
Bayesian technique to estimate state variables at time t 
based on:  
§  the previous state of the variables, i.e. at time t-1 
§  indirect and noisy measurements at time t 
§  known statistical correlations between variables and time. 

n  Kalman filtering can also be used to estimate variables in a static 
(i.e. time-independent) system, if the system is appropriately 
modeled. 
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Kalman Filter Popularity 

n  Since its introduction in 1960, Kalman filtering (KF) has become 
a classical tool of optimal estimation theory and has been applied 
in areas as diverse as: 
§  aerospace,  

§  marine navigation,  

§  nuclear power plant instrumentation,  

§  demographic modeling,  

§  manufacturing, 

§  …  

n  Why did this method become so popular? 

n  The KF method is very powerful in several aspects:  
§  it supports estimations of past, present and future states,  
§  it can do so even when the precise nature of the modeled system is unknown. 
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Dynamic System Formulation 

n  We will view the problem in its more general 
formulation.  

n  Consider motion as a problem where we have to 
estimate the values of the variables of some 
dynamic system.  

n  A dynamic system is often described via: 
n  a state vector      , also known as the state, 

n  a set of equations called the system model, which 
captures the evolution of the state vectors over 
time. 

  

€ 

! x 
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State Vector 

n  The state vector x is a time-dependent vector                . 
n  The elements of the vector are variables of the dynamic 

system. 
  
n  In case of motion,                             . 

n  How big is n? As big as necessary in order to capture all the 
dynamic properties of the system. 

n  Example1: 3D motion 
n  Example2: multiple moving objects, e.g. four objects moving 

on a plane (2D motion). 
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! x (t)∈ Rn
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! x (t) = (q1(t),q2(t),…,qn (t))
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! x (t) = (vx (t),vy (t))
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! x (t) = (vx (t),vy (t),vz (t))
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! x (t) = ( ! x 1(t),
! x 2(t),

! x 3(t),
! x 4 (t))

= (v1x (t),v1y (t),v2x (t),v2y (t),v3x (t),v3y (t),v4 x (t),v4y (t))
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Time 

n  Assume that we observe the system at discrete, 
equally spaced time intervals so that: 

n  For simplicity           is denoted as      . 
n  Assumption: δt is small enough to capture the 

dynamics of the system. In other words, the system 
does not change much between consecutive time 
instants, i.e. during δt. 
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! x (tk )
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tk = t0 + kδt       
where k = 0,1,…    and δt is the sampling interval
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System Model 

n  Key Assumption: The system is linear. That means that the 
relationship between consecutive state-changes is linear. 

n  Then the system model can be written as: 

n           is a vector describing the random process noise.  

n           is the state transition matrix that captures the 
relationship between the current state k and the previous 
state  k-1 in the absence of noise. 

n           is an n x n matrix,          is an n-dimensional vector. 

n  The formulation so far does not consider the fact that 
we can have observations of the system.    
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! x k =Φk−1
! x k−1 +

! w k−1
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Φk−1   

€ 

! w k−1
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Measurements 
n  At any time tk, we have a vector               of measurements 

of the system. 
n  Due to imperfections (e.g. noise) in our sensors, there is 

uncertainty in our measurements.  
n  The vector        describes the uncertainty associated with 

each measurement     . 
n  The relationship between the true system state       and our 

measurements is given by the following equation: 

n        is the measurement matrix that captures the 
relationship between our measurements and the real system 
variables in the absence of noise. It is an m x n matrix.  

n        is an m-dimensional vector known as the measurement 
noise. 
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! z k ∈ Rm
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Noise 

n  There are two types of noise: 
§  Process noise  
§  Measurement noise  

n  In Kalman filtering both types of noise are assumed 
to be white, zero-mean Gaussians.  

n  As such they are described by their corresponding 
covariance matrices: 
§  Process noise covariance  
§  Measurement noise covariance  

 

  

€ 

! w k
  

€ 

! 
µ k

€ 

Qk

€ 

Rk



 Page 18  Page 18 

Elli Angelopoulou Kalman Filter 

Notations 

n  State variable 
n  State transition matrix 
n  Process noise  

n  Process noise covariance 

n  Measurement 

n  Measurement matrix 
n  Measurement noise 
n  Measurement noise covariance 
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Kalman Filter Setup 

n  We are observing a dynamic system. 
n  We have a linear system model, but there is 

uncertainty about the accuracy of the employed model. 

n  We also have sensor(s) that measure how the dynamic 
system behaves. 

n  The sensor(s) are noisy.  

n  The sensor noise is assumed to follow a white, zero-
mean, Gaussian distribution.  
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! x k =Φk−1
! x k−1 +

! w k−1
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! z k =Hk
! x k +
! 
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The Problem 

Measuring 
Devices 

Measurement 
Error Sources 

System State 
(desired but 
not known) 

External 
Controls 

System 
Error Sources 

System 

§  So far we have setup our variables and equations to describe a 
linear dynamic system that is measured by some sensors. 

Estimator 

Observed 
Measurements 

Optimal 
Estimate of 

System State 

§  Goal: Compute the best estimate of the system state       at 
time tk given the previous state estimate         and the current 
measurements       . 
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! ˆ x k
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! ˆ x k−1
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Kalman Filter Setup 

n  We are observing a dynamic system. 
n  We have a linear system model, but there is 

uncertainty about the accuracy of the employed model. 

n  We also have sensor(s) that measure how the dynamic 
system behaves. 

n  The sensor(s) are noisy.  

n  The sensor noise is assumed to follow a white, zero-
mean, Gaussian distribution.  
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! x k =Φk−1
! x k−1 +
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! z k =Hk
! x k +
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KF Idea 

n  An estimate of               is obtained from                   and       
in a 2-step process: 

1.  First, obtain an intermediate estimate,      , based on the 
previous estimates, but without using the newest 
measurements     . 

n  It is called the prediction step. It predicts what the state 
variable should be based purely on our model. 

2.  Use the intermediate estimate        and combine it, in the 
update step, with the newest measurements     , to get     . 
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ˆ x k
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ˆ x k
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! z k
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ˆ x k

  

€ 

! z k
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ˆ x k€ 

ˆ x k
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ˆ x k
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KF Idea - continued 

n  This 2-step process is performed as a series of 4 (or 5) 
recursive equations.  

n  The 4 (or 5) Kalman Filter equations are characterized by: 

1.  The state covariance matrix      . It is the covariance matrix of 
the estimate      . It is also known as the covariance of the 
estimates. It is a measurement of the uncertainty in     . 

2.  The state covariance matrix      . It is the covariance matrix of 
the estimate      . It is also known as the covariance of the 
prediction error. It is a measurement of the uncertainty 
in      . 

3.  The gain matrix      . It expresses the relative importance of 
the prediction        and the measurement      . 
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Notations for KF equations 
n  State variable 
n  State transition matrix 
n  Process noise  

n  Process noise covariance 
n  Covariance of the estimates 
n  Covariance of the prediction 

n  Gain Matrix 
n  Measurement 

n  Measurement matrix 
n  Measurement noise 
n  Measurement noise covariance 
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Kalman Filter 

n  Prediction equations 

§  Project state and 
covariance estimates 
forward in time 

n  Update equations 

§  Compute Kalman gain K 
§  Include the measurement 
§  Compute a posteriori estimate 
§  Compute a posteriori  

covariance of the estimate 

€ 

ˆ x k
− =Φk−1 ˆ x k−1

Pk
− =Φk−1Pk−1Φk−1

T +Qk

  

€ 

K k = Pk
−Hk

T (HkPk
−Hk

T +Rk )−1

ˆ x k = ˆ x k
− +K k (! z k −Hk ˆ x k

−)
Pk = (I−K kHk )Pk

−(I−K k )T +K kRkK k
T
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Kalman Filter Equations 

Predict   Correct 

  

€ 

Pk
− =Φk−1Pk−1Φk−1

T +Qk

K k = Pk
−Hk

T (HkPk
−Hk

T +Rk )−1

ˆ x k =Φk−1 ˆ x k−1 +K k (! z k −HkΦk−1 ˆ x k−1)
Pk = (I−K kHk )Pk

−(I−K k )T +K kRkK k
T
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Φk−1 ˆ x k−1 is the prediction 
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! z k −HkΦk−1 ˆ x k−1 is the innovation 
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ˆ x k =Φk−1 ˆ x k−1 +K k (! z k −HkΦk−1 ˆ x k−1) is the update 
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KF Remarks 

n  Let’s take a  closer look at the computation of the gain matrix and 
the update equation:  

 
n  If the measurement noise is much greater than the process noise,  

 

       will be small (that is, we won't give much credence to the 
measurement).  

n  If the measurement noise is much smaller than the process noise,  

 
       will be large (that is, we don’t trust our model too much).  
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K k
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Rk>>Qk
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Rk<<Qk

€ 

K k
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K k = Pk
−Hk

T (HkPk
−Hk

T +Rk )−1

ˆ x k = ˆ x k
− +K k (! z k −Hk ˆ x k

−)
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KF Remarks - continued 

n  The method assumes initial estimates of       and      . 

n  Typically, the entries in       are set to arbitrary high values. 
We set       to arbitrarily high values because we don’t trust 
our initial estimates. Hence, the estimate error is expected to 
be high. 

n  For       , if we have some data, we use it, otherwise we set 
that, too, to arbitrary values. 
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Filter Parameters and Tuning 

n  Most of the times we assume stable Rk and Qk over time. 

n  R: measurement noise covariance can be measured a priori. If 
we know our sensor we can analyze its noise behavior. 
Similarly, we can estimate the accuracy of our algorithm that 
extracts the measurement from the sensed data. 

n  Q: process noise covariance. Can not be measured, because 
we can not directly observe the process we are measuring. If 
we choose Q large enough (lots of uncertainty), a poor process 
model can still produce acceptable results. 

n  Parameter tuning: We can increase filter performance by 
tuning the parameters R and Q. 
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Filter Parameters and Tuning 

n  If we measure directly what we are trying to predict, then we 
can set H to the identity matrix I. 

n  If R and Q are constant, the estimation error covariance Pk and 
the Kalman gain Kk will stabilize quickly and stay constant. In 
this case, Pk and Kk can be precomputed. 



 Page 31  Page 31 

Elli Angelopoulou Kalman Filter 

Conceptual Overview 

n  Lost on the 1-dimensional line 
n Position – x(t) 
n Assume Gaussian distributed measurements 

x 
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•  GPS (or sextant) measurement at t1: Mean = z1 and Variance = σz1 

•  Optimal estimate of position is:  
•  Variance of error in estimate: σ2

x
 (t1) = σ2

z1 

•  If the boat stays in the same position at time t2, then  
 then the Predicted position is 

Conceptual Overview 
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ˆ x (t1) = z1

€ 

ˆ x 2
− = z1
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•  So we have the prediction  
•  GPS Measurement at t2: Mean = z2 and Variance = σz2 

•  Need to correct the prediction due to measurement to get  
•  Closer to more trusted measurement – linear interpolation? 

Prediction  
Measurement  

Conceptual Overview 
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ˆ x 2
−
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ˆ x 2
−
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z2
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•  The corrected mean is the new optimal estimate of position 
•  The variance of the new estimate is smaller than either of the 

previous two variances. 

Measurement  

corrected optimal 
estimate  

Prediction  
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ˆ x 2
−

Conceptual Overview 
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z2€ 

ˆ x 2
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ˆ x 2
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Conceptual Overview 

n  So far: 
 

We made a prediction based on previous data:    , σ-  

Took a measurement: zk, σz 

€ 

ˆ x k
−

Combined our prediction and our measurement 
to get a new optimal estimate and its variance 

€ 

ˆ x k = ˆ x k
− + K(zk − ˆ x k

−)
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σ k =σ−(1−K) + Kσ z
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Conceptual Overview 

•  At time t3, boat moves with velocity v=dx/dt 
•  Naïve approach: Shift probability to the right, according to 

the speed of the boat, to predict its position. 
•  This would work if we knew the velocity exactly, i.e. we had 

a perfect model. 

Naïve 
Prediction  

Previous 
estimate  
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ˆ x 2
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ˆ x 3
−
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•  Better to assume imperfect model by adding Gaussian noise. 
•  v= dx/dt +/- w 
•  The distribution for prediction not only moves according to 

the speed of the boat but also spreads out. 

Naïve 
Prediction  

Prediction  
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ˆ x 3
−

€ 

ˆ x 3
−

Previous 
estimate  

€ 

ˆ x 2

Conceptual Overview 
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•  Take another GPS (sextant) measurement at t3: Mean = z3 
and Variance = σz3 

•  Correct the prediction by linearly interpolating the pure 
prediction with the measurement.  

Measurement z3 

Corrected optimal 
estimate  

Conceptual Overview 

Prediction  
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ˆ x 3
−
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ˆ x 3
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Conceptual Overview 

We made a prediction based on previous data: 

Combined our prediction and our measurement 
to get a new optimal estimate and its variance: 

So what have we done? 
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ˆ x k
− =Φk−1 ˆ x k−1
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Pk
− =Φk−1Pk−1Φk−1

T +Qk

Took a measurement:   
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! z k,Rk
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K k = Pk
−Hk

T (HkPk
−Hk

T +Rk )−1

ˆ x k = ˆ x k
− +K k (! z k −Hk ˆ x k

−)
Pk = (I−K kHk )Pk

−(I−K k )T +K kRkK k
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Optimality of Kalman Filter 

n  It can be proven that for a linear system under white zero-
mean Gaussian noise, Kalman filtering gives an optimal 
solution. (Optimal in the statistical sense, i.e. the most probable 
estimate.)  

n  Even if the noise is not Gaussian, KF provably is the best linear 
unbiased filter. 

n  A Kalman filter computes the optimal        state estimate, as 
the maximum probability density of       given the past 
estimates, the past measurements and the current 
measurement.  
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ˆ x k
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xk
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ˆ x k = max! 
x k

p( ! x k
! x 1,
! x 2,…, ! x k−1,

! z 1,
! z 2,…,! z k−1,

! z k )
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Optimality of Kalman Filter - continued 

n  The probability density function is assumed to be Gaussian so 
its max. coincides with its mean. 

 

n  In reality, the true state lies with a probability c2 within an 
ellipse centered at       , where the ellipse is given by 

 

n  The axes of the ellipse are the eigenvectors of Pk. 

n  The true state lies with probability c2 inside the covariance 
ellipse of      . 

n  In tracking features we use the uncertainty ellipses to reduce 
the search space for locating a feature in the next frame. 
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(xk − ˆ x k )Pk
−1(xk − ˆ x k )T ≤ c 2
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p( ! x k
! x 1,
! x 2,…, ! x k−1,

! z 1,
! z 2,…,! z k−1,

! z k ) ~N (! x k,Pk )
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Tracking Example – no Noise 

n  Synthetic data without any added noise. 
n  True ball position shown with star. The estimated position shown with circles. 
n  Notice the estimate overshoots the "floor" and then overcompensates before settling down. 
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Tracking Example – Added Noise 

n  Synthetic data with and without any added noise (Added 10% noise). 
n  Ideal ball position in +. Noisy ball data in x. Estimated position in o. 
n  The overshoot is still present. At the more linear parts of the motion KF compensates for 

the presence of noise. 
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Multiple Tracking Example – No Noise 

n  Synthetic data without any added noise. 
n  Ideal ball position in +. Estimated position in o.  
n  Two filters end up getting associated with one set of measurements leaving another set 

abandoned. 
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Multiple Tracking Example – Little Noise 

n  Synthetic data with added noise of a factor of 5. 
n  Ideal ball position in +. Noisy ball data in x. Estimated position in o.  
n  The tracking still works best on the more linear parts of the motion. 
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Multiple Tracking Example – More Noise 

n  Synthetic data with added noise of a factor of 5. 
n  Ideal ball position in +. Noisy ball data in x. Estimated position in o.  
n  Notice that a different ball gets abandoned. 
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Challenges of Kalman Filter 

n  We have assumed that the system is linear. What if it is 
nonlinear? 

n  What if the measurement noise and process noise are: 
§  not Gaussian,  
§  not zero-mean,  
§  not independent of each other? 

n  What if the statistics (for example, the covariance matrix) of 
the noise is not known?  

n  Matrix calculations can impose a large computational burden 
for high-dimensional systems. Is there a way to approximate 
the Kalman filter for large systems, in order to reduce the 
computational load while still approaching the theoretical 
optimum of the Kalman filter? 
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Kalman Filter: Good or Bad? 

n  Kalman Filtering is highly efficient. It has a 
polynomial time complexity, O(m2.376 + n2), 
where n=dim(x) and m=dim(z). 

n  It is optimal for linear Gaussian systems. 
n  Many systems exhibit Gaussian noise. It is a 

widely-used assumption. 
n  Most robotic systems and human motion are 

non-linear. 
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Extended Kalman Filter 

n  Suppose the state-evolution and measurement equations are 
non-linear but still differentiable: 

 
 
§  The process noise w follows a zero-mean Gaussian distribution with 

covariance matrix Q. 
§  The measurement noise µ follows a zero-mean Gaussian distribution with 

covariance matrix R. 

n  Function f can be used to compute the predicted state from the 
previous estimate. 

n  Function h can be used to compute the predicted measurement 
from the predicted state. 

n  However, f and h can not be directly applied on the covariance. 
We need a linear approximation of f and h which we get through 
the Jacobian matrix. 

  

€ 

ˆ x k = f ( ˆ x k−1) +
! w k−1

  

€ 

! z k = h( ˆ x k ) +
! 
µ k
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n  For a scalar function y=f(x),  

n  For a vector function y=f(x), 

€ 

Δy = # f (x)Δx

  

€ 

Δy = JΔx =

Δy1
!
Δyn

# 

$ 

% 
% 
% 

& 
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( 
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=

∂f1
∂x1
(x) " ∂f1

∂xn
(x)

! # !
∂fn
∂x1
(x) " ∂fn

∂xn
(x)
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⋅

Δx1
!
Δxn
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Jacobian Matrix 
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n  Let Φ be the Jacobian of f with respect to x. 

n  Let H be the Jacobian of h with respect to x. 

n  Then the Kalman Filter equations are almost the 
same as before. 

€ 

Φij =
∂f i
∂x j

(x k−1)

€ 

H ij =
∂hi
∂x j

(x k)

Linearize using the Jacobian 
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n  Predictor step: 

n  Kalman gain:   

n  Corrector step:   

€ 

ˆ x k
− = f ( ˆ x k−1)

€ 

Pk
− =Φk−1Pk−1Φk−1

T +Qk

€ 

K k = Pk
−Hk

T (HkPk
−Hk

T +Rk )
−1

  

€ 

ˆ x k = ˆ x k
− +K k (! z k − h( ˆ x k

−))

EKF Equations 

€ 

Pk = (I−K kHk )Pk
−(I−K k )

T +K kRkK k
T
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Remarks on EKF 

n  It is still highly efficient. Similar time complexity as 
Kalman Filter. 

n  EKF does not recover optimal estimates. 
n  May not converge if the system is significantly non-

linear. 

n  Computing the Jacobian can be complex. 
n  Still works well, even when the assumptions are 

violated. 

n  Next version for handling non-linearities: Unscented 
Kalman Filter. 
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Unscented Kalman Filtering 

n  EKF uses the 1st term of the Taylor series expansion. 

n  UKF uses the 1st two terms of the Taylor series expansion.  

n  UKF bases its computations on a subset of points. It uses a 
deterministic sampling technique known as the unscented 
transform to pick a minimal set of sample points (called 
sigma points) around the mean. 

n  The sigma points are propagated through non-linear 
functions and are used to obtain the mean and covariance 
of the estimate.  

n  UKF uses no Jacobians.  

n  It is still non-optimal.  
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More Kalman Filter Challenges 

n  What if, rather minimizing the "average" estimation error, we 
desire to minimize the "worst case" estimation error? This is 
known as the minimax or H-infinity estimation problem. 

n  What if, rather than estimating the state of a system as 
measurements are made, we already have all the 
measurements and we want to reconstruct a time history of 
the state? Can we do better than a Kalman filter? It would 
seem that we could since we have more information available 
(that is, we have future measurements) to  estimate the state 
at a given time. This is called the smoothing problem. 
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Image Sources 

1.  The optical flow demo is courtesy of T. Brox http://www.cs.berkeley.edu/~brox/videos/index.html 
2.  The tracking ball movies are courtesy of T. Petrie http://www.marcad.com/cs584/Tracking.html 
3.  The person tracking example is courtesy of TUM http://www.mmk.ei.tum.de/demo/tracking/track3.gif 
4.  The conceptual overview slides were adapted from the presentation of M. Williams,  

http://users.cecs.anu.edu.au/~hartley/Vision-Reading-Course/Kalman-filters.ppt 
5.  The layout of a few slides was inspired by the slides of  D. Hall 

http://www-prima.inrialpes.fr/perso/Hall/Courses/FAI05/Session7.ppt   
6.  The material on Extended Kalman filters is courtesy of B. Kuipers 

http://userweb.cs.utexas.edu/~pstone/Courses/395Tfall05/resources/week11-ben-kalman.ppt 

 

 
 


