
Deep Learning for Image Reconstruction

Wenyu Zhang



Overview

• AUTOMAP

• CT Image Reconstruction

• Variational Network



Overview

• AUTOMAP

• CT Image Reconstruction

• Variational Network



AUTOMAP

28.09.2018 4[1] Image reconstruction by domain transform manifold learning,Bo Zhu

What is Automated Transform by Manifold Approximation?

AUTOMAP recasts image reconstruction as a data-driven, 

supervised learning task implemented with a deep neural network 

that allows a mapping between sensor and image domain.
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Layers:

• The fully-connected layers approximate the between-manifold 

projection from the sensor domain to the image domain.

• The convolutional layers extract high-level features from the 

data and force the image to be represented sparsely

A composite transformation:
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• is an inversed transform original encoding signals from 

sensor domain to the decoded domain

• g is projection from manifold of  decoded inputs x to manifold 

of output images y

• decompress the images from manifold g back to the 

representation in euclidean space.
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AUTOMAP 
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is noisy observation,    is sensor domain inputs. First task is to 

learn the stochastic projection operator onto mainifold 𝒳:
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After obtaining 𝑥, second task is to obtain the reconstruct function 

f(x) :
f(x))(x),f

~
L(min 

Denote the data as                  ,      is i-th obervation indicates nxn 

paramters,      indicates nxn underlying images. Assum that:

• Smooth and homeomorphic function 𝑓: 𝑦 = 𝑓(𝑥)  exists

• Manifolds 𝒳 and 𝒴are embedded in the ambient space 

Joint manifold         = 𝒳x 𝒴， that the                  lies in.

Exist a mapping                      , between (x,f(x)) and (z,g(z))
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Model Architecture 
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• The input to the neural network consists of a vector of sensor 

domain sampled data produced by the preprocessing 

• Complex data must be separated into real and imaginary 

components concatenated in the input vector(nxn-2n^2x1)

• The input layer FC1 is fully connected to an n^2 x 1 dimensionality  

FC2 and activated by the tanh

• Fully connected to another n^2 × 1 dimensionality hidden layer 

FC3

• C1,C2 convolve 64 filters of 5 × 5 with stride 1 followed by a 

rectifier nonlinearity

• The the final output layer deconvolves the C2 layer with 64 filters 

of 7 × 7 with stride 1, reconstruct the magnitude image



Model Architecture 
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Training Details
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Data:

• ImageNet

• Human Connectome Project (HCP)

• Random value noise

Sensor-domain encoding:

• Discrete Radon Transform with 180 projection angles and 185 

parallel rays

• Nonuniform Fast Fourier Transform (NUFFT) was used  the 

Spiral k-space experiment

• Undersampled Cartesian k-space experiment used a Poisson-

disc sampling pattern

• The misaligned Cartesian k-space experiment  used Fourier 

Transformed



Training Details
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Training the network:

• Multiplicative noise to the inputs to force the network to learn 

robust presentation

• Squared loss

• L1 norm penalty applied to the feature map activations in the 

final hidden layer C2 

• Gaussian noise that was only applied during evaluation



Results Comparison
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Hidden-layer Activity
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t-SNE: https://lvdmaaten.github.io/tsne/



Learn Reconstruction of Image Phase
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Filtered Back-projection
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Mapping there steps to neural network:

• High pass filter  —— convolution layer 

• Backprojection along      —— fully connected layer 

• Suppress negative values  —— non-negative constrain (ReLU)

• Loss function: e.g. l2 norm: 



2
x y



Parallel-Beam Neural Network Architecture
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Mapping FBP to Neural Networks

28.09.2018 18[2]Deep Learning Computed Tomography, Tobias Würfl, Florin C






N

n

nnn
vuqvu

1

)),sin()cos((

N

),(f 


and one-dimensional interpolation:

 
  
















N

n

M

m
m

M
vu

nm

nn

qvuwvu

1 1
n

2

2
)sin()cos(

),,(

N

),(f
，




A well known activation model of a neuron is:
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A Practical Introduction to Deep Learning with Caffe and Python, Adil Moujahid
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then we could compare the function before:
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Mapping FBP to Neural Networks
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https://medium.com/@kanchansarkar/relu-not-

a-differentiable-function-why-used-in-gradient-

based-optimization-7fef3a4cecec
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Parallel-Beam Back-Projection Layer
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To solve the parameters in the fully connected layer:

• During the forward-pass, the coefficients are computed,and 

update: 

• Backward-pass: 
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Fan-beam Neural Network Architecture
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Fan-beam Neural Network Architecture
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• B denotes the backprojection operator 

• C implements filtering with one-dimensioal convolution kernel

• is weighting operators

• is compensation weights

• The non-negativity constraint is realized via operator   

cos
W

comp
W





Fan-beam Neural Network Architecture
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Main parts of the architecture:

• Weighting Layer: 

W is sparse structure of a diagonal matrix; 

Forward: element-wise multiplication of the input with the 

weights; 

Backward: element-wise multiplication of the weights with the 

error.

• Fan-Beam Back-Projection Layer :

identical to the parallel-beam FCL



Convergence and Overfitting
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Regularization is important to achieve convergence and to 

prevent overfitting:

• Dropout: individual nodes are either "dropped out" of the net 

with probability 1 − p or kept with probability p 

• Pre-training can be applied directly using knowledge of 

existing FBP algorithms.

e.g.  The convolutional layer uses the ramp filter.

DL Exercise 2: Regularization



Reconstruction Results 
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Reconstruction results using 360◦, 180◦ FBP, and 180◦ NN
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Variational Network 
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Variational Network 
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To remove the streaking artifacts, the VN formulates non-

linear filtering. In each step t, these parameters are learned:

• filters  

• derivative of potential functions  

• the regularization parameter 
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Variational Network 
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Formulating a network for non-linear filtering as a fixed 

number of T unrolled gradient descent steps:
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The variational image restoration problem is given as,
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Variational Network 
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Then the loss function is the minimization of the mean-

squared error (MSE):
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Results Comparison
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