

Background and Purpose

Diseases like glaucoma affect the visual pathway in the brain. Diffusion Tensor Imaging enables the reconstruction of white matter fibers in vivo. For a reliable analysis the quality of the input data is discriminant.

The purpose of our work is to develop a method to **auto**matically discriminate between different quality levels of diffusion weighted images.

Key Ideas

Three feature groups capture determinant quality criteria

-Clustering: Recognizability of relevant structures

–Sharpness: Separation of important components -Texture: Generic image appearance

A Support Vector Machine classifies different quality levels

Data

Acquisition

- 3T-MRI scanner
- Imaging sequence: Single-shot, spin echo, echo planar imaging
- 230 x 230 mm² field of view
- Intra-slice-resolution: 1.8×1.8 mm², 5mm thickness
- 10 subjects scanned along 20 gradient directions
- Each scan on 1 image as 5×5 matrix (Fig. 1)
- 4 scans in each direction

Four quality levels by averaging scans in each direction are used

- Level 1: Original scan (No average)
- Level 2: Average of 2 scans in same direction
- Level 3: Average of 3 scans in same direction
- Level 4: Average of 4 scans in same direction

Automatic Quality Assessment of Diffusion Weighted Images J. Paulus^{1,2}, A. El-Rafei^{1,2}, S. Wärntges³, J. Hornegger^{1,2}, G. Michelson^{2,3,4}, A. Dörfler⁵ ¹Pattern Recognition Lab, Department of Computer Science, ²Erlangen Graduate School in Advanced Optical Technologies (SAOT), ³Department of Ophthalmology, ⁴Interdisciplinary Center of Ophthalmic Preventive Medicine and Imaging (IZPI), ⁵Department of Neuroradiology

jan.paulus@informatik.uni-erlangen.de

Figure 1: Example image of a diffusion weighted imaging dataset of a brain scan (average of 4 scans). The 25 slices are aligned in a 5×5 matrix.

Methods: Clustering

The recognizability of 3 classes is investigated

- 1. Grey/white matter
- 2. Background
- 3. Remaining regions
- \rightarrow The image is divided into corresponding clusters. The division will fail for low quality images.

Global description:

- k-means-clustering (k = 3)
- Initialization on random image points
- Clustering fails for low quality images

Features:

• Cluster sizes c_i of clusters C_i :

$$c_{i} = \frac{\#\{g_{xy}|g_{xy} \in C_{i}\}}{\{\#g_{xy}|g_{xy} \in Image\}}$$
(1)

• Inter-cluster-differences d_{ij} of cluster means m_i :

$$d_{ij} = m_i - m_j, \ i, j \in \{1, \dots, k\}, \ i > j$$
 (2)

Friedrich-Alexander-University of Erlangen-Nuremberg, Germany

Methods: Sharpness

The quality of separation of relevant classes is determined

 \rightarrow The separation is dependent on edge information. Low quality images will show weak edges and low sharpness.

Local measurement:

- Gradient based sharpness metric for edge evaluation
- Identification of strong edges:
- 1. Computation of gradient magnitude image G
- 2. Detection of strong edge pixel: Magnitudes above $2 \times$ mean value of G

Features:

- Number of strong edge pixels
- Average magnitude of strong edge pixels

Methods: Texture

The image appearance is evaluated

- 1. Common sharpness
- 2. Intensity homogeneity
- 3. Contrast
- \rightarrow Texture statistics give information about the image appearance.

Texture metric:

- Haralick features
- Well established texture description method
- Statistics based on adjacent intensity pairs

Features:

- Entropy ↔ Sharpness
- Energy ↔ Homogeneity
- Contrast

Methods: Classification

- Support Vector Machine with linear kernel
- Normalized features
- 10-fold-cross-validation
- Determination of quality levels independent from scan direction

The performance of assigning an image to its correct quality level was evaluated

- For all quality levels:
- -Minimum sensitivity of 0.96 at a specificity of 0.90
- -Area under ROC curve higher than 0.97

Figure 2: ROC curves for automatically assigning images to their correct quality levels.

Conclusion

- 1. We developed a reliable and robust method for automated quality assessment of different quality levels of diffusion weighted images.
- 2. In the future the algorithm has to be evaluated on a human graded gold standard.

Support

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) in the framework of the excellence initiative.

Commercial Relationship

J. Paulus, None; A. El-Rafei, None; S. Wärntges, None; J. Hornegger, None; G. Michelson, None; A. Dörfler, None

References

- [1] D. Le Bihan, J. Mangin, C. Poupon, C. Clark, S. Pappata, N. Molko, H. Chabriat. Diffusion Tensor Imaging: Concepts and Applications. Journal of Magnetic Resonance Imaging 13(4), pp. 534-546, 2001
- [2] R. M. Haralick, K. Shanmugam and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, SMC-3, 610–621 (1973)