# Pre-processing Filtering

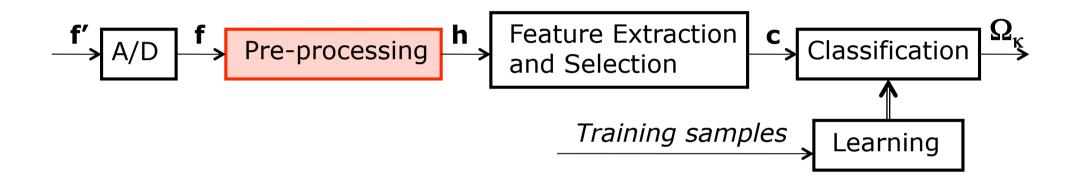


#### Dr. Elli Angelopoulou

Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

#### Pattern Recognition Pipeline

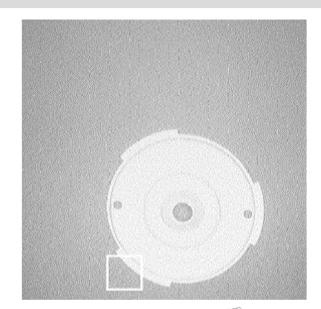


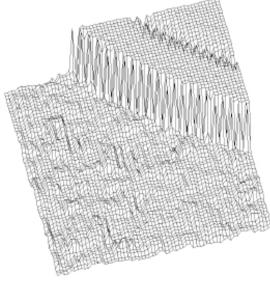


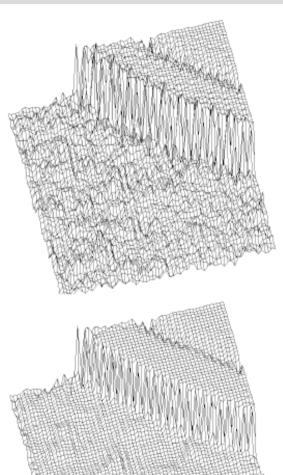
- $\blacksquare$  The goal of pre-processing is to transform a signal f to another signal h so that the resulting signal h
  - makes subsequent processing easier
  - makes subsequent processing better (more accurate)
  - makes subsequent processing faster
- Already studied histogram equalization and thresholding.

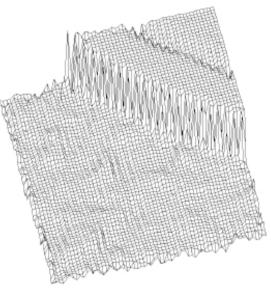
# Pre-processing Example

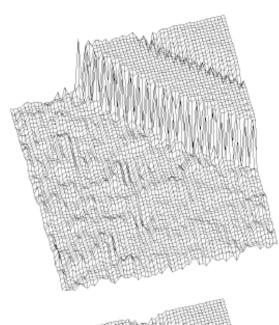


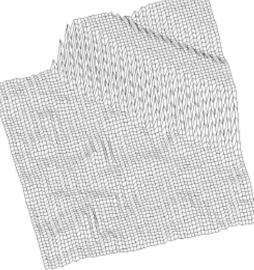












#### **Noise Sources**



- Photon noise: variation in the #photons falling on a pixel per time interval T.
- Saturation: each pixel can only generate a limited amount of charge.
- Blooming: saturated pixel can overflow to neighboring pixels.
- Thermal noise: heat can free electrons and generate a response when there is none.
- Electronic noise.
- Burned pixels.
- Black is not black.

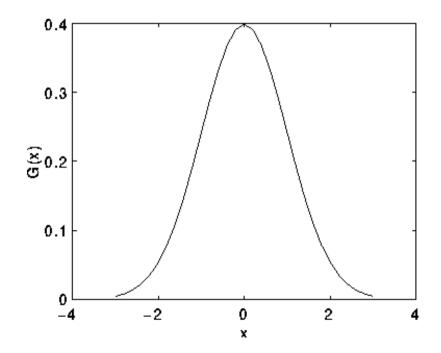


Keep in mind: Camera response may not be linear over the number of photons falling on a surface (camera gamma)

#### **Detector Noise**



- Source of noise: the discrete nature of radiation, i.e. the fact that each imaging system is recording an image by counting photons.
- Can be modeled as an independent additive noise which can be described by a zero-mean Gaussian.



#### Salt and Pepper Noise



- A common form of noise is caused by data drop-out noise.
- It is also known as commonly referred to as intensity spikes, speckle or salt and pepper noise.
- Sources of error:
  - Errors in the data transmission.
  - Burned pixels: the corrupted pixels are either set to the maximum value (which looks like snow in the image) or are set to zero ("peppered" appearance), or a combination of the two.
  - Single bits are flipped over.
- Isolated/localized noise. It only affects individual pixels

## Filtering



- Most of the images we capture are noisy
- Goal:



This notion of filtering is more general and can be used in a wide range of transformations that we may want to apply to images.



Mathematically, a filter H can be treated as a function on an input image I:

$$H(I) = R$$

■ Note: We use the terms *filter* and *transformation* interchangeably

#### **Linear Transformation**



■ A transformation H is **linear** if, for any inputs  $I_1(x,y)$  and  $I_2(x,y)$  (in our case input images), and for any constant scalar  $\alpha$  we have:

$$H(\alpha I_1(x,y)) = \alpha H(I_1(x,y))$$

and

$$H(I_1(x,y) + I_2(x,y)) = H(I_1(x,y)) + H(I_2(x,y))$$

#### This means:

- Multiplication in the input corresponds to multiplication in the output
- Filtering an additive image is equivalent to filtering each image separately and then adding the results.

#### Shift-Invariant Transformation



■ A transformation H is **shift-invariant** if for every pair  $(x_0, y_0)$  and for every input image I(x,y), such that

$$H(I(x,y)) = R(x,y)$$

we get

$$H(I(x-x_0, y-y_0)) = R(x-x_0, y-y_0)$$

■ This means that the filter *H* does not change as we shift it in the image (as we move it from one position to the next).

#### Convolution



- If a transformation (or filter) is linear shift-invariant (LSI) then one can apply it in a systematic manner over every pixel in the image.
- Convolution is the process through which we apply linear shift-invariant filters on an image.

Convolution is defined as:

$$R(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} H(x-i,y-j)I(i,j)$$

and is denoted as:

$$R = H * I$$

#### Another Look at Convolution



- Filtering often involves replacing the value of a pixel in the input image *F* with the weighted sum of its neighbors.
- Represent these weights as an image, H
- H is usually called the kernel
- The operation for computing this weighted sum is called convolution.

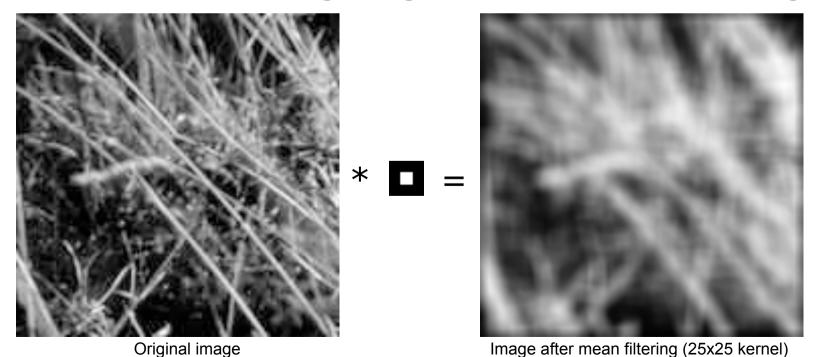
$$R = H * I$$

- Convolution is:
  - commutative, H \* I = I \* H
  - associative,  $H_1 * (H_2 * I) = (H_1 * H_2) * I$
  - distributive,  $(H_1 + H_2) * I = (H_1 * I) + (H_2 * I)$

## Smoothing via Simple Averaging



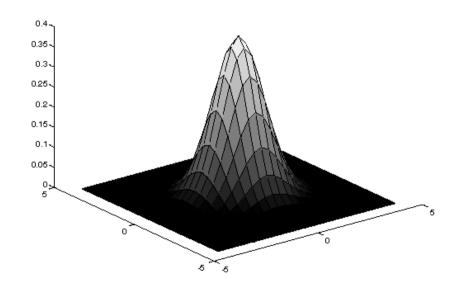
- - It is used for removing image noise, i.e. for smoothing.



#### Gaussian Smoothing



- Idea: Use a weighted average. Pixels closest to the central pixel are more heavily weighted.
- The Gaussian function has exactly that profile.
- Gaussian also better approximates the behavior of a defocused lens.



## Isotropic Gaussian Filter



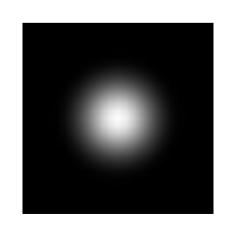
■ To build a filter *H*, whose weights resemble the Gaussian distribution, assign the weight values on the matrix *H* according to the Gaussian function:

$$H(i,j) = e^{-(i^2+j^2)/2\sigma^2}$$

$$H_{Gauss} = \begin{bmatrix} \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{16} \end{bmatrix}$$

- Small  $\sigma$ , almost no effect, weights at neighboring points are negligible.
- Large  $\sigma$ , blurring, neighbors have almost the same weight as the central pixel.
- Commonly used  $\sigma$  values: Let w be the size of the kernel H. Then  $\sigma$ =w/5.

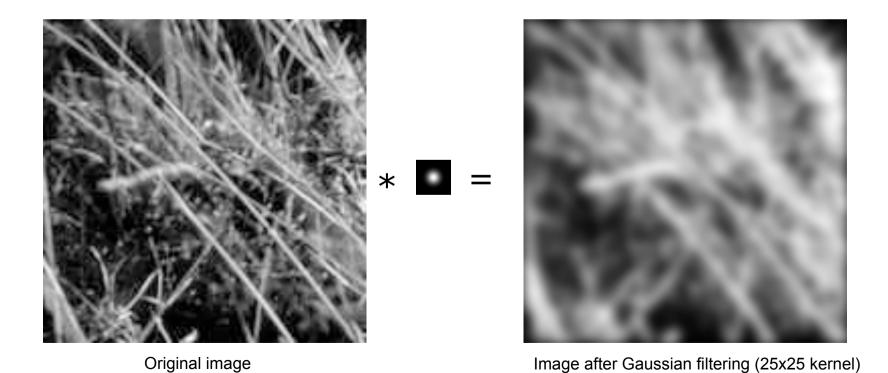
For example for a 3x3 kernel,  $\sigma$ =3/5=0.6



## Gaussian Smoothing Example



Compared to mean filtering, Gaussian filtering exhibits no "ringing" effect.

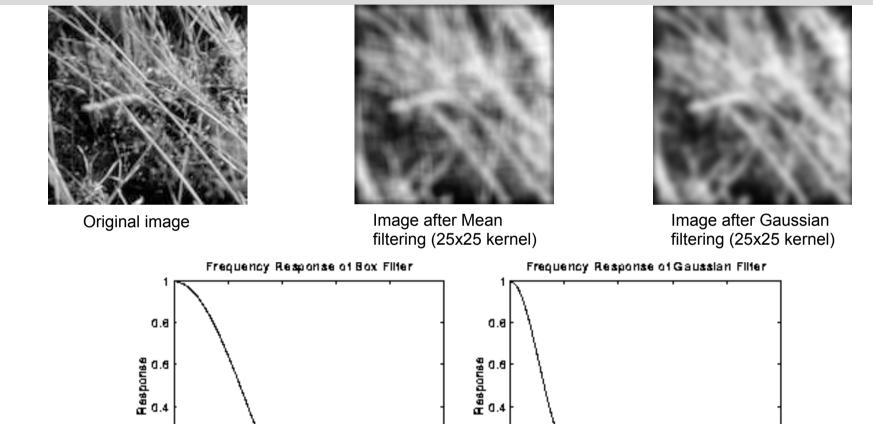


## "Ringing" effect

0.2

0.1





A close look at the frequency response of the two filters show that: compared to Gaussian filtering, mean filtering exhibits oscillations

0.3

Spatal Frequency

0.2

0.1

02

0.3

Southal Frequency

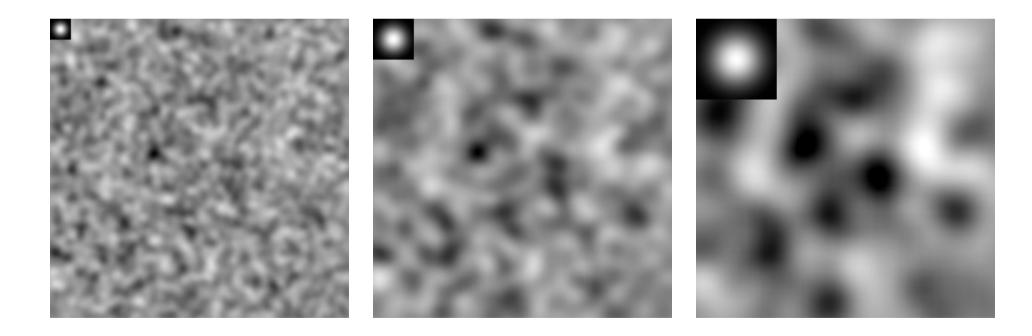
0.4

0.5

#### The Effect of $\sigma$



■ Different  $\sigma$  values affect the amount of blurring, but also emphasize different characteristics of the image.



## Non-Linear Smoothing



- The median filter considers each pixel in the image in turn and looks at its nearby neighbors to decide whether or not it is representative of its surroundings.
- It replaces a pixel value with the median of all pixel values in the neighborhood.
- It is a relatively slow filter, because it involves sorting.
- Can **not** be implemented via convolution.

## **Smoothing Examples**







Image after 9x9 Mean filtering

Original image



Image after 9x9 Gaussian filtering

#### Mean Filter





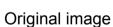




Image after 3x3 Mean filtering



Image after 7x7 Mean filtering



Image after applying 3 times 3x3 Mean filtering

- Mean filtering is sensitive to outliers.
- It typically blurs edges.
- It often causes a ringing effect.

## Gaussian Filtering and Salt & Pepper Noise





Original image



Image with salt-pepper noise (1% prob. that a bit is flipped)



Image after 5x5 Gaussian filtering,  $\sigma$ =1.0



Image after 9x9 Gaussian filtering,  $\sigma$ =2.0

- Gaussian filtering works very well for images affected by Gaussian noise
- It is not very effective in removing Salt and Pepper noise.

## Median Filtering and Salt & Pepper Noise





Original image



Image with salt-pepper noise (5% prob. that a bit is flipped)



Image after 3x3 Median filtering



Image after 7x7 Median filtering



Image after applying 3 times 3x3 Median filtering

- Median filtering preserves high spatial frequency details.
- It works well when less than half of the pixels in the smoothing window have been affected by noise.
- It is not very effective in removing Gaussian noise.

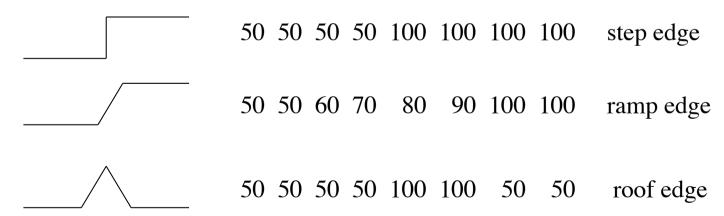
## Edges



#### An edge is:

- A significant change in intensity values.
- Related to object boundaries, patterns (brick wall), shadows, etc.
- A property attached to each pixel.
- Calculated using the image intensities of neighboring pixels.

#### Examples of 1D Edges



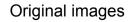
# Edge Detection Example













Images after edge detection

#### **Edge Detection Steps**



#### 1. Noise Smoothing

Suppress as much noise as possible without destroying edge information.

#### 2. Edge Enhancement

 Design a filter that gives high responses at edges and low response at non-edge pixels.

#### 3. Edge Localization

 Decide which high responses of the edge filter are responses to true edges and which ones are caused by noise or other artifacts.

## Types of Edge Detection

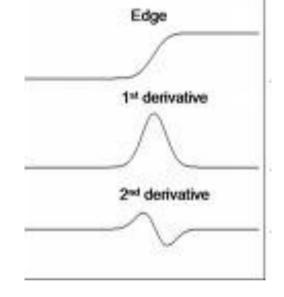


Detecting edges is equivalent to detecting changes

in intensity values.

How do we detect change?
Differentiation

- Image is a 2D function
  - => partial derivative in x
    & partial derivative in y



- If we take the 1<sup>st</sup> derivative we have **Gradient- based** edge detectors.
- If we take the 2<sup>nd</sup> derivative we have **Laplacian** edge detectors (look for zero-crossings).

## Gradient-Based Edge Detection



■ The gradient vector  $\mathbf{G}(x,y)$ , at an image pixel I(x,y) is:

$$\mathbf{G}(x,y) = \left(\frac{\partial I(x,y)}{\partial x}, \frac{\partial I(x,y)}{\partial y}\right) = (I_x(x,y), I_y(x,y))$$

- The gradient vector points in the direction of maximum change.
- Its orientation (its angle with the x-axis) is given by:

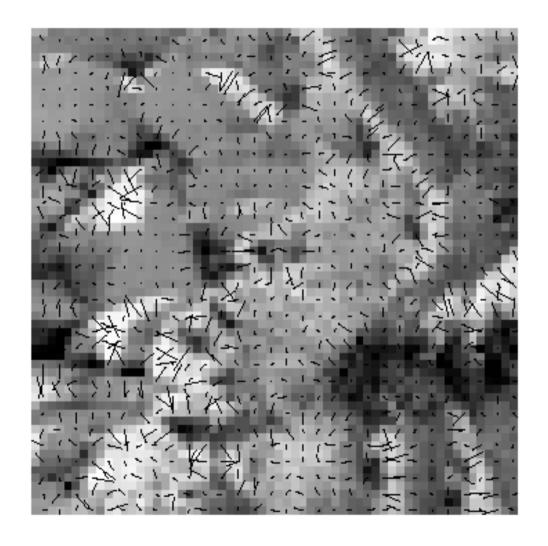
$$\theta = \tan^{-1} \left( \frac{I_y(x, y)}{I_x(x, y)} \right)$$

Its magnitude is given by:  $\|\mathbf{G}(x,y)\| = \sqrt{I_x^2(x,y) + I_y^2(x,y)}$  or its approximations:  $\|\mathbf{G}(x,y)\| \approx |I_x(x,y)| + |I_y(x,y)|$   $\|\mathbf{G}(x,y)\| \approx \max(I_x(x,y),I_y(x,y))$ 

## **Gradient Vector Image**



- An image showing the gradient vectors themselves.
- The length of the gradient vector corresponds to its magnitude.



## **Implementation**



By definition:

$$\partial I(x,y)/\partial x = \lim_{\varepsilon \to 0} \left( \frac{I(x,y)}{\varepsilon} - \frac{I(x-\varepsilon,y)}{\varepsilon} \right)$$

In the discrete world differentiation is approximated by finite differencing:

$$I_x(x,y) = \partial I(x,y)/\partial x \approx \frac{I[x,y] - I[x - \Delta x,y]}{\Delta x}$$

■ But since our smallest step is  $\Delta x = 1$ :

$$I_{x}(x,y) = \frac{\partial I(x,y)}{\partial x} = I[x,y] - I[x-1,y]$$
$$I_{y}(x,y) = \frac{\partial I(x,y)}{\partial y} = I[x,y] - I[x,y-1]$$

## Implementation (continued)



We can express this operation in a kernel form:

$$H_{x} = I_{x} = \begin{bmatrix} -1 & +1 \end{bmatrix} \qquad H_{y} = I_{y} = \begin{bmatrix} -1 \\ +1 \end{bmatrix}$$

To make it less susceptible to noise we use the values of two consecutive rows or columns.

$$H_x = I_x = \begin{bmatrix} -1 & +1 \\ -1 & +1 \end{bmatrix}$$
  $H_y = I_y = \begin{bmatrix} -1 & -1 \\ +1 & +1 \end{bmatrix}$ 

■ These kernels, however, evaluate an approximation of the derivative at half-pixel locations,  $I_x[x-1/2,y]$  and  $I_y[x,y-1/2]$ 

## Common Edge Masks



Prewitt edge detection masks

$$P_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix}$$

$$P_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} \qquad P_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix}$$

Sobel edge detection masks

$$S_x = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

$$S_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} \qquad S_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}$$

## **Gradient Edge Detection Process**



- Given an input image I, the gradient-based edges are computed as follows:
- 1. Compute  $I_x = H_x * I$
- 2. Compute  $I_y = H_y * I$
- 3. Compute  $\|\mathbf{G}(x,y)\|$  using your favorite method
- **4.** If  $\|\mathbf{G}(x,y)\| \ge t$

then pixel (x,y) is an edge-pixel (edgel) compute the angle  $\theta$  for that pixel.

# Gradient Edge Detector Example





Original image

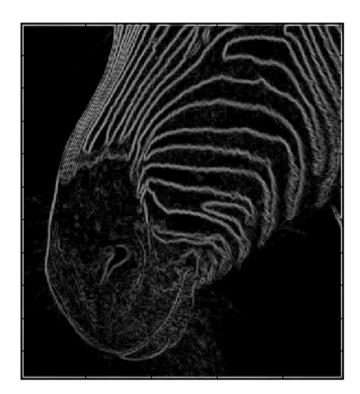


Image after edge detection

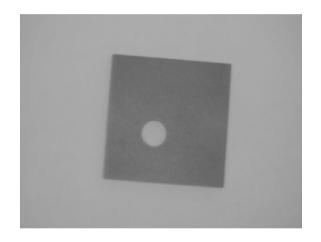
#### Canny Edge Detector

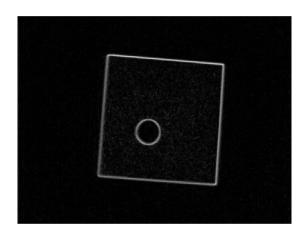


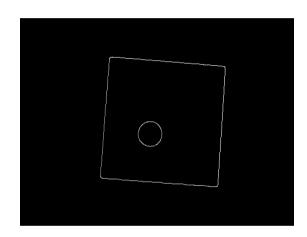
- After a a gradient-based edge image is created, the Canny method uses optimization to systematically clean noise effects. It uses two separate optimization processes:
  - Non-maximum suppression
     A single real edge may appear as having wide ridges around it.
     Non-maximum suppression thins such ridges downto 1-pixel wide edges.
  - 2. Hysteresis thresholding
    Use a pair of threshold values. The high threshold is used as a first rough screening. For the edge pixels that survive this first screening, follow chains (contours) of edges. Use those edgels on the chain which are above the second, lower, threshold.
- Canny proved that this is the optimal edge detection method.
- Due to the optimization post-processing, it is slower than the basic gradient-based edge detectors.

# Sobel versus Canny









Sobel

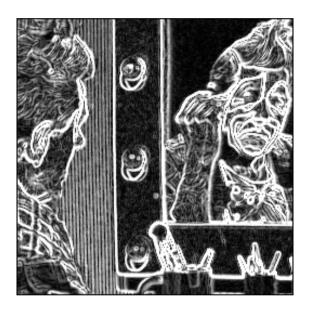
Canny

## Roberts vs. Sobel









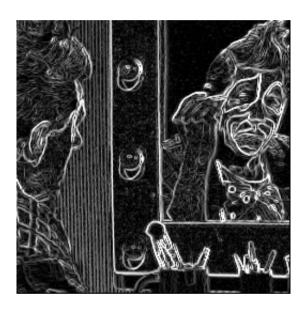
Roberts

Sobel

# Roberts vs. Canny







Roberts



Canny  $\sigma = 1$ ,  $t_l=1$ ,  $t_h=255$ 

# Canny Edge Detector





Canny  $\sigma = 1$ ,  $t_1 = 220$ ,  $t_h = 255$   $\sigma = 1$ ,  $t_1 = 1$ ,  $t_h = 128$   $\sigma = 2$ ,  $t_1 = 1$ ,  $t_h = 128$ 



Canny



Canny

### LSI Filtering - Review



We are focusing on linear shift-invariant (LSI) filters.



Such filters are typically applied to an image through convolution:

$$R(x,y) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} H(x-i,y-j)I(i,j)$$

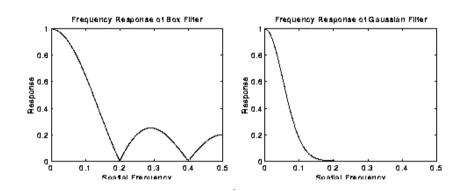
■ In practice, convolution can be seen as computing the weighted sum of a (2k+1)x(2k+1) neighborhood centered around pixel (x,y), where the filter H contains the applied weights.

$$R(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} I(x-i,y-j)H(i,j)$$

## Convolution and LSI filtering - Review



- Important Properties of Convolution:
  - commutativity, H \* I = I \* H
  - associativity,  $H_1 * (H_2 * I) = (H_1 * H_2) * I$
  - distributivity,  $(H_1 + H_2) * I = (H_1 * I) + (H_2 * I)$
- A very common application of filtering is for noise removal.
- Two LSI smoothing filters are:
  - Mean filter
  - Gaussian filter



■ They are also known as low-pass filters, because in the frequency domain, they allow only transfer the low frequency information in the output image.

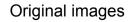
# **Edge Detection - Review**













Images after edge detection

#### Types of Edge Detection - Review

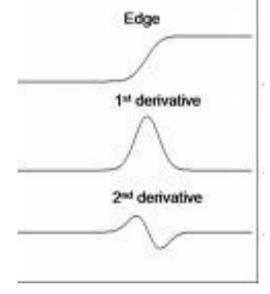


Detecting edges is equivalent to detecting changes

in intensity values.

How do we detect change?
Differentiation

- Image is a 2D function
  - => partial derivative in x& partial derivative in y



- If we take the 1<sup>st</sup> derivative we have **Gradient- based** edge detectors.
- If we take the 2<sup>nd</sup> derivative we have **Laplacian** edge detectors (look for zero-crossings).

#### Gradient-Based Edge Detection - Review



■ The gradient vector  $\mathbf{G}(x,y)$ , at an image pixel I(x,y) is:

$$\mathbf{G}(x,y) = \left(\frac{\partial I(x,y)}{\partial x}, \frac{\partial I(x,y)}{\partial y}\right) = (I_x(x,y), I_y(x,y))$$

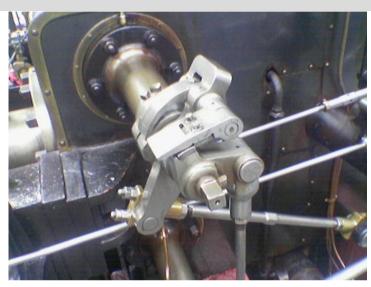
- The gradient vector points in the direction of maximum change.
- Its orientation (its angle with the x-axis) is given by:

$$\theta = \tan^{-1} \left( \frac{I_y(x, y)}{I_x(x, y)} \right)$$

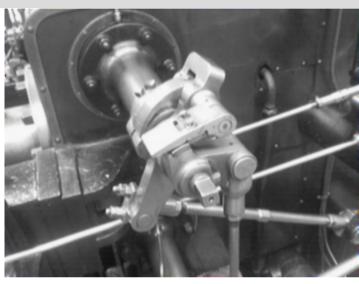
Its magnitude is given by:  $\|\mathbf{G}(x,y)\| = \sqrt{I_x^2(x,y) + I_y^2(x,y)}$  or its approximations:  $\|\mathbf{G}(x,y)\| \approx |I_x(x,y)| + |I_y(x,y)|$   $\|\mathbf{G}(x,y)\| \approx \max(I_x(x,y),I_y(x,y))$ 

# Gradient-Based Edge Detector Example

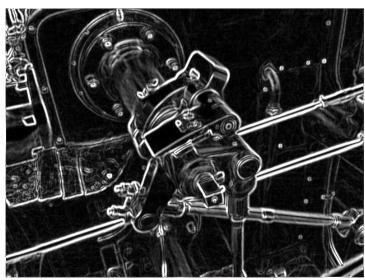




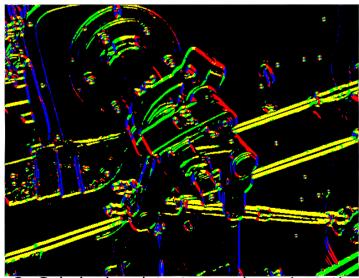
Original image



Step 1: Conversion to grayscale and smoothing with 5x5 Gaussian



Step 2: Sobel edge detector – edge magnitude image



Step 2: Sobel edge detector – edge orientation image

1<sup>st</sup> derivative

#### Second Order Derivative



- Another way to detect an extremal first derivative is to look for a zero-valued 2<sup>nd</sup> derivative.
- A popular calculus tool that gives the magnitude of change in a bivariate function without direction information is the Laplacian.

$$\nabla^{2}(I(x,y)) = \left(\frac{\partial^{2}I(x,y)}{\partial x^{2}} + \frac{\partial^{2}I(x,y)}{\partial y^{2}}\right)$$

Note that the result of the Laplacian is a scalar.

### Laplacian Implementation



Again differentiation is approximated by finite differencing.

$$\frac{\partial I^{2}(x,y)}{\partial x^{2}} = \frac{\partial (I_{x}(x,y))}{\partial x}$$

$$= \frac{\partial (I[x,y] - I[x-1,y])}{\partial x}$$

$$= \frac{\partial (I[x,y])}{\partial x} - \frac{\partial (I[x-1,y])}{\partial x}$$

$$= \frac{(I[x+1,y] - I[x,y]) - (I[x,y] - I[x-1,y])}{\partial x}$$

$$= I[x+1,y] - 2I[x,y] + I[x-1,y]$$

Written as a mask, we get:

$$H_x = {}^2I_x = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

### Laplacian Implementation



Similarly, for the 2<sup>nd</sup> partial derivative with respect to y, we get:

$$H_{y} = {}^{2}I_{y} = \begin{bmatrix} 0 & +1 & 0 \\ 0 & -2 & 0 \\ 0 & +1 & 0 \end{bmatrix}$$

By adding the two together, we get the Laplacian mask:

$$H_{Lap} = {}^{2}I_{x} + {}^{2}I_{y} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

If we want to use all 8 neighbors, we can use:

$$H_{Lap} = \begin{bmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{bmatrix}$$

# Simple Laplacian Example



- When we convolve an image that contains a significant change in values (i.e. edge) with a Laplacian kernel, we get a new image with negative values on one side of the edge and positive values on the other side of the edge.
- For example:

| Input image |   |   |   |   |   |   |   |   |   |   | Image after the Laplacian |   |   |   |   |    |   |   |   |
|-------------|---|---|---|---|---|---|---|---|---|---|---------------------------|---|---|---|---|----|---|---|---|
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
| 2           | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 0 | 0                         | 0 | 0 | 0 | 6 | -6 | 0 | 0 | 0 |
|             |   |   |   |   |   |   |   |   |   |   |                           |   |   |   |   |    |   |   |   |

zero crossing)

### Laplacian of Gaussian



- The computation of 2<sup>nd</sup> order derivatives is very sensitive to noise.
- Solution: Smooth first the image I with a Gaussian  $H_{Gauss}$  and then apply the Laplacian  $H_{Lap}$  on the image.

$$R_{LapEdge} = H_{Lap} * (H_{Gauss} * I)$$

Convolution is associative.

$$R_{LapEdge} = (H_{Lap} * H_{Gauss}) * I$$

■ The combined filter  $(H_{Lap} * H_{Gauss})$  is nothing more than computing the Laplacian of the Gaussian (LoG):

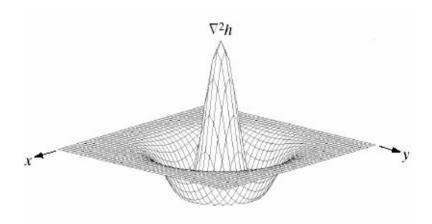
$$\nabla^{2}(Gauss(x,y)) = \nabla^{2}(e^{(-(x^{2}+y^{2})/2\sigma^{2}})$$

$$= \frac{(x^{2}+y^{2}-\sigma^{2})}{\sigma^{4}}(e^{(-(x^{2}+y^{2})/2\sigma^{2}})$$

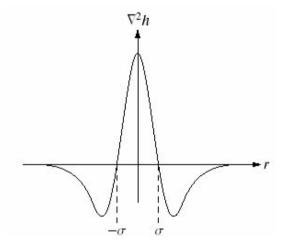
#### LoG Kernel



■ The LoG function,  $\nabla^2(G_{auss}(x,y))$  looks like a "mexican hat".



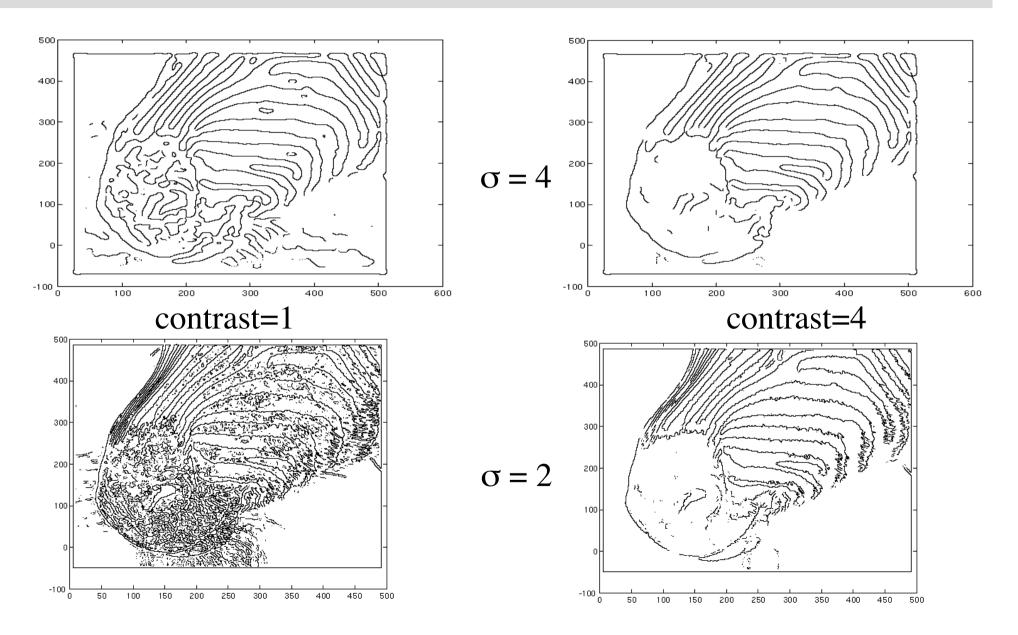
■  $\nabla^2(G_{auss}(x,y))$  can also be approximated by a convolution kernel:



$$H_{LoG} = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

# **Examples of LoG Zero Crossings**





# Smoothing and Differentiation



- The concepts of first smoothing and then differentiating generalizes to all edge detection methods (both 1<sup>st</sup> and 2<sup>nd</sup> order derivative methods).
- Convolution is associative, so we can always create a combined filter and convolve (filter) the image only once.

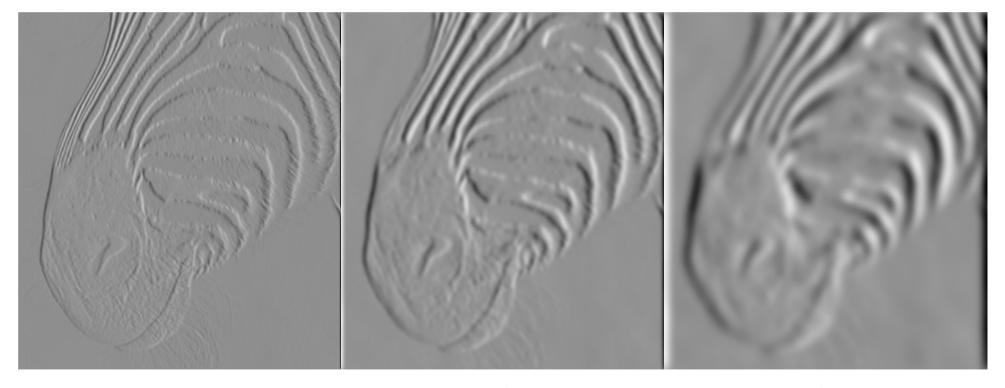
$$R = H_{edge} * (H_{smooth} * I) = (H_{edge} * H_{smooth}) * I = H * I$$
 where  $H = H_{edge} * H_{smooth}$ 

By using different degrees of smoothing (Gaussian with different  $\sigma$  values or mean filters of different sizes, i.e. 3x3, 5x5, 7x7, etc.) we can obtain a hierarchy, a pyramid, of images with different levels of detail.

#### **Different Scales**



The scale of the smoothing filter affects the derivative estimates as well as the semantics of the recovered edges



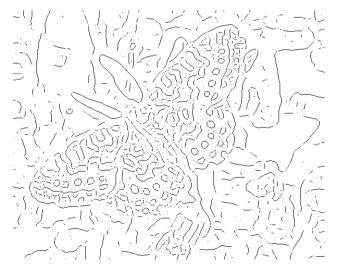
No smoothing 3x3 filter 7x7 filter

### **Different Scales**

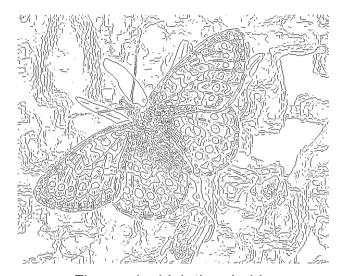




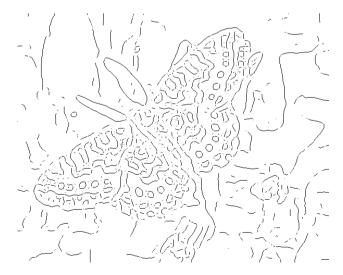
Original image



Coarse scale, low threshold



Fine scale, high threshold



Coarse scale, high threshold

#### Comments on Filtering



#### Design Decisions:

- Size of filter. There is no single good size. It depends on he size of the objects in the image.
- Speed versus accuracy: (Gaussian vs. Median, Gradient-based vs. Laplacian-based, Canny vs. Sobel)

#### Systematic approach: try different resolutions

- Either create a formal model for each resolution and study the change of the model at different resolutions.
- Or maintain a tree (pyramid) of images at different resolutions.

#### Multi-resolution example:

Apply an edge detector at different resolutions of Gaussians. Perform numerical optimization to find the best response for the particular image.

Optimal for edges corrupted by white noise.

# Gaussian Pyramid Example













# Sharpening



- A very common filtering operation for contrast enhancement in images is *image sharpening*.
- The goal of image sharpening is to produce a more visually pleasing image:
  - Texture and finer details are made more prominent
  - The image looks sharper, crisper.





# Sharpening - continued



- Image sharpening almost always involves improving the parts of the image where a sudden change in intensity or color occur, since this is where inaccuracies are introduced by the digital data capturing process.
- What filtering operation do we know that gives a high response at sudden changes in intensity or color?
- $\blacksquare$  Edge Detector,  $H_{edge}$
- A simple way to achieve sharpening is to superimpose the original image with the magnitude of the edge image.  $R = I + c(I*H_{edge})$

## UnSharp Mask



- Most image processing software packets perform sharpening using the UnSharp Mask (USM).
- It is based on an old photographic film technique.
- It is called unsharp masking, because it first blurs the image (unsharpens it)

$$R_1 = I * H_{smooth}$$

An unsharp mask, UM, for the entire image is created by thresholding the absolute difference of the original and the blurred image.

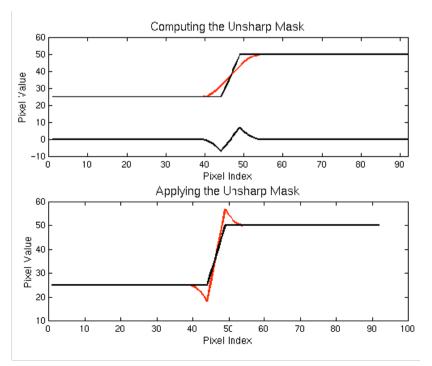
$$UM(x,y) = \begin{cases} 1 & \text{if } |I(x,y) - R_1(x,y)| > \theta \\ 0 & \text{otherwise} \end{cases}$$

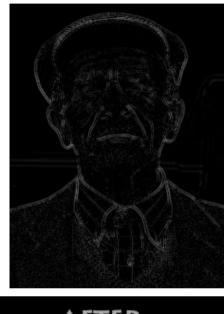
# UnSharp Mask - continued



■ The unsharp mask is then scaled (to achieve the desired visual effect) and added to the original image. The scaling factor *c* is often called *amount*.

$$R_2 = I + cUM$$







### **Image Sources**



- 1. "Image with salt & pepper noise", Marko Meza.
- 2. "Set of images of Roberts vs. Canny vs. Sobel", Hypermedia Image Processing Reference at the University of Edinburgh.
- 3. "LoG plots", Simon Yu Ming, http://hi.baidu.com/simonyuee/blog/item/446a911bf43cc91c8618bf8f.html
- 4. Many of the smoothing and edge detection images are from the slides by D.A. Forsyth, University of California at Urbana-Champaign.
- 5. The bird sharpening example was done using Adobe Photoshop Lightroom, <a href="http://mansurovs.com/how-to-properly-sharpen-images-in-lightroom">http://mansurovs.com/how-to-properly-sharpen-images-in-lightroom</a>.
- 6. The unsharp mask example is copyrighted by Sean T. McHugh, <a href="http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm">http://www.cambridgeincolour.com/tutorials/unsharp-mask.htm</a>