Constructing and implementing orthogonal and biorthogonal wavelet transforms via liftings

WTBV 2017/18 (short version)

January 30, 2018
(1) Lifting decomposition of the Haar transform
(2) Lifting decomposition of the Daubechies-4 transform
(3) The polyphase matrix

- Downsampling and convolution
- Orthogonal filters
- Biorthogonal filter pairs
- Polyphase matrix and lifting
(4) Euclidean division und lifting
- Euclid's algorithm for polynomials
- Euclid's algorithm for Laurent polynomials
- Euclid's algorithm and the polyphase matrix
(5) The Wavelet transforms in JPEG2000
- Lifting scheme for the biorthogonal

Cohen-Daubechies-Feauaveau- $(9,7)$ wavelet

- Lifting scheme for the biorthogonal LEGALL-(5,3) wavelet
- Lifting is a particular method for constructing and implementing orthogonal and biorthogonal (pairs of) filters and discrete wavelet transforms
- Lifting has close relations to classical topis in computer algebra: polynomial arithmetic and Euclid's algorithm in particular
- Haar WT uses the filters

$$
\begin{array}{ll}
\text { low-pass } & \boldsymbol{h}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\text { high-pass } & \boldsymbol{g}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -1
\end{array}\right]
\end{array}
$$

- orthogonal matrix

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

- operation on signals

$$
\boldsymbol{a}=\left(a_{n}\right)_{n \in \mathbb{Z}} \longmapsto\left\{\begin{array}{l}
\tilde{\boldsymbol{a}}=\left(\tilde{a}_{n}\right)_{n \in \mathbb{Z}} \\
\tilde{\boldsymbol{d}}=\left(\tilde{d}_{n}\right)_{n \in \mathbb{Z}}
\end{array}\right.
$$

where

$$
\tilde{a}_{n}=\frac{1}{\sqrt{2}}\left(a_{2 n}+a_{2 n+1}\right), \quad \tilde{d}_{n}=\frac{1}{\sqrt{2}}\left(a_{2 n}-a_{2 n+1}\right) .
$$

- Using the technique of z-transforms (alias power series), one gets by separating the sequences of even- and odd-indexed coefficients

$$
\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right) \longleftrightarrow\left\{\begin{array}{l}
\left(\ldots, a_{-2}, a_{0}, a_{2}, \ldots\right) \\
\left(\ldots, a_{-1}, a_{1}, a_{3}, \ldots\right)
\end{array}\right.
$$

the decomposition

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}=a_{\text {even }}\left(z^{2}\right)+z \cdot a_{o d d}\left(z^{2}\right)
$$

where

$$
\begin{aligned}
& a_{\text {even }}(z)=\sum_{n \in \mathbb{Z}} a_{2 n} z^{n}=\left.\frac{a(z)+a(-z)}{2}\right|_{z^{2} \leftarrow z}, \\
& a_{o d d}(z)=\sum_{n \in \mathbb{Z}} a_{2 n+1} z^{n}=\left.\frac{a(z)-a(-z)}{2 z}\right|_{z^{2} \leftarrow z} .
\end{aligned}
$$

- The series for approximation and for detail are

$$
\begin{aligned}
& \tilde{a}(z)=\sum_{n \in \mathbb{Z}} \tilde{a}_{n} z^{n}=\frac{1}{\sqrt{2}}\left(a_{\text {even }}(z)+a_{\text {odd }}(z)\right), \\
& \tilde{d}(z)=\sum_{n \in \mathbb{Z}} \tilde{d}_{n} z^{n}=\frac{1}{\sqrt{2}}\left(a_{\text {even }}(z)-a_{\text {odd }}(z)\right) .
\end{aligned}
$$

- Writing this in matrix form (with power series as coefficients)

$$
\left[\begin{array}{l}
\tilde{a}(z) \\
\tilde{d}(z)
\end{array}\right]=H \cdot\left[\begin{array}{c}
a_{\text {even }}(z) \\
a_{\text {odd }}(z)
\end{array}\right]
$$

- This simple cases is not typical, however, because the matrix entries are constants. In general they will be polynomials (including terms with negative z-powers)
- Now consider the following decomposition of the H -matrix:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

- Only very simple (2×2)-matrices occur as factors:
- the diagonal matrix $\left[\begin{array}{cc}\sqrt{2} & 0 \\ 0 & -\frac{1}{\sqrt{2}}\end{array}\right]$
- the special upper triangular matrix $\left[\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right]$
- the special lower triangular matrix $\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$
- "special" means: entries in the main diagonal are 1
- The decomposition can be interpreted as a straight-line program for parallel execution of the approximation-detail transformation

$$
\begin{array}{ll}
& \left(a_{2 n}, a_{2 n+1}\right) \mapsto\left(\tilde{a}_{n}, \tilde{d}_{n}\right) \quad(n \in \mathbb{Z}) \\
x \leftarrow a_{2 n} & \\
y \leftarrow a_{2 n+1} & \text { multiplication by }\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \\
y \leftarrow y-x & \text { multiplication by }\left[\begin{array}{cc}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right] \\
x \leftarrow x+\frac{1}{2} y & \\
\tilde{a}_{n} \leftarrow \sqrt{2} x & \text { multiplication by }\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]
\end{array}
$$

Graphical representation as a data flow diagram (including the inverse transformation)

- The decomposition of H immediately gives the decomposition of the matrix of the inverse transformation H^{-1}

$$
\begin{aligned}
H^{-1} & =\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & -\sqrt{2}
\end{array}\right]
\end{aligned}
$$

- Note: the diagonal and triangular matrices are easy to invert!
- The Haar situation is particular because $H=H^{-1}$, but the previous remark applies in general
- The decompositions of H and H^{-1} can be read as blueprints for implementation!
- Filter coefficients of the D4 transform

$$
\begin{aligned}
\left(h_{0}, h_{1}, h_{2}, h_{3}\right) & =\left(\frac{1+\sqrt{3}}{4 \sqrt{2}}, \frac{3+\sqrt{3}}{4 \sqrt{2}}, \frac{3-\sqrt{3}}{4 \sqrt{2}}, \frac{1-\sqrt{3}}{4 \sqrt{2}}\right) \\
& =(0.482963,0.836516,0.224144,-0.129410) \\
\left(g_{-2}, g_{-1}, g_{0}, g_{1}\right) & =\left(\frac{-1+\sqrt{3}}{4 \sqrt{2}}, \frac{3-\sqrt{3}}{4 \sqrt{2}}, \frac{-3-\sqrt{3}}{4 \sqrt{2}}, \frac{1+\sqrt{3}}{4 \sqrt{2}}\right) \\
& =(0.129410,0.224144,-0.836516,0.482963)
\end{aligned}
$$

- polyphase matrix

$$
\left[\begin{array}{ll}
h_{\text {even }}(z) & h_{\text {odd }}(z) \\
g_{\text {even }}(z) & g_{\text {odd }}(z)
\end{array}\right]=\left[\begin{array}{cc}
h_{0}+h_{2} z & h_{1}+h_{3} z \\
g_{-2} z^{-1}+g_{0} & g_{-1} z^{-1}+g_{1}
\end{array}\right]
$$

- Decomposing the matrix of the D4 transform

$$
\begin{aligned}
& {\left[\begin{array}{ll}
h_{\text {even }}(z) & h_{\text {odd }}(z) \\
g_{\text {even }}(z) & g_{\text {odd }}(z)
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
\frac{\sqrt{3}-1}{\sqrt{2}} & 0 \\
0 & \frac{\sqrt{3}+1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
1 & -z \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\frac{\sqrt{3}}{4}-\frac{\sqrt{3}-2}{4} z^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \sqrt{3} \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

- define parameters

$$
(\alpha, \beta, \gamma, \delta, \mu, \nu)=\left(\sqrt{3},-\frac{\sqrt{3}}{4},-\frac{\sqrt{3}-2}{4},-1, \frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right)
$$

- D4 transform in terms of these parameters

$$
\begin{aligned}
\widetilde{a}_{n}=\mu[& (1+\gamma \delta) a_{2 n}+(\alpha+\alpha \gamma \delta) a_{2 n+1} \\
& \left.\quad+\delta \beta a_{2 n+2}+(\alpha \beta \delta+\delta) a_{2 n+3}\right] \\
\widetilde{d}_{n}=\nu[& \left.(1+\alpha \beta) a_{2 n+1}+\beta a_{2 n}+\alpha \gamma a_{2 n-1}+\gamma a_{2 n-2}\right]
\end{aligned}
$$

- D4 analysis as data flow diagram

- D4 synthesis by inverting the decomposition
- General considerations
- $\downarrow=$ downsampling (factor 2)

$$
\begin{array}{r}
\downarrow a(z)=a_{\text {even }}(z)=\left.\frac{a(z)+a(-z)}{2}\right|_{z^{2} \leftarrow z} \\
a_{\text {odd }}(z)=\downarrow\left(z^{-1} \cdot a(z)\right)=\left.\frac{a(z)-a(-z)}{2 z}\right|_{z^{2} \leftarrow z}
\end{array}
$$

- downsampling a convolution $\boldsymbol{a} \star \boldsymbol{b}$ of two signals (or filters)

$$
\begin{aligned}
\downarrow(a(z) \cdot b(z))= & \left.\frac{1}{2}(a(z) b(z)+a(-z) b(-z))\right|_{z^{2} \leftarrow z} \\
= & \frac{1}{2}\left(\left(a_{\text {even }}\left(z^{2}\right)+z a_{\text {odd }}\left(z^{2}\right)\right)\left(b_{\text {even }}\left(z^{2}\right)+z b_{\text {odd }}\left(z^{2}\right)\right)\right. \\
& \left.+\left(a_{\text {even }}\left(z^{2}\right)-z a_{\text {odd }}\left(z^{2}\right)\right)\left(b_{\text {even }}\left(z^{2}\right)-z b_{\text {odd }}\left(z^{2}\right)\right)\right)\left.\right|_{z^{2} \leftarrow z} \\
= & a_{\text {even }}(z) \cdot b_{\text {even }}(z)+z \cdot a_{\text {odd }}(z) \cdot b_{\text {odd }}(z)
\end{aligned}
$$

- filter bank with filters $\boldsymbol{h}, \boldsymbol{g}$ followed by downsampling (reversed filters denoted by \bar{h} and \bar{g})

$$
\boldsymbol{a}=\left(a_{n}\right)_{n \in \mathbb{Z}} \longmapsto\left\{\begin{array}{l}
\tilde{\boldsymbol{a}}=\left(\tilde{a}_{n}\right)_{n \in \mathbb{Z}}=a_{\text {even }}(z) \cdot \bar{h}_{\text {even }}(z)+z \cdot a_{\text {odd }}(z) \cdot \bar{h}_{\text {odd }}(z) \\
\tilde{\boldsymbol{d}}=\left(\tilde{d}_{n}\right)_{n \in \mathbb{Z}}=a_{\text {even }}(z) \cdot \bar{g}_{\text {even }}(z)+z \cdot a_{\text {odd }}(z) \cdot \bar{g}_{\text {odd }}(z)
\end{array}\right.
$$

- matrix version of this transform

$$
\left[\begin{array}{c}
a_{\text {even }}(z) \\
a_{\text {odd }}(z)
\end{array}\right] \longmapsto\left[\begin{array}{c}
\tilde{a}(z) \\
\tilde{d}(z)
\end{array}\right]=\left[\begin{array}{cc}
\bar{h}_{\text {even }}(z) & z \cdot \bar{h}_{\text {odd }}(z) \\
\bar{g}_{\text {even }}(z) & z \cdot \bar{g}_{\text {odd }}(z)
\end{array}\right]\left[\begin{array}{c}
a_{\text {even }}(z) \\
a_{\text {odd }}(z)
\end{array}\right]
$$

- Note that

$$
\bar{h}_{\text {even }}(z)=h_{\text {even }}\left(z^{-1}\right), \quad z \cdot \bar{h}_{\text {odd }}(z)=h_{\text {odd }}\left(z^{-1}\right)
$$

- so that the matrix of this transform can be written as

$$
P\left(z^{-1}\right)^{\mathrm{t}}=\left[\begin{array}{ll}
h_{\text {even }}\left(z^{-1}\right) & h_{\text {odd }}\left(z^{-1}\right) \\
g_{\text {even }}\left(z^{-1}\right) & g_{\text {odd }}\left(z^{-1}\right)
\end{array}\right]
$$

- The matrix

$$
P(z)=\left[\begin{array}{ll}
h_{\text {even }}(z) & g_{\text {even }}(z) \\
h_{\text {odd }}(z) & g_{\text {odd }}(z)
\end{array}\right]
$$

is known as the polyphase matrix belonging to the pair $(\boldsymbol{h}, \boldsymbol{g})$ of filters

- Orthogonality of a pair $(\boldsymbol{h}, \boldsymbol{g})$ of filters can be characterized in terms of the polyphase matrix as follows:
- A pair $(\boldsymbol{h}, \boldsymbol{g})$ of filters is orthogonal if an only if

$$
P\left(z^{2}\right)^{-1}=P\left(z^{-2}\right)^{\mathrm{t}}
$$

- Proof: see the Lecture Notes
- Bi-Orthogonalitity of a pair of filters $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ can also be cast in terms of the polyphase matrix:
- A pair of filters $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ (together with filters \boldsymbol{g} und $\widetilde{\boldsymbol{g}}$ constructed as usual) is a biorthogonal pair if and only if

$$
\widetilde{P}\left(z^{2}\right)^{-1}=P\left(z^{-2}\right)^{\mathrm{t}}
$$

- Proof: see the Lecture Notes
- What does "lifting" mean?
- The goal is to write the polyphase matrix $P(z)$ of a filter pair $(\boldsymbol{h}, \boldsymbol{g})$ as a product of very simple matrices

$$
\begin{aligned}
P(z) & =\left[\begin{array}{ll}
h_{\text {even }}(z) & g_{\text {even }}(z) \\
h_{\text {odd }}(z) & g_{\text {odd }}(z)
\end{array}\right]= \\
& {\left[\begin{array}{cc}
1 & q_{1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & q_{3}(z) \\
0 & 1
\end{array}\right] \ldots\left[\begin{array}{cc}
1 & 0 \\
q_{k}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right] }
\end{aligned}
$$

- w.l.o.g. assume that k is even
- The $q_{i}(z)$ are power series $\sum_{j \in \mathbb{Z}} q_{j} z^{j}$ with positive and possibly also with negative z-exponents
- If \boldsymbol{h} and \boldsymbol{g} are finite filters (the only case of interest for us) then the $q_{i}(z)$ are polynomials in z in an extended sense:
$\sum_{j=s}^{t} q_{j} z^{j}$ with positive or negative bounds of summation $s \leq t$
Generalized polynomials of this type are often called Laurent-polynomials (LP)
- Graphical representation of the analysis part of a filter bank using the product decomposition with coefficient polynomials $q_{j}(z)$ of the polyphase matrix $P(z)$

$$
\begin{aligned}
& P(z)=\left[\begin{array}{ll}
h_{\text {even }}(z) & g_{\text {even }}(z) \\
h_{\text {odd }}(z) & g_{\text {odd }}(z)
\end{array}\right]= \\
& {\left[\begin{array}{cc}
1 & q_{1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & q_{3}(z) \\
0 & 1
\end{array}\right] \cdots\left[\begin{array}{cc}
1 & 0 \\
q_{k}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]}
\end{aligned}
$$

Figure: Lifting analysis

- Graphical representation of the synthesis part of a filter bank using the polynomials $q_{j}(z)$ and the decompostion of the inverse of the polyphase matrix $P(z)$

$$
P(z)^{-1}=
$$

$$
\left[\begin{array}{cc}
1 / K & 0 \\
0 & K
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-q_{k}(z) & 1
\end{array}\right] \ldots\left[\begin{array}{cc}
1 & -q_{3}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-q_{2}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -q_{1}(z) \\
0 & 1
\end{array}\right]
$$

Figure: Lifting synthesis

- How to obtain the lifting decomposition of a polyphase matrix?

$$
\begin{aligned}
P(z) & =\left[\begin{array}{cc}
h_{\text {even }}(z) & g_{\text {even }}(z) \\
h_{\text {odd }}(z) & g_{\text {odd }}(z)
\end{array}\right]= \\
& {\left[\begin{array}{cc}
1 & q_{1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & q_{3}(z) \\
0 & 1
\end{array}\right] \ldots\left[\begin{array}{cc}
1 & 0 \\
q_{k}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right] }
\end{aligned}
$$

- Euclids's algorithm can be used for that!
- Consider polynomials (in the usual sense) with real or complex coefficients
- Fundamental property (division with remainder):
- For any polynomials $a(X), b(X)$ with $b(X) \neq 0$ there exist (unique!) polynomials $q(X)$ (the quotient) and $r(X)$ (the remainder) s.th.

$$
a(X)=b(X) \cdot q(X)+r(X)
$$

where $r(X)=0$ or $\operatorname{deg} r(X)<\operatorname{deg} b(X)$

- In perfect analogy to the situation with integers: iterated division with remainder can be used to compute the greatest common divisor (gcd) of two polynmials
- Scheme of Euclid's algorithm

$$
\begin{aligned}
\text { input } \quad r_{0} & =r_{0}(X)=a(X) \\
r_{1} & =r_{1}(X)=b(X) \\
r_{0} & =r_{1} \cdot q_{1}+r_{2} \\
r_{1} & =r_{2} \cdot q_{2}+r_{3} \\
r_{2} & =r_{3} \cdot q_{3}+r_{4} \\
\vdots & \\
r_{k-2} & =r_{k-1} \cdot q_{k-1}+r_{k} \quad\left(r_{k} \neq 0\right) \\
r_{k-1} & =r_{k} \cdot q_{k}+0 \\
\text { output } \quad r_{k}(X) & =\operatorname{ggT}(a(X), b(X))
\end{aligned}
$$

- Scheme of Euclid's algorithm in matrix form

$$
\begin{array}{rlr}
{\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]} & =\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{1}
\end{array}\right]\left[\begin{array}{l}
r_{0} \\
r_{1}
\end{array}\right] & {\left[\begin{array}{l}
r_{0} \\
r_{1}
\end{array}\right]=\left[\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]} \\
{\left[\begin{array}{c}
r_{2} \\
r_{3}
\end{array}\right]} & =\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{2}
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right] & {\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]=\left[\begin{array}{cc}
q_{2} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
r_{2} \\
r_{3}
\end{array}\right]} \\
\vdots & \vdots \\
{\left[\begin{array}{c}
r_{k-1} \\
r_{k}
\end{array}\right]} & =\left[\begin{array}{cc}
0 & 1 \\
1 & -q_{k-1}
\end{array}\right]\left[\begin{array}{c}
r_{k-2} \\
r_{k-1}
\end{array}\right] & {\left[\begin{array}{c}
r_{k-2} \\
r_{k-1}
\end{array}\right]=\left[\begin{array}{cc}
q_{k-1} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
r_{k-1} \\
r_{k}
\end{array}\right]} \\
{\left[\begin{array}{c}
r_{k} \\
0
\end{array}\right]} & =\left[\begin{array}{cc}
q_{k} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
r_{k-1} \\
r_{k}
\end{array}\right] & {\left[\begin{array}{c}
r_{k-1} \\
r_{k}
\end{array}\right]=\left[\begin{array}{cc}
q_{k} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
r_{k} \\
0
\end{array}\right]}
\end{array}
$$

- Putting things together one gets

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r_{0} \\
r_{1}
\end{array}\right]=\left[\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
q_{2} & 1 \\
1 & 0
\end{array}\right] \ldots\left[\begin{array}{cc}
q_{k-1} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
q_{k} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
r_{k} \\
0
\end{array}\right]
$$

- An easy modification is necessary to rewrite this decomposition in the way which is needed for the decomposition of the polyphase matrix

$$
\left[\begin{array}{ll}
q & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
q & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & q \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- The lifting-version of Euclid's algorithm is

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
1 & q_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & q_{3} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{4} & 1
\end{array}\right] \ldots\left[\begin{array}{c}
r_{k} \\
0
\end{array}\right]
$$

- Details how to employ Euclids's algorithm for the decomposition of the polyphase matrix will not be given here.
- The principle is important:
- For a pair $(\boldsymbol{h}, \boldsymbol{g})$ of orthogonal filters Euclid's algorithm applied the LPs $h_{\text {even }}(z), h_{\text {odd }}(z)$ produces a lifting decomposition of the polyphase matrix

$$
\begin{aligned}
& P(z)=\left[\begin{array}{ll}
h_{\text {even }}(z) & g_{\text {even }}(z) \\
h_{\text {odd }}(z) & g_{\text {odd }}(z)
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
1 & q_{1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{2}(z) &
\end{array}\right] \ldots\left[\begin{array}{cc}
1 & q_{k-1}(z) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
q_{k}(z) & 1
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & 1 / K
\end{array}\right]
\end{aligned}
$$

- Polynomials $g_{\text {even }}(z)$ and $g_{\text {odd }}(z)$ are not used for computing this decomposition. The sequence of quotients $q_{1}(z), q_{2}(z), \ldots$ depends on $h_{\text {even }}(z)$ and $h_{\text {odd }}(z)$ only
- From the lifting decomposition and its quotient sequence one obtains automatically $g_{\text {even }}(z)$ and $g_{\text {odd }}(z)$
- The JPEG2000 standard for encoding, storing, compression and transmission of images employs two wavelet transforms:
- The biorthogonal symmetric Cohen-Daubechies-Feauveau- $(7,9)$ filter pair for lossy compression
- the biorthogonal symmetric LeGall-(5,3) filter pair for lossless compression
- Lifting scheme for the CDF-(9,7) wavelet

- Parameters for the biorthogonal CDF-(9,7) filter pair

$$
\begin{aligned}
& \alpha=-1.586134342 \\
& \beta=-0.052980118 \\
& \gamma= 0.882911075 \\
& \delta=0.443506852 \\
& K=1.230174105 \\
& h_{0}=\frac{\sqrt{2}}{K}[6 \alpha \beta \gamma \delta+2 \alpha \beta+2 \gamma \delta+2 \alpha \delta+1] \\
& h_{1}=\frac{\sqrt{2}}{K}[3 \beta \gamma \delta+\beta+\delta] \\
& h_{2}=\frac{\sqrt{2}}{K}[4 \alpha \beta \gamma \delta+\gamma \delta+\alpha \delta+\alpha \beta] \\
& h_{3}= \frac{\sqrt{2}}{K}[\beta \gamma \delta] \\
& h_{4}= \frac{\sqrt{2}}{K}[\alpha \beta \gamma \delta] \\
& g_{1}= \frac{-K}{\sqrt{2}}[1+2 \beta \gamma] \\
& g_{2}= \frac{-K}{\sqrt{2}}[3 \alpha \beta \gamma+\alpha+\gamma] \\
& g_{3}= \frac{-K}{\sqrt{2}}[\beta \gamma] \\
& g_{4}= \frac{-K}{\sqrt{2}}[\alpha \beta \gamma]
\end{aligned}
$$

- The biorthogonal LeGALL-(5,3) filter pair
- The filters are

$$
\begin{aligned}
& \boldsymbol{h}=\frac{1}{8}\left[\begin{array}{lllll}
-1 & 2 & 6 & 2 & -1
\end{array}\right]_{-2.2} \\
& \tilde{\boldsymbol{h}}=\frac{1}{2}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]_{-1 . .1} \\
& \boldsymbol{g}=\frac{1}{2}\left[\begin{array}{llll}
-1 & 2 & -1
\end{array}\right]_{0 . .2} \\
& \tilde{\boldsymbol{g}}=\frac{1}{8}\left[\begin{array}{lllll}
-1 & -2 & 6 & -2 & -1
\end{array}\right]_{-2.2}
\end{aligned}
$$

- Obviously $\tilde{\boldsymbol{h}}$ is a spline filter. The lifting scheme uses parameters $\alpha=-\frac{1}{8}$ and $\beta=\frac{1}{4}$
- Lifting scheme for the LeGall transformation

Figure: Lifting scheme for the LeGall transformation

- LeGall transformation

$$
\begin{array}{cc}
\text { analysis } & \text { synthesis } \\
\tilde{d}_{n}=a_{2 n+1}+\alpha\left(a_{2 n}+a_{2 n+2}\right) & a_{2 n}=\tilde{a}_{n}-\beta\left(\tilde{d}_{n-1}+\tilde{d}_{n}\right) \\
\tilde{a}_{n}=a_{2 n}+\beta\left(\tilde{d}_{n-1}+\tilde{d}_{n}\right) & a_{2 n+1}=\tilde{d}_{n}-\alpha\left(a_{2 n}+a_{2 n+2}\right)
\end{array}
$$

- An interesting aspect of this filter pair is that it can be used to define and invertible integer-to-integer transformation - that is why it can be used for lossless compression!
- For analysis do

$$
d_{n}^{*}=a_{2 n+1}-\left\lfloor\frac{1}{2}\left(a_{2 n}+a_{2 n+2}\right)\right\rfloor, \quad a_{n}^{*}=a_{2 n}+\left\lfloor\frac{1}{4}\left(d_{n-1}^{*}+d_{n}^{*}\right)\right\rfloor
$$

- and check that the synthesis transformation is given by

$$
a_{2 n}=a_{n}^{*}-\left\lfloor\frac{1}{4}\left(d_{n-1}^{*}+d_{n}^{*}\right)+\frac{1}{2}\right\rfloor, \quad a_{2 n+1}=d_{n}^{*}+\left\lfloor\frac{1}{2}\left(a_{2 n}+a_{2 n+2}\right)\right\rfloor
$$

