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Abstract

The color and distribution of illuminants can signifi-
cantly alter the appearance of a scene. The goal of color
constancy (CC) is to remove the color bias introduced by
the illuminants. Most existing CC algorithms assume a uni-
formly illuminated scene. However, more often than not,
this assumption is an insufficient approximation of real-
world illumination conditions (multiple light sources, shad-
ows, interreflections, etc.). Thus, illumination should be
locally determined, taking under consideration that multi-
ple illuminants may be present. In this paper we investigate
the suitability of adapting 5 state-of-the-art color constancy
methods so that they can be used for local illuminant esti-
mation. Given an arbitrary image, we segment it into super-
pixels of approximately similar color. Each of the methods
is applied independently on every superpixel. For improved
accuracy, these independent estimates are combined into a
single illuminant-color value per superpixel. We evaluated
different fusion methodologies. Our experiments indicate
that the best performance is obtained by fusion strategies
that combine the outputs of the estimators using regression.

1. Introduction
Accurate color measurements are important in a variety

of computer vision applications ranging from object recog-
nition and tracking, to stereo and image retrieval. The ap-
pearance of color, however, is heavily dependent on the il-
luminant. Computational color constancy (CC) algorithms
attempt to alleviate this dependency. One common frame-
work of such methods is to first explicitly estimate the illu-

minant color and then color correct the image accordingly.

Unfortunately, the recovery of the illumination color
from a single image is an underconstrained problem. Ev-
ery observed image pixel represents an unknown combi-
nation of surface reflectance and illumination. Many CC
algorithms try to make this problem tractable by imposing
different assumptions on the observed scene. For instance,
Gray Edge algorithms assume that a derivative of the pix-
els sums up to 0 under canonical illumination [23]. Gamut
Mapping assumes that the convex hull of the pixels in a
suitably chosen color space encompasses most illumination
changes [13]. Furthermore, most illuminant color estima-
tors typically assume globally uniform illumination. This
prerequisite is essential for collecting a sufficiently large
number of samples from the whole image and thus increas-
ing the accuracy and robustness of the methodology.

In practice, assuming uniform illumination is well justi-
fiable for images taken under laboratory conditions. How-
ever, many real-world scenes consist of more than one il-
luminant. For instance, indoor photographs often exhibit a
mixture of indoor illumination and sunlight coming from
the windows. Flash photographs typically have people near
the camera illuminated by the flashlight, whereas the back-
ground is illuminated by other light sources. In such situ-
ations it would be more appropriate to estimate the illumi-
nant color locally. To our knowledge there have been very
few methods that explicitly focus on such local illuminant
estimation. Ebner [7], for example, applied a diffusion-
based methodology on the pixel intensities. However, he
locally assumed a gray-world which can result in inaccu-
racies, especially in colorful scenes [16]. More recently,
Kawakami et al. [17] proposed a method specifically de-
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signed to handle illumination variations between shadowed
and non-shadowed regions in outdoor scenes. Their tech-
nique, thus, does not generalize well to arbitrary images.

In this paper we investigate whether existing CC meth-
ods, originally developed assuming uniform illumination,
can be adapted to local illuminant color estimation. In or-
der to obtain such localized estimates, we examine how the
uniform-illuminant assumption of state-of-the-art CC meth-
ods can be relaxed. We use image sub-regions to compute
the illuminant color locally. We then compensated for the
loss of accuracy, by combining multiple independently ob-
tained local estimates. Most of the existing fusion strategies
try to solve the combination problem by extracting addi-
tional features from the image, e.g. color and texture statis-
tics. Based on these features the best algorithm is selected
or a weighted average of the estimates is computed. If the
best algorithm could always be selected, we could gain in
theory significant performance. Recent evaluations show,
that algorithm combination based on image features does
not perform substantially better than the best performing al-
gorithm [14]. Computing regression on the estimates has
been shown to be more robust than selecting a single esti-
mate [2]. Thus, we expand this idea to make it applicable
to our local estimates. An important part of such a compar-
ative analysis is quantitative evaluation. To our knowledge,
currently available databases do not provide sufficient infor-
mation for evaluating multiple illuminant algorithms. Thus,
we captured own multi-illuminant ground truth data. We
then evaluated on this database different CC as well as fu-
sion algorithms. We concluded that machine-learning based
regression consistently outperformed all other combination
strategies, as well as individual estimates.

2. Current CC Algorithms
There is a considerable body of work on Color con-

stancy. In this section, we briefly review variants of
the more well-known Gray World, Gamut Mapping and
Bayesian Color Constancy.

2.1. Generalized Gray World Algorithm

The Gray World and Gray Edge algorithms can be com-
bined into a common framework [12, 23]. The illuminant
color is estimated as

l = k

(∫ ∣∣∣∣∂nfσ (x)
∂xn

∣∣∣∣p d x

) 1
p

, (1)

where fσ (x) is the Gaussian smoothed image at location
x, n is the order of the derivative, p the parameter of the
Minkowski norm, σ the standard deviation of the Gaussian
smoothing kernel and k a scaling factor. This very com-
pact formulation covers several well-known variants, e.g.
the Retinex algorithm [19], the classical Gray Wold [6], the
Shades of Gray [12] and the Gray Edge hypothesis [23].

The White Patch Retinex or max-RGB algorithm is
based on the Retinex theory developed by Land et al. [19].
It assumes that somewhere in the image is a white patch,
which reflects maximally and achromatically. Thus, the il-
luminant color can be directly recovered from the brightest
pixel. In practice we take the maximum response of each
color channel separately, potentially from different pixels.
This algorithm is obtained by setting p → ∞ in (1). It is
sensitive to noise because a single bright pixel can lead to a
bad estimate. The algorithm can be improved by computing
histograms for each color channel (see e.g. [8, pp.118-119]).
Another possibility is to select a value, where only a small
percentage, e.g. 1%, of the pixels has a higher intensity.

The Gray World hypothesis was first formalized by
Buchsbaum [6]. It assumes Lambertian reflection and an
on-average achromatic scene. Instead of gray it is also pos-
sible to use the average of a reflectance database [1, p. 70].
A general formulation to exploit this assumption was pro-
vided by Finlayson and Trezzi [12],

l = k

(∫
(f (x))p d x∫

d x

) 1
p

, (2)

called Shades of Gray. Note that the exponentiation of
f (x) is a component-wise operation. It incorporates the
classical formulation for p = 1.

Van de Weijer et al. proposed the Gray Edge
method [23]. It assumes that the average of the reflectance
differences is achromatic. If the assumption holds, the illu-
minant color is

l = k

(∫
(fσx (x))p d x∫

d x

) 1
p

, (3)

where fσx (x) = f (x) ∗ ∂
∂xGσ (x) and Gσ (x) is a Gaus-

sian smoothing operation with standard deviation σ.

2.2. Gamut Constrained Methods

A key component of the gamut constrained methods is
the definition of a canonical gamut Γ (C), which denotes
the convex set of sensor responses C = {q1, ..., qN} to N
surface reflectances under a canonical illuminant:

Γ(C) =

{∑
i

αiqi

∣∣∣∣∣ qi ∈ C, αi ≥ 0,
∑
i

αi = 1

}
. (4)

A mapping between the gamut of an unknown illuminant
and the canonical gamut is reveals then the illuminant color.
Based on Forsyth’s original algorithm [13], a number of
variations have been developed [10, 9, 11, 15].

The most well-known of these methods is Gamut Map-
ping, originally proposed by Finlayson. When transform-
ing an image gamut Γ (I) to the canonical gamut Γ (C),



gamut mapping uses a diagonal matrix transform D. Be-
cause only a limited number of surfaces is observed within
a single image, the unknown gamut can only be approxi-
mated by the observed image gamut. The set of all possible
mappings from Γ (I) to Γ (C) is calculated and the best
mapping (w.r.t. a selection criterion) is selected.

In more detail, let Dp,q be a diagonal matrix that maps
a point p = (pR, pG, pB)T in the image gamut to a point
q = (qR, qG, qB)T in the canonical gamut,

∀p ∈ Γ (I) , pD ∈ Γ (C) , (5)

where Dp,qp = q. The possible mappings for one point p
in the image gamut can be calculated as

M (p) =

{
dp,q

∣∣∣∣∣ dp,q =
(
qR
pR
,
qG
pG
,
qB
pB

)T
, q ∈ Γ (C)

}
.

(6)
These sets are likewise convex. The feasible set M̃ can
be calculate by intersecting all elements of M (p) for each
point p ∈ Γ (I) in the image gamut, i.e.,

M̃ =
⋂

p∈Γ(I)

M (p) . (7)

Their intersection is also a convex set. Each map m ∈M
corresponds to a possible illuminant. For the final decision,
Forsyth proposed to choose the diagonal matrix transform
with the maximum trace from the feasible set, which results
in the most colorful gamut.

Finlayson and Hordley showed that Gamut Mapping can
be also performed in a 2D chromaticity space, as only in-
tensity information is lost [10, 9]. We refer to this method
as 2D-Gamut Mapping.

The 3D-vector (R,G,B)T is projected onto the plane at
B = 1, yielding 2D chromaticities r = R/B, g = G/B,
b = 1. For 2D-Gamut Mapping, the diagonal transform

D =

α 0 0
0 β 0
0 0 1

 (8)

has only two parameters. The feasible set is constrained by
the set of possible illuminants. Using Monte Carlo estima-
tion, the explicit computation of the intersection between
illuminants and the feasible set can be avoided. Rather, ran-
dom points in 3D-sensor space are generated. The illumi-
nant is the mean or median of a set of randomly chosen
points lying within the feasible set.

2.3. Bayesian Color Constancy

Bayesian color constancy generates a probabilistic
model for surface reflectances and illuminants. Assuming
statistical independence of illuminants and surfaces, Bayes’

(a) (b) (c)

Figure 1. Examples for multi-illuminant situations. (a) Two dom-
inant light sources, spatially separated (b) Two dominant light
sources mix smoothly on the floor (c) Complex illumination sit-
uation.

rule is used to decide for the illuminant l according to a loss
function L

(
l, l′
)

[5, 21].
Let the probability of coocurrence of illuminants and sur-

face reflectances be known. The illuminant l? that mini-
mizes the average loss is

l? = argmin
l

∑
l′

L
(
l, l′
)
p
(
l′|I
)
, (9)

where I is the observed image, and the loss function is

L
(
l, l′
)

=
√

(r − r′)2 + (g − g′)2 , (10)

with r = lR/(lR + lG + lB) and g = lG/(lR + lG + lB).
Using Bayes’ rule, set

p (l|I) =
p (I|l) p (l)

p (I)
= k p (I|l) p (l) , (11)

where p (I) has a uniform prior density and k is a constant
over the variables of interest.

Rosenberg et al. [21] proposed to model the likelihood
p (I|l) using reflectances. The illuminant prior p (l) can
be estimated from training data, or assumed to be equally
distributed.

3. From Uniform to Non-Uniform Illumination
The presented algorithms were designed for recovering

a single, dominant illuminant. In real-world images, this
assumption is often violated. Fig. 1 shows some examples
of multi-illuminant situations. On the left image, the game
console acts as a local second dominant light source on the
face of the boy. In the middle, two dominant light sources
mix smoothly on the floor of the church. On the right, sev-
eral local light sources create a complex multi-illuminant
scene.

It is not straightforward to incorporate these different ef-
fects in a single multi-illuminant CC algorithm. When the
influence of an illuminant is spatially limited to a distinct
object (like the face in the left image), object segmentation
and subsequent single-illuminant estimation may lead to a



satisfactory recovery of the illumination colors. In a differ-
ent scenario, the church floor in the middle image is also
a single “object” from a segmentation viewpoint. However,
its surface is illuminated by distinct light sources at different
locations. Thus, an object-based illumination extraction is
inappropriate in this case. Pixel diffusion-based approaches
like the one by Ebner [7] can be expected to solve the church
floor example, but are expected to fail on object boundaries
as in the left image.

We decided to compromise between these two extremes.
We segment the image in a set of superpixels, i.e., small im-
age sub-regions such that all pixels in a single superpixel
satisfy the same property, in our case color value. A col-
lection of CC algorithms is then applied on each superpixel
independently. The per-superpixel output of the algorithms
is fused afterwards. For the superpixel segmentation, we
used the algorithm by Veksler et al. [20, 4, 18, 3], though
other segmentation methods can also be employed. It seg-
ments the image into non-overlapping, compact superpixels
based on their RGB values (see for example Fig. 2.

The underlying assumption is, that the illumination is ap-
proximately locally constant on a single superpixel. Though
this assumption may sometimes be violated, our experimen-
tal evaluation shows that this does not significantly impact
the performance of our method. We then apply state-of-the-
art CC algorithms on a per-superpixel basis. The superpixel
segmentation can address, without any fine-tuning, a large
range of multiple scenarios. Since the superpixels follow
object boundaries, our method can handle object-specific
illuminants as in Fig. 1(a). Because superpixels are small,
a large object that is illuminated differently at distinct loca-
tions (like the church floor in Fig. 1(b)) is subdivided and
its subregions are separately processed.

However, when applying established methods locally,
a trade-off between spatial resolution and color constancy
performance has to be made. For instance, gamut mapping
and Bayesian color constancy draw their accuracy from ex-
tensive statistics over the range of colors in the image. A
superpixel offers only a limited selection of the observ-
able colors. Hence, a performance drop for statistics-based

(a) (b)

Figure 2. Example superpixel segmentation on an image from the
Gehler database with the method by Veksler et al. Left: original
image, right: the segmentation typically preserves object bound-
aries.
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Figure 3. Error rates on rectangular subregions of different sizes.

methods is expected. Equivalently, 0-order gray world is
clearly affected from the fact that superpixels typically con-
tain pixels of similar colors. In order to partially alleviate
these problems, we constrained the possible illuminants to
the convex set of illuminants in our data.

As part of our analysis, we evaluated how the size
of local subregions can affect the performance of CC al-
gorithms. We selected 80 images from the re-processed
Gehler database [14, 22] with approximately uniform illu-
mination. We excluded the parts of the image containing
the Macbeth chart. We selected rectangular regions of dif-
ferent sizes and applied Bayesian color constancy and sev-
eral instances of the Generalized Gray World and Gamut
Mapping on it. We use the median angular error as a per-
formance measure. As shown in Fig. 3, blocks of size less
than 100× 100 pixels typically exhibit a performance drop.
One notable exception is the 2-dimensional Gamut Map-
ping. Here, the fine-tuned set of possible illuminants dom-
inated the overall estimation result, leading to a very low
error rate.

3.1. Fusion of Multiple Illuminants

In order to improve the illumination estimation on small
regions, we fused the outputs of different algorithms based
on their error statistics. We evaluated different fusion ap-
proaches. As a straightforward baseline method, we com-
puted the average of all combined estimates. Besides this,
we used two approaches based on machine learning regres-
sion. First, we used Gradient tree boosting as a classical
machine learning algorithm to combine multiple weak pre-
dictors to a single strong one. As an alternative, we used
Random forest regression. It consists of a set of tree predic-
tors, which are trained on randomly chosen, different train-
ing sets. The output is computed as the average response
over all trees in the forest.

The implementations of both machine learning algo-
rithms were taken from the openCV library. For Gradient
tree boosting, we used a squared loss function, 200 learning
iterations and a maximum depth of 20. The Random forest
regression was trained with a maximum depth of 50 with



at most 100 trees. Note that, in difference to prior work,
we did not use additional features to guide the fusion pro-
cess. Instead, only the estimates (plus for the training set
the ground truth, of course) were available for computing
the regression. Thus, this approach can be seen as a “brute
force” approach to localized illuminant estimation. Its out-
come should serve as a cue whether we can use variants of
these established algorithms also for illumination estima-
tion on non-uniformly illuminated scenes.

4. Multi-illuminant Ground Truth Data Set

In order to obtain ground truth for multiple illumi-
nants we generated our own data under laboratory condi-
tions. Four scenes (see Fig. 4) were taken under 17 dif-
ferent illumination conditions, 9 of which were truly multi-
illuminant, for a total of 36 multi-illuminant images. The
different lighting setups were created by two Reuter lamps
with LEE color filters. One Reuter lamp was positioned on
the left side of the scene and was combined with the LEE
filters 201, 202 and 281. The other Reuter lamp was posi-
tioned on the right side and was used with the LEE filters
204, 205 and 285. We also took images with only one fil-
tered light on at a time, both Reuter lamps on without any
filters and one under ambient illumination. As ground truth
we spray-painted each scene gray and took a series of im-
ages under the exact same 17 illumination conditions. We
used RAL 7035 and RAL 7047 spray paints which were ver-
ified with a Macbeth color checker. Note that this method
of ground-truth generation eliminates interreflections. Our
scene is mostly composed of diffuse materials, since all the
evaluated CC methods assume Lambertian reflectance. The
tin object in Fig. 4(c), the knife and some of the fruits in
Fig. 4(e) are the only exceptions.

The data was captured with a Canon EOS 550D camera
and a Sigma 17-70 lens. The aperture and ISO settings were
the same for all the images. The RAW data was converted
using dcraw with gamma set to 1.0 and without any white
balancing. Different fixed shutter speeds were used across
the 17 different illumination conditions in order to avoid
under- and over-exposure. Note that the collected data, as
well as the code for this work can be downloaded from the
web1.

5. Evaluation

In our evaluation, we used as a performance measure the
angular error eangular between the recovered and the true il-
luminant color. The results over multiple estimates are most
often aggregated by computing the median of the errors.
Additionally, we computed the mean, root mean square er-
ror and the maximum error for every estimator.

1http://www5.cs.fau.de

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Captured scenes. Left: original scenes, right: same scene
painted gray, for computing the ground truth (see text for further
details).

For the evaluation we used leave-one-out cross valida-
tion. The base estimators for the fusion schemes have been
trained on the reprocessed database by Gehler et al. Ac-
cordingly, the fusion algorithms have also been trained on
the database by Gehler et al. Thus, our own captured testing
data was for the algorithms completely unknown.

5.1. Evaluation on Uniform Illumination

First, we evaluated our implementations on the repro-
cessed database by Gehler et al. [14, 22]. We used this
data set, as it is to our knowledge the largest real-world
dataset, which is available as raw data. The reflection target
has been masked out. These results show the overall per-
formance of our implementations of individual algorithms
— as there are always implementational ambiguities. They
also serve as a basis for comparison to the subsequent evalu-
ation on images containing non-uniform illumination. Even
in the Gehler database, there are images taken under multi-



Algorithm Angular error in ◦

Mean Median RMS Max

Do nothing 13.5 13.6 13.6 21.2
Average illuminant 2.3 1.9 3.0 18.7
White patch Retinex 8.4 6.6 10.5 37.3
Gray World 6.4 5.3 7.6 25.2
1st order Gray Edge 4.7 3.8 5.6 24.3
2nd order Gray Edge 4.2 3.2 5.3 24.3
Best Gray World / Edge 4.2 3.2 5.3 24.3
Gamut Mapping (max) 6.6 5.2 8.4 31.6
Gamut Mapping (mean) 4.6 4.5 5.0 17.4
Bayesian Color Constancy 3.2 2.5 4.1 19.5

Average estimate 4.9 3.6 6.1 21.1
Gradient tree boosting 2.6 1.9 3.5 18.6
Random forest regression 2.7 2.2 3.6 18.7

Table 1. Mean, median, root mean square, and maximum errors
for outdoor images from the reprocessed Gehler et al. database.

ple illuminants, even though a single illuminant is provided
as ground truth. This is a source of error which is more
prominent in the indoor scenes. Thus, we subdivided the
images in outdoor and indoor images (see Tab. 1 and Tab. 2).

“Do nothing” assumes a white illuminant, and “Average
illuminant” estimates always the average of all the train-
ing illuminants. For the generalized Gray World we used
the following settings: We varied the Minkowski norm with
1 ≤ p ≤ 10, 0 ≤ σ ≤ 4 in steps of 1. We explicitly report
only the results for “White patch Retinex” (n = 0, p→∞,
σ = 0), “Gray World” (n = 0, p = 1, σ = 0), “1st order
Gray Edge” (n = 1, p = 1, σ = 1), “2nd order Gray Edge”
(n = 2, p = 1, σ = 1), and the best performing General-
ized Gray World algorithm based on the median angular er-
ror. For Gamut Mapping, “Gamut Mapping (max)” denotes
3D Gamut Mapping that chooses the illuminant based on
the maximum trace. “Gamut Mapping (mean)” denotes 2D
Gamut Mapping with the mean selection strategy. Only the
2D Gamut Mapping uses illuminant constraints. “Bayesian
color constancy” denotes Bayesian illumination estimation
using the Euclidean distance as loss function. For the fu-
sion of the estimates, “Average estimate” denotes the mean
of the outputs of the fused estimators, “Gradient tree boost-
ing” and “Random forest regression” denote the two ma-
chine learning-based regression approaches.

From Tab. 1, we observe that the error of choosing the
mean illuminant is very small for outdoor images. Thus,
the variability of illuminants is small for the outdoor im-
ages. The 2D Gamut Mapping variants benefit the most
from that fact. The best performing generalized Gray World
algorithm for outdoor images was n = 2, p = 1, σ = 1.
Using regression and a collection of estimators, we were
able to obtain results that are better than the best perform-

ing single algorithm. For the training and testing itself, we
used k-fold cross-validation. Interestingly, the average illu-
minant from the ground truth performs still slightly better
with respect to the mean and RMS error, which suggests
that the variability of illuminants is not very high in this
dataset. For indoor images (see Tab. 2), the best performing
Gray World method was Gray Edge with n = 1, p = 1,
σ = 1. Here, the variation of illuminants is significantly
higher, as can be seen from the higher error of the “Average
illuminant”. Note that among the fusion schemes, Random
forest regression performs best, and improves the final error
for approximately 0.9◦, compared to the single estimators.

Algorithm Angular error in ◦

Mean Median RMS Max

Do nothing 13.8 13.4 14.4 27.4
Average illuminant 7.0 6.5 8.1 22.8
White patch Retinex 10.9 10.7 12.6 48.1
Gray World 6.6 6.3 7.7 24.8
1st order Gray Edge 4.7 4.3 5.3 15.0
2nd order Gray Edge 5.6 4.9 6.4 17.3
Best Gray World / Edge 4.7 4.3 5.3 15.0
Gamut Mapping (max) 9.5 8.9 10.9 27.4
Gamut Mapping (mean) 7.1 6.7 8.2 20.6
Bayesian Color Constancy 5.9 5.4 7.0 20.0

Average estimate 7.0 6.5 8.2 29.4
Gradient tree boosting 4.5 3.9 5.3 15.7
Random forest regression 3.9 3.4 4.7 16.2

Table 2. Mean, median, root mean square, and maximum errors
for indoor images from the reprocessed Gehler et al. database.

5.2. Evaluation on Non-Uniform Illumination

The 36 multi-illuminant images have been segmented
in superpixels. The segmentation was transferred to the
ground truth images, and the per-segment ground truth was
determined by averaging the ground truth over the super-
pixels. This averaging introduces inaccuracies on an illu-
mination boundary. However, we considered it reasonable,
because the algorithms produce illuminant estimates per-
superpixel, and as such this is the level of detail in which
we require ground truth.

An example segmentation and estimation is shown in
Fig. 5. The segmentation parameters were chosen, so that
an image was subdivided into approximately 30 superpix-
els, with the individual superpixel size varying between ap-
proximately 10, 000 and 50, 000 pixels.

We trained the illuminant estimators on the indoor im-
ages from the reprocessed Gehler database. The results are
shown in Tab. 3. The best gray world configuration was
n = 0, p = −1, σ = 1. Note that the individual errors on
each superpixel are largely increased, and range from a me-



Algorithm Angular error in ◦

Mean Median RMS Max

Do nothing 10.4 10.0 11.7 21.6
Average illuminant 7.7 7.8 8.3 15.4
White patch Retinex 5.8 5.1 7.0 21.6
Gray World 5.1 5.0 5.7 14.4
1st order Gray Edge 14.2 13.7 14.9 29.0
2nd order Gray Edge 12.8 12.6 13.4 27.3
Best Gray World / Edge 5.4 4.6 6.3 21.6
Gamut Mapping (max) 5.9 5.2 7.2 21.3
Gamut Mapping (mean) 6.4 6.3 7.1 14.6
Bayesian Color Constancy 6.5 4.8 8.1 20.7

Average estimate 7.8 7.7 8.4 16.2
Gradient tree boosting 6.2 6.0 6.8 17.5
Random forest regression 4.4 4.1 5.0 12.9

Table 3. Mean, median, root mean square, and maximum errors
non-uniform illumination estimation on superpixels.

dian of about 4.6 degrees to 13.7 degrees. This has been ex-
pected. The superpixel segmentation aims to provide areas
of approximately the same color, which is theoretically poor
input for almost all applied estimators. For instance, Gamut
Mapping expects colorful images, while gray world expects
balanced colors. Picking a superpixel with mainly only one
color undermines such algorithms. However, this effect is
apparently limited. For instance, in the present case, the 1st
and 2nd order gray world algorithms perform considerably
worse than the statistical methods.

In this scenario, we performed all necessary training
steps on the Gehler indoor database. Thus, for Gamut Map-
ping and Bayesian Color Constancy, as well as the fusion

(a) (b)

(c) (d)

Figure 5. Example segmentation, ground truth and illuminant esti-
mation (colors are scaled for the purpose of printing) (a) Original
image (b) ground truth (c) Result of gray world (d) Result of 2D
Gamut Mapping

algorithms, the tested database was unknown beforehand.
Similarly, also the “Average Illuminant” refers to the av-
erage of the ground truth of the database by Gehler et al.
In this experiment, regression by boosting did not improve
the results. However, regression based on Random forests
could lower the median error to 4.1 degrees. The improved
estimates yield an error level that again clearly improves
over the single illuminant estimates. This is a surprising
result, as the underlying estimates by themselves are com-
parably weak, and no additional image features are used
for guidance of the fusion process. As a consequence, we
conclude that to some extent, color constancy under non-
uniform illumination can be addressed by ensembles of lo-
cally applied single-illuminant estimators.

6. Discussion
We evaluated single illuminant estimation algorithms

and fused versions of these algorithms in three scenarios.
The two cases on the database by Gehler et al. can be
used as a baseline reference for the performance of our im-
plementation. Among these, the indoor pictures exhibit a
greater variability. Thus, when evaluating on the newly cap-
tured data, we trained our algorithms on the Gehler indoor
images. In general, machine learning algorithms have dif-
ficulties when training on one database and evaluating on
another. During our experiments, we also noted this behav-
ior. Nevertheless, results show that we managed to avoid
overfitting to some extend. The methods generalize suffi-
ciently, such that their good performance can be confirmed
on the unknown data.

We consider several aspects of the evaluation section
worth to discuss in greater detail. At first, it is counter-
intuitive that the statistical methods, i.e. Gamut Mapping
and Bayesian Color Constancy, yield at all useful results on
the superpixel estimation. Indeed, we observed that a drop
color variation yields to several problems with the statistical
algorithms. However, note that in the present case, the su-
perpixels are still relatively large with respect to the level of
detail in the image. As a consequence, at least two surfaces,
and some shading artifacts, are typically contained within
one superpixel.

Another particularity of this approach is the fact, that
no additional image features are used to support the fusion
of the estimates. Thus, the fusion methods can be seen
as a way of integrating brute force results on the multi-
illuminant problem. Thus, the results suggest – although
this should be confirmed in more extensive experiments –
that the error behavior of existing algorithms contains use-
ful patterns to estimate the true illuminant.

As a consequence, we see in these results two main
points. First, evaluating a large number of existing al-
gorithms for every superpixel in the image dramatically
increases the computational cost. Additionally, methods



like 2D-Gamut Mapping can become slow if the observed
Gamut is very small. More efficient algorithms are nec-
essary for a more practical solution to the multi-illuminant
problem. At the same time, we are surprised how well the
lack of color information can be compensated by adding
more estimators. Looking at the error rates, we eventually
reached a median error of 4.1◦ on non-uniform illumina-
tion, which is even better than the best performing estimator
on the single-illuminant indoor dataset by Gehler et al.

7. Conclusion

We addressed the problem of recovering a relatively
dense field of localized illuminant estimates for color
constancy under non-uniform illumination. We imple-
mented several variants of Gray World, Gamut Mapping
and Bayesian color constancy as base illuminant estima-
tors. For the ground-truth data, we captured 4 scenes for
a total of 36 multi-illuminant images. Then, we trained the
base algorithms on the reprocessed real-world dataset by
Gehler et al. and obtained illuminant estimates over small
superpixels per image. As expected, the error of these es-
timates was much higher compared to the errors under uni-
form illumination. Surprisingly, regression on these weak
estimates from inhomogeneous illumination lead to results
that are comparable to the performance of single estima-
tors on homogeneous illumination. Thus, we conclude that
combinations of single-illuminant estimators yield promis-
ing results to address the recovery of illumination color un-
der non-uniform illumination. We presented preliminary re-
sults. Note that the individual error rates require closer in-
vestigation, and that the ground truth dataset can be further
improved. In future work, we plan to extend our database
of non-uniformly illuminated scenes.
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