
## Optical Tomography (overview)

Slavica Subić, ASC 17/18 FAU Erlangen-Nürnberg

# Optical microscopy vs. Optical and Optoacoustic Imaging

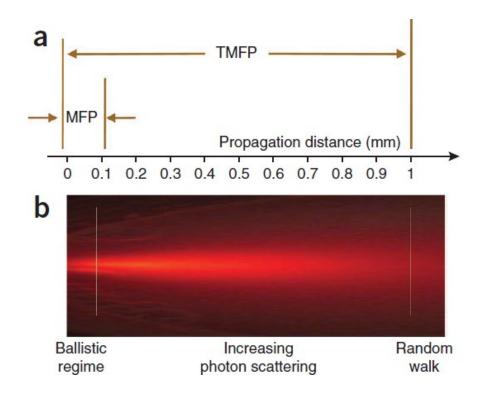
Images: www.socmucimm.org

-In vivo tissue imaging capacities of optical microscopy are limited



- Dynamic interactions of cellular processes at different system levels are reachable with optical and optoacoustic methods
- Promising photonic methods: micro-, meso- and macroscopic (according to the tissue depth at which they operate)

## Imaging Limit of Conventional Microscopy 1/2


- MFP (Mean Free Path) of a photon
- Of the order 100  $\mu m$  in tissue (depends on the tissue type)
- Shorter in lungs or muscle, longer in semi-transparent organisms
- Conventional microscopy: 10-20  $\mu m$
- Confocal and multiphoton microscopy: tens hundreds of  $\mu m$

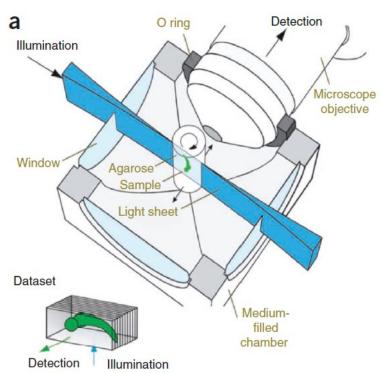
## Imaging Limit of Conventional Microscopy 2/2

- TMFP (Transport Mean Free Path)
- Depends on the tissue and the wavelength

| Table 1   Optical properties of different tissues |                                               |                                                    |              |  |  |  |
|---------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------|--|--|--|
| Tissue type                                       | Absorption coefficient<br>(cm <sup>-1</sup> ) | Reduced scattering coefficient (cm <sup>-1</sup> ) | TMFP<br>(mm) |  |  |  |
| Muscle                                            | 0.20                                          | 9                                                  | 1.1          |  |  |  |
| Brain                                             | 0.25                                          | 16                                                 | 0.6          |  |  |  |
| Breast                                            | 0.05                                          | 12                                                 | 0.8          |  |  |  |
| Lung                                              | 0.10                                          | 30                                                 | 0.3          |  |  |  |

- Confocal and MP: < 1 TMFP
- Upper limit of the penetration of the microscopic techniques




## Deep-tissue Microscopic Imaging 1/4

- Confocal and multiphoton microscopy
  - have been used extensively for *in vivo* imaging of fluorescent proteins, probes or dyes to investigate structure, function and molecular events as they occur in unperturbed environments
- Optical projection tomography
  - chemically clean the specimen, then use an approach similar to XCT for acquiring the data and reconstructing it; applicable only post-mortem


#### Deep-tissue Microscopic Imaging 2/4

#### - Selective plane illumination microscopy

- SPIM has been shown to image with 6- $\mu$ m resolution up to a depth of about 500  $\mu$ m (~1–2 MFP) in semitransparent medaka fish, attaining resolution improvements over volumetric tissue illumination



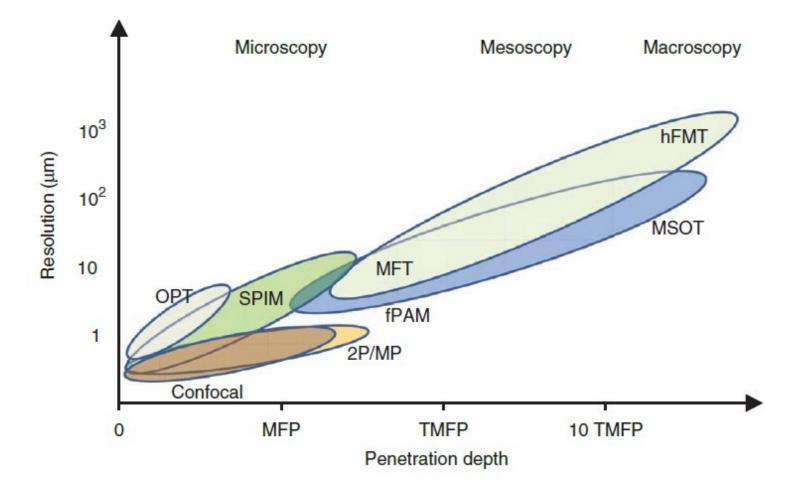




## Deep-tissue Microscopic Imaging 3/4

#### - Optoacoustic microscopy

- powerful approaches for imaging optical absorption in tissues
- the ultrasound waves are generated by the transient thermoelastic expansion of light absorbing structures, following transient local temperature rise owing to molecules that absorb energy from the photon pulse


#### - fPAM (functional photoacoustic microscopy)

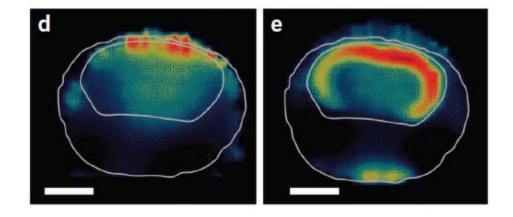
- limitation: ultrasonic attenutation
- fPAM can offer substantial flexibility in visualizing optical contrast at greater depths than other optical microscopy methods with ~10–20-μm resolution
- As in confocal or 2P/MP microscopy, fPAM images are generated from raster scans by piecing together information collected from different foci
- three-dimensional images may be generated with two-dimensional scans

### Deep-tissue Microscopic Imaging 4/4

- Optical coherent tomography
  - illuminates tissue with light of low coherence and detects back-reflected light based on coherence matching between the incident and reflected beams using an interferometric approach
- Contrast enhancement methods
  - capturing contrast associated with different biochemical parameters of the molecules involved in image generation

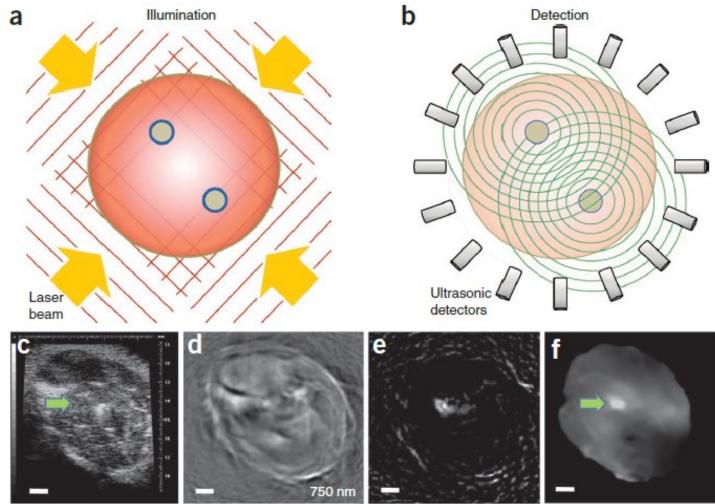
#### Comparison



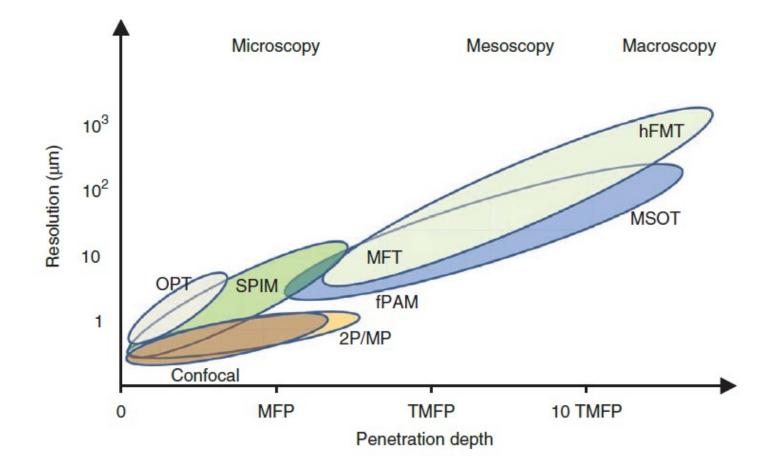

#### Macroscopy 1/2

- Optical system + (MRI or XCT) = hybrid implementations
- Macroscopic applications can be considered for small animal imaging (mouse and rat), imaging of certain organs or in endoscopic and intraoperative applications
- Light attenuation depends both on tissue scattering and tissue absorption
- 3-6 cm for muscle or brain, 10-12 cm for breast tissue

## Macroscopy 2/2


#### - Hybrid fluorescence molecular tomography

- different methods combined
- image prior




- Multispectral optoacoustic tomography
  - tomographic reconstruction in this case is based on mathematical inversion methods, using a model of acoustic and possibly of photon propagation in tissue
  - challenge: accurate quantification

# Multispectral Optoacoustic Tomography (Spectral Photoacoustic Tomography)



#### Comparison 1/2



#### Comparison 2/2

|                   | Resolution<br>(µm) | Penetration<br>depth  |                                                      | Phototoxicity | Cost/<br>complexity <sup>a</sup> | Inversion<br>(versus scan) |
|-------------------|--------------------|-----------------------|------------------------------------------------------|---------------|----------------------------------|----------------------------|
| Confocal          | <1                 | 2–3 MFP               | <nm< td=""><td>+++</td><td>++</td><td>No</td></nm<>  | +++           | ++                               | No                         |
| 2P/MP             | <1                 | 3–4 MFP               | <nm< td=""><td>+++</td><td>+++</td><td>No</td></nm<> | +++           | +++                              | No                         |
| OPT               | ~1-10              | ~0.2 MFP <sup>b</sup> | <nm< td=""><td>++</td><td>+</td><td>Yes</td></nm<>   | ++            | +                                | Yes                        |
| SPIM              | 0.5-10             | <1 MFP                | <nm< td=""><td>++</td><td>+</td><td>No</td></nm<>    | ++            | +                                | No                         |
| fPAM              | 5–20               | ~1 MFP to<br>few TMFP | nM                                                   | ++            | +++                              | No                         |
| MFT               | >20                | ~1 TMFP               | nM                                                   | ++            | +                                | Yes                        |
| MSOT <sup>c</sup> | >20                | >1 TMFP               | nM-µM                                                | ++            | +++                              | Yes                        |
| hFMT              | >500               | >1 TMFP               | nM                                                   | +             | ++                               | Yes                        |

#### Table 2 | Summary of performance characteristics

<sup>a</sup>More plus signs indicate greater cost and/or greater complexity. <sup>b</sup>OPT can generate images at greater depths than 0.2 MFP but at strongly deteriorating image resolution and fidelity. <sup>c</sup>Metrics listed for mesoscopic and macroscopic MSOT.

#### Differences between methods

- Resolution and propagation depth
- Detection sensitivity: depends on the imaging depth, the time allowed for image acquisition and on the particular technology used
- Scanning techniques vs. reconstructing methods

## Thank you.





references:

- Going deeper than microscopy: the optical imaging frontier in biology, V. Ntziachristos, Nature Methods 7:603-614, 2010