# The Haar Wavelet Transform 

## WTBV-WS17/18

November 13, 2017
(1) HAAR scaling function and HAAR wavelet function
(2) HAAR families on $[0,1]$
(3) HaAR families on $\mathbb{R}$
(4) The Discrete HaAR Transform (DHT)
(5) The HaAR filter bank
(6) Two-level HAAR filter bank
(7) 2D HaAR Wavelet Transform (2D HWT)

## Definitions (1)

- Dyadic intervals $(j, k \in \mathbb{Z})$

$$
\begin{aligned}
I_{j, k} & =\left[k / 2^{j},(k+1) / 2^{j}\right) \\
& =I_{j+1,2 k} \uplus I_{j+1,2 k+1}
\end{aligned}
$$

- HaAR functions

HAAR scaling function

$$
\begin{aligned}
\phi(t) & =\mathbf{1}_{[0,1)}(t) \\
\psi(t) & =\mathbf{1}_{[0,1 / 2)}(t)-\mathbf{1}_{[1 / 2,1)}(t) \\
& =\phi(2 t)-\phi(2 t+1)
\end{aligned}
$$

- Dilation and translation of HAAR functions $(j, k \in \mathbb{Z})$ :

$$
\begin{aligned}
& \phi_{j, k}(t)=2^{j / 2} \mathbf{1}_{l_{j, k}}(t)=2^{j / 2} \phi\left(2^{j} t-k\right)=\left(D_{2^{j}} T_{k} \phi\right)(t) \\
& \psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)=\left(D_{2^{j}} T_{k} \psi\right)(t)
\end{aligned}
$$

## Examples:



left: HAAR scaling functions $\phi_{1,-3}, \phi_{0,0}, \phi_{-1,1}$
right: HAAR wavelet functions $\psi_{1,-3}, \psi_{0,0}, \psi_{-1,1}$

## Definitions (2)

- The following families of functions are of interest:

$$
\begin{gathered}
\Phi=\left\{\phi_{j, k}\right\}_{j, k \in \mathbb{Z}}: \text { HAAR scaling functions (all levels) } \\
\Phi_{j}=\left\{\phi_{j, k}\right\}_{k \in \mathbb{Z}}: \text { HAAR scaling functions on level } j \\
\Psi_{j}=\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}: \text { HAAR wavelet functions on level } j \\
\mathcal{H}_{J}=\Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j}: \text { HAAR functions on all levels } \geq J \\
\Psi=\mathcal{H}=\left\{\psi_{j, k}\right\}_{j, k \in \mathbb{Z}}: \text { HAAR wavelet functions (all levels) }
\end{gathered}
$$

## Localization (1)

- The Fourier transform of $\phi(t)$ is

$$
\widehat{\phi}(s)=\frac{\sin (\pi s)}{\pi s} \cdot e^{-i \pi s}
$$

- The function $|\widehat{\phi}(s)|$
- has its maximum at $s=0$
- its first positive root at $s= \pm 1$
- decreases as $1 / s$
- The Fourier transform of $\psi(t)$ is

$$
\widehat{\psi}(s)=\frac{i(1-\cos (\pi s))}{\pi s} \cdot e^{-i \pi s}=\frac{2 i}{\pi s} \sin ^{2}(\pi s / 2) \cdot e^{-i \pi s}
$$

- The function $|\widehat{\psi}(s)|$
- has its first maximum at $s_{0} \approx 0.7420192 \ldots$
- its first positive root at $s=2$
- decreases as $1 /$ s


## Localization (2)




Figure: Real and imaginary parts of $\widehat{\phi}(s)$ and $\widehat{\psi}(s)$

## Localization (3)

- One may state:
- $\phi$ and $\psi$ are well localized in the time/space domain at $s=0$
- $\phi$ and $\psi$ are quite well localized in the frequency domain (but not too well, because $\widehat{\phi}$ and $\widehat{\psi}$ have infinite variance)
- In sharp contrast to Fourier analysis one has reasonably good localization both in the time/space domain and in the frequency domain


## Normalization

- Normalization of the scaling functions

$$
\int_{\mathbb{R}} \phi_{j, k}=2^{-j / 2} \quad\left\|\phi_{j, k}\right\|_{2}^{2}=\int_{\mathbb{R}}\left|\phi_{j, k}\right|^{2}=1
$$

- Normalization of the wavelet functions

$$
\int_{\mathbb{R}} \psi_{j, k}=0 \quad\left\|\psi_{j, k}\right\|_{2}^{2}=\int_{\mathbb{R}}\left|\psi_{j, k}\right|^{2}=1
$$

## Orthogonality

- For all $i, j, k, \ell \in \mathbb{Z}$ :

$$
\begin{aligned}
\left\langle\phi_{j, k} \mid \phi_{j, \ell}\right\rangle & =\int_{\mathbb{R}} \phi_{j, k} \phi_{j, \ell}=\delta_{k, \ell} \\
\left\langle\psi_{i, k} \mid \psi_{j, \ell}\right\rangle & =\int_{\mathbb{R}} \psi_{i, k} \psi_{j, \ell}=\delta_{i, j} \delta_{k, \ell} \\
\left\langle\phi_{i, k} \mid \psi_{j, \ell}\right\rangle & =\int_{\mathbb{R}} \phi_{i, k} \psi_{j, \ell}=0 \quad \text { if } j \geq i
\end{aligned}
$$

- The following families are orthogonal families of functions in $\mathcal{L}^{2}(\mathbb{R})$ :
(1) The HAAR scaling familiy $\Phi_{j}$ on a fixed level $j(j \in \mathbb{Z})$
(2) The HaAR wavelet family $\psi=\mathcal{H}$
(3) The Haar family $\mathcal{H}$, for fixed $J \in \mathbb{Z}$.
- Warning: scaling functions $\phi_{j, k}$ and $\phi_{\ell, m}$ belonging to different resolutions, i.e., $j \neq \ell$, are not orthogonal in general. $\Phi=\bigcup_{i} \Phi_{j}$ is not an orthogonal family!


## Scaling and wavelets (1)

- Fundamental relation between HAAR scaling functions and HAAR wavelet functions:

$$
\begin{aligned}
& \phi(t)=\phi(2 t)+\phi(2 t-1)=\frac{1}{\sqrt{2}}\left(\phi_{1,0}(t)+\phi_{1,1}(t)\right) \quad \text { scaling eqn } \\
& \psi(t)=\phi(2 t)-\phi(2 t-1)=\frac{1}{\sqrt{2}}\left(\phi_{1,0}(t)-\phi_{1,1}(t)\right) \quad \text { wavelet eqn }
\end{aligned}
$$

- Matrix version:

$$
\left[\begin{array}{l}
\phi_{0,0}(t) \\
\psi_{0,0}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{1,0}(t) \\
\phi_{1,1}(t)
\end{array}\right]
$$

- The transformation matrix (HADAMARD-matrix)

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

This matrix is orthogonal, i.e., $H^{-1}=H^{t}(=H)$

## Scaling and wavelets (2)

- Consequently

$$
\left[\begin{array}{l}
\phi_{1,0}(t) \\
\phi_{1,1}(t)
\end{array}\right]=H \cdot\left[\begin{array}{l}
\phi_{0,0}(t) \\
\psi_{0,0}(t)
\end{array}\right]
$$

- By dilation and translation one obtains for all $j, k \in \mathbb{Z}$ :

$$
\begin{aligned}
{\left[\begin{array}{l}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right] } & =H \cdot\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right] \\
{\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right] } & =H \cdot\left[\begin{array}{l}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right]
\end{aligned}
$$

## Vector spaces (1)

- Approximation spaces $(j \in \mathbb{Z})$

$$
\mathcal{V}_{j}=\overline{\operatorname{span}} \Phi_{j}=\left\{\text { dyadic } \mathcal{L}^{2} \text {-step functions with step width } 2^{-j}\right\}
$$

- Detail spaces $(j \in \mathbb{Z})$
$\mathcal{W}_{j}=\overline{\operatorname{span}} \Psi_{j}=\left\{\right.$ balanced dyadic $\mathcal{L}^{2}$-step fns. with step width $\left.2^{-(j+1)}\right\}$
- For $j \in \mathbb{Z}$ both

$$
\Phi_{j+1}=\left\{\phi_{j+1, k}\right\}_{k \in \mathbb{Z}} \quad \text { and } \quad \Phi_{j} \cup \Psi_{j}=\left\{\phi_{j, k}, \psi_{j, k}\right\}_{k \in \mathbb{Z}}
$$

are orthonormal bases of $\mathcal{V}_{j+1}$

- $H$ is (essentially) the matrix of a basis change between $\Phi_{j+1}$ and $\Phi_{j} \cup \Psi_{j}$


## Vector spaces (2)

- For all $j \in \mathbb{N}$ one has

$$
\mathcal{V}_{j} \subset \mathcal{V}_{j+1}, \quad \mathcal{W}_{j} \subset \mathcal{V}_{j+1}
$$

and even

$$
\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}
$$

- Consequently

$$
\{0\} \subset \cdots \subset \mathcal{V}_{-2} \subset \mathcal{V}_{-1} \subset \mathcal{V}_{0} \subset \mathcal{V}_{1} \subset \mathcal{V}_{2} \subset \cdots \subset \mathcal{L}^{2}(\mathbb{R})
$$

- For all $j \geq k$ one has

$$
\mathcal{V}_{j+1}=\mathcal{V}_{k} \oplus \mathcal{W}_{k} \oplus \mathcal{W}_{k+1} \oplus \cdots \oplus \mathcal{W}_{j-1} \oplus \mathcal{W}_{j}
$$

- The vector space $\mathcal{V}_{j+1}$ has as a basis the family $\Phi_{j+1}$ and also, for each $k \leq j$, the family

$$
\Phi_{k} \cup \Psi_{k} \cup \Psi_{k+1} \cup \cdots \cup \Psi_{j-1} \cup \Psi_{j}
$$

## Vector spaces (3)

- The relation $\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}$ says that the vector space has two bases:
- the basis $\Phi_{j+1}=\left\{\phi_{j+1, k}\right\}_{k \in \mathbb{Z}}$
- and the basis $\Phi_{j} \cup \Psi_{j}=\left\{\phi_{j, k}\right\}_{k \in \mathbb{Z}} \cup\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}$.
- For each $f$ in $\mathcal{V}_{j+1}$ there exist $g \in \mathcal{V}_{j}$ and $h \in \mathcal{W}_{j}$ such that

$$
f=g+h
$$

$g$ and $h$ are orthogonal and they are uniquely determined

- The mapping
- $f \mapsto(g, h)$ is called analysis mapping, as it decomposes $f$ in an "approximating" ("low-frequency") part $g$ and a "detailing" ("high-frequency") part $h$
- $(g, h) \mapsto f$ is called synthesis mapping, as it reconstructs $f$ from its low- and high-frequency parts


Figure: Two bases of $\mathcal{V}_{3}$ (restricted to $[0,1)$ )

## Scaling and wavelet coefficients (1)

- Inner product in $\mathcal{L}^{2}(\mathbb{R})$

$$
\langle f \mid g\rangle=\int_{\mathbb{R}} f(t) \overline{g(t)} d t
$$

- For $f \in \mathcal{L}^{2}(\mathbb{R})$ and $j, k \in \mathbb{Z}$
- the HaAR scaling coefficients (or approximation coeffs) of $f$ are the

$$
a_{j, k}=\left\langle f \mid \phi_{j, k}\right\rangle=2^{j / 2} \int_{l_{j, k}} f(t) d t
$$

- the HaAR wavelet coefficients (or detail coeffs) of $f$ are the

$$
d_{j, k}=\left\langle f \mid \psi_{j, k}\right\rangle=2^{j / 2}\left(\int_{l_{j+1,2 k}} f(t) d t-\int_{l_{j+1,2 k+1}} f(t) d t\right)
$$

## Scaling and wavelet coefficients (2)

- The coefficients $a_{j, k}=\left\langle f \mid \phi_{j, k}\right\rangle$ and $d_{j, k}=\left\langle f \mid \psi_{j, k}\right\rangle$ only depend on the behavior of $f$ on the dyadic intervall $I_{j, k}$ !
- $a_{j, k}=\left\langle f \mid \phi_{j, k}\right\rangle$ means "averaging" or "smoothing" and is called approximation coefficient of $f$
- $d_{j, k}=\left\langle f \mid \psi_{j, k}\right\rangle$ records the variation of $f$ between the left and the right subintervals of $l_{j, k}$ and is called detail coefficient of $f$, as it emphasizes changes (fluctuations)


## Scaling- and wavelet coefficients (3)

- From the basic relation $\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}$ one has immediately a recursion for the scaling and for the wavelet coefficients:
- Analysis: For all $j, k \in \mathbb{Z}$ one has

$$
\left[\begin{array}{l}
a_{j, k} \\
d_{j, k}
\end{array}\right]=H \cdot\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]
$$

- Synthesis: For all $j, k \in \mathbb{Z}$ one has

$$
\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]=H \cdot\left[\begin{array}{l}
a_{j, k} \\
d_{j, k}
\end{array}\right]
$$

- Equivalently:

$$
a_{j+1,2 k} \cdot \phi_{j+1,2 k}+a_{j+1,2 k+1} \cdot \phi_{j+1,2 k+1}=a_{j, k} \cdot \phi_{j, k}+d_{j, k} \cdot \psi_{j, k}
$$

and

$$
\sum_{k} a_{j+1, k} \phi_{j+1, k}=\sum_{\ell} a_{j, \ell} \phi_{j, \ell}+\sum_{m} d_{j, m} \psi_{j, m}
$$

## Projection operators

- The last identity says that for any $f \in \mathcal{L}(\mathbb{R})$

$$
P_{j+1} f=P_{j} f+Q_{j} f,
$$

- where $P_{j}$ and $Q_{j}$ are the orthogonal projections of functions $f \in \mathcal{L}^{2}(\mathbb{R})$ onto the subspaces $\mathcal{V}_{j}$ and $\mathcal{W}_{j}$ :

$$
\begin{array}{r}
P_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow \mathcal{V}_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \phi_{j, k}\right\rangle \phi_{j, k} \\
Q_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow \mathcal{W}_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \psi_{j, k}\right\rangle \psi_{j, k}
\end{array}
$$

- These projections provide the optimal approximations w.r.t. the $\mathcal{L}^{2}$-norm of $f$ within the spaces $\mathcal{V}_{j}$ and $\mathcal{W}_{j}$
- These linear projection operators satisfy

$$
P_{j+1}=P_{j}+Q_{j} \quad(j \in \mathbb{N})
$$

## HaAr families on $[0,1](1)$

- For $J \geq 0$ the family

$$
\mathcal{H}_{J}=\left\{\phi_{J, k}\right\}_{0 \leq k<2^{j}} \cup\left\{\psi_{j, k}\right\}_{j \geq J, 0 \leq k<2^{J}}
$$

is the family of HAAR functions of level $J$ on the interval $[0,1]$

- In this case the vector spaces $\mathcal{V}_{j}$ and $\mathcal{W}_{j}$ have finite dimension:

$$
\operatorname{dim} \mathcal{V}_{j}=\operatorname{dim} \mathcal{W}_{j}=2^{j} \quad(j \geq 0)
$$

- Similarly for arbitrary finite intervals of $\mathbb{R}$


## HAAR families on $[0,1]$ (2)

- For each $J \geq 0$ the family $\mathcal{H}_{J}$ is a complete ONS (Hilbert basis) for $\mathcal{L}^{2}[0,1]$
- Idea of proof:
- The continuos functions are dense in $\mathcal{L}^{2}[0,1]$
- Every continuous function on a finite interval can be approxiamted arbirarily well w.r.t. the $\mathcal{L}^{2}$-norm by dyadic step-functions
- Every dyadic step function with step width $2^{-j}$ belongs to $\mathcal{V}_{j}$ and can be represented in each of the bases $\mathcal{H}_{J}(J \geq 0)$


## HaAR families on $\mathbb{R}(1)$

- Now: $\mathcal{H}_{J}$ with $J \in \mathbb{Z}$ denotes the Has family for $\mathbb{R}$
- Recall:
$\mathcal{V}_{j}$ and $\mathcal{W}_{j}$ are $\mathcal{L}^{2}$-closures of the vector spaces spanned by HAAR functions $\Phi_{j}$ and $\Psi_{j}$ within $\mathcal{L}^{2}(\mathbb{R})$ :

$$
\mathcal{V}_{j}=\overline{\operatorname{span}}\left\{\phi_{j, k}\right\}_{k \in \mathbb{Z}}, \quad \mathcal{W}_{j}=\overline{\operatorname{span}}\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}
$$

Infinite sums are legitimate, but they must converge in the $\mathcal{L}^{2}$ sense

- Approximation and detail as projection operators:

$$
\begin{aligned}
& P_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow \mathcal{V}_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \phi_{j, k}\right\rangle \phi_{j, k}, \\
& Q_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow \mathcal{W}_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \psi_{j, k}\right\rangle \psi_{j, k}
\end{aligned}
$$

## HaAR families on $\mathbb{R}(2)$

- Operators $P_{j}$ and $Q_{j}$ are linear transformations
- Operators $P_{j}$ and $Q_{j}$ are projections, i.e., the satisfy $P_{j}^{2}=P_{j}, Q_{j}^{2}=Q_{j}$
- For $k \geq j$ one has $\left.P_{k}\right|_{\nu_{j}}=i d$
- For $k \neq j$ one has $\left.Q_{k}\right|_{\mathcal{W}_{j}}=0$
- $\left\|P_{j} f\right\|_{2} \leq\|f\|_{2}$ und $\left\|Q_{j} f\right\|_{2} \leq\|f\|_{2}$
- $Q_{j}=P_{j+1}-P_{j}$
- For $f \in \mathcal{C}_{c}^{0}(\mathbb{R})$ (i.e., continuous with compact support) one has convergence (w.r.t. $\mathcal{L}^{2}$ ) $\quad P_{j} f \rightarrow_{\infty} f$ and $P_{j} f \rightarrow_{-\infty} 0$
- For $f \in \mathcal{L}^{2}(\mathbb{R})$ operators $P_{j} f$ and $Q_{j} f$ are defined by approximating arbitrary functions by continuous functions with compact support


## HAAR families on $\mathbb{R}$ (3)

- Scheme of multiresolution analysis (MRA)
- Nesting

$$
\cdots \subset \mathcal{V}_{-2} \subset \mathcal{V}_{-1} \subset \mathcal{V}_{0} \subset \mathcal{V}_{1} \subset \mathcal{V}_{2} \subset \cdots
$$

- Completeness

$$
\lim _{j \rightarrow \infty} \mathcal{V}_{j}=\bigcup_{j \in \mathbb{Z}} \mathcal{V}_{j}=\mathcal{L}^{2}(\mathbb{R})
$$

- Separation

$$
\bigcap_{j \in \mathbb{Z}} \mathcal{V}_{j}=\{0\}
$$

- Scaling

$$
f \in \mathcal{V}_{0} \quad \Leftrightarrow \quad D_{2^{j}} f \in \mathcal{V}_{j} \quad\left(f \in \mathcal{L}^{2}(\mathbb{R}), j \in \mathbb{Z}\right)
$$

- Translation and orthogonality

$$
\overline{\operatorname{span}}\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}}=\overline{\operatorname{span}}\{\phi(t-k)\}_{k \in \mathbb{Z}}=\mathcal{V}_{0}
$$

## HaAR families on $\mathbb{R}$ (4)

- Theorem:

For each $J \in \mathbb{Z}$ the family $\mathcal{H}_{J}$ is a complete ONS (i.e., a Hilbert basis) for full signal space $\mathcal{L}^{2}(\mathbb{R})$

- Idea of proof
- continuous functions with compact support are dense in $\mathcal{L}^{2}(\mathbb{R})$. It suffices therefore to refer to the situation of finite intervals
- properties of the projections $P_{j}, Q_{j}$ etc. carry over from finite to infinite intervals in a similar fashion
- Theorem:

The HaAR family of all balanced dyadic step functions

$$
\mathcal{H}=\Psi=\left\{\psi_{j, k}\right\}_{j, k \in \mathbb{Z}}
$$

is a complete ONS (i.e., a Hilbert basis) for the full signal space $\mathcal{L}^{2}(\overline{\mathbb{R}})$

## Notation (1)

- $A \otimes B$ : Tensor product ("Kronecker product") of matrices

If $A=\left[a_{i, j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ and $B=\left[b_{k, \ell}\right]_{\substack{1 \leq k \leq p \\ 1 \leq \ell \leq q}}$ then the $(m \cdot p) \times(n \cdot q)$ matrix $A \otimes B$ is defined by

$$
A \otimes B=\left[\begin{array}{cccc}
a_{1,1} B & a_{1,2} B & \ldots & a_{1, n} B \\
a_{2,1} B & a_{2,2} B & \ldots & a_{2, n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} B & a_{m, 2} B & \ldots & a_{m, n} B
\end{array}\right]
$$

- Example

$$
\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right] \otimes\left[\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{2,1} & b_{2,2}
\end{array}\right]=\left[\begin{array}{llll}
a_{1,1} b_{1,1} & a_{1,1} b_{1,2} & a_{1,2} b_{1,1} & a_{1,2} b_{1,2} \\
a_{1,1} b_{2,1} & a_{1,1} b_{2,2} & a_{1,2} b_{2,1} & a_{1,2} b_{2,2} \\
a_{2,1} b_{1,1} & a_{2,1} b_{1,2} & a_{2,2} b_{1,1} & a_{2,2} b_{1,2} \\
a_{2,1} b_{2,1} & a_{2,1} b_{2,2} & a_{2,2} b_{2,1} & a_{2,2} b_{2,2}
\end{array}\right]
$$

## Notation(2)

- $I_{n}$ is the $(n \times n)$ unit matrix
$0_{n}$ is the $(n \times n)$ zero matrix
- $A^{\dagger}$ : adjoint matrix of $A$ (transpose and complex-conjugate)
- the Hadamard matrix

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Example

$$
H \otimes H=\frac{1}{2}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \otimes\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

## Haar approximation and detail matrices

- For $n \geq 1$ define

$$
A_{n}=I_{n} \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad D_{n}=I_{n} \otimes \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

These are matrices of format $(2 n \times n)$

$$
A_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{llll}
1 & & & \\
1 & & & \\
& 1 & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
& & & 1
\end{array}\right] \quad D_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & & & \\
-1 & & & \\
& 1 & & \\
& -1 & & \\
& & \ddots & \\
& & & 1 \\
& & & -1
\end{array}\right]
$$

## Properties of HaAr matrices

- Orthogonality

$$
\begin{array}{ll}
A_{n}^{\dagger} \cdot A_{n}=I_{n} & A_{n} \cdot A_{n}^{\dagger}=\frac{1}{2} I_{n} \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
D_{n}^{\dagger} \cdot D_{n}=I_{n} & D_{n} \cdot D_{n}^{\dagger}=\frac{1}{2} I_{n} \otimes\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
A_{n}^{\dagger} \cdot D_{n}=0_{n} & A_{n} \cdot D_{n}^{\dagger}=\frac{1}{2} I_{n} \otimes\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \\
D_{n}^{\dagger} \cdot A_{n}=0_{n} & D_{n} \cdot A_{n}^{\dagger}=\frac{1}{2} I_{n} \otimes\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]
\end{array}
$$

- $\left[\begin{array}{ll}A_{n} & D_{n}\end{array}\right]$ is an orthogonal matrix, i.e.,

$$
\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right]=I_{2 n}=\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right]\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right] \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]^{\dagger} } & =\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]\left[\begin{array}{l}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right] \\
& =A_{n} \cdot A_{n}^{\dagger}+D_{n} \cdot D_{n}^{\dagger} \\
& =\frac{1}{2} I_{n} \otimes\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\right) \\
& =\frac{1}{2} I_{n} \otimes\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]=I_{2 n} \\
{\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]^{\dagger} \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right] } & =\left[\begin{array}{cc}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right]\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{n}^{\dagger} \cdot A_{n} & A_{n}^{\dagger} \cdot D_{n} \\
D_{n}^{\dagger} \cdot A_{n} & D_{n}^{\dagger} \cdot D_{n}
\end{array}\right] \\
& =\left[\begin{array}{ll}
I_{n} & 0_{n} \\
0_{n} & I_{n}
\end{array}\right]=I_{2 n}
\end{aligned}
$$

## Haar transform (1)

- The matrix $\left[\begin{array}{ll}A_{n} & D_{n}\end{array}\right]$ is the matrix of a one-level discrete HAAR transform of signals (vectors) of length $2 n$
- For $\mathbf{a}_{2 n}$ a (row) vector of length $2 n$ let

$$
\mathbf{a}_{2 n} \mapsto \mathbf{a}_{2 n} \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{n}^{\prime} & \mathbf{d}_{n}^{\prime}
\end{array}\right]
$$

This is a linear transformation of the vector space $\mathbb{C}^{2 n}$. One has

$$
\mathbf{a}_{n}^{\prime}=\mathbf{a}_{2 n} \cdot A_{n}, \quad \mathbf{d}_{n}^{\prime}=\mathbf{a}_{2 n} \cdot D_{n}
$$

- Since this is an orthogonal transformation, one can simply revert this relation:

$$
\begin{aligned}
\mathbf{a}_{2 n} & =\left[\begin{array}{ll}
\mathbf{a}_{n}^{\prime} & \mathbf{d}_{n}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\mathbf{a}_{n}^{\prime} & \mathbf{d}_{n}^{\prime}
\end{array}\right] \cdot\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right] \\
& =\mathbf{a}_{n}^{\prime} \cdot A_{n}^{\dagger}+\mathbf{d}_{n}^{\prime} \cdot D_{n}^{\dagger}
\end{aligned}
$$



Figure: One-level Haar transform (analysis) of a vector of length 10


Figure: One-level Haar transform (synthesis) of a vector of length 10

## Inductive definition of multilevel HAAR transform

- For $k=1$ one has

$$
\mathrm{DHT}_{1}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 n}: \mathbf{a}_{2 n} \mapsto \mathbf{a}_{2 n}\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a}_{n}^{\prime} & \mathbf{d}_{n}^{\prime}
\end{array}\right]
$$

- Assume that $\mathrm{DHT}_{k}: \mathbb{C}^{2^{k} n} \rightarrow \mathbb{C}^{2^{k} n}$ has been defined, then $\mathrm{DHT}_{k+1}: \mathbb{C}^{2^{k+1} n} \rightarrow \mathbb{C}^{2^{k+1} n}$ is defined by

$$
\mathbf{a}_{2^{k+1} n} \mapsto\left[\begin{array}{lll}
\operatorname{DHT}_{k}\left(\mathbf{a}_{2^{k} n}^{\prime}\right) & \mathbf{d}_{2^{k} n}^{\prime}
\end{array}\right]
$$

where $\operatorname{DHT}_{1}\left(\mathbf{a}_{2^{k+1} n}\right)=\left[\begin{array}{ll}\mathbf{a}_{2^{k} n}^{\prime} & \mathbf{d}_{2^{k} n}^{\prime}\end{array}\right]$

- By induction it follows that the $\mathrm{DHT}_{k}$ are orthogonal transformations
- The inverse transformations are obtained by inverting the one-level transformations as indicated above


## Multilevel HaAR transform

- One may write in a suggestive manner

$$
\operatorname{DHT}_{k}\left(\mathbf{a}_{2^{k} n}\right)=\left[\begin{array}{lllllll}
\mathbf{a}_{n}^{(k)} & \mathbf{d}_{n}^{(k)} & \mathbf{d}_{2 n}^{(k-1)} & \mathbf{d}_{4 n}^{(k-2)} & \ldots & \mathbf{d}_{2^{k-2} n}^{\prime \prime} & \mathbf{d}_{2^{k-1}}^{\prime}
\end{array}\right],
$$

- This can be read in the light of the basis decomposition

$$
\mathcal{V}_{J+k}=\mathcal{V}_{J} \oplus \mathcal{W}_{J} \oplus \mathcal{W}_{J+1} \oplus \mathcal{W}_{J+2} \oplus \cdots \oplus \mathcal{W}_{J+k-1}
$$

as follows: if the entries of $\mathbf{a}_{2^{k} n}$ are the coefficients of a function $f$ w.r.t. the basis $\Phi_{J+k}=\left\{\phi_{J+k, m}\right\}$, then the entries of the vector $\operatorname{DHT}_{k}\left(\mathbf{a}_{2^{k} n}\right)$ are the coefficients of $f$ w.r.t. the bases

- $\Phi_{J}=\left\{\phi_{J, m}\right\}$ in $\mathcal{V}_{J}$
$-\psi_{J}=\left\{\psi_{J, m}\right\}$ in $\mathcal{W}_{J}$
$-\Psi_{J+1}=\left\{\psi_{J+1, m}\right\}$ in $\mathcal{W}_{J+1}$
$-\Psi_{J+2}=\left\{\psi_{J+2, m}\right\}$ in $\mathcal{W}_{J+2}$
- $\Psi_{J+k-1}=\left\{\psi_{J+k-1, m}\right\}$ in $\mathcal{W}_{J+k-1}$

$$
\begin{array}{r}
a_{J+k, m}^{(k)}=\left\langle f \mid \phi_{J+k, m}\right\rangle, \\
d_{J+k, m}^{(k)}=\left\langle f \mid \psi_{J, J+k}\right\rangle, \\
d_{J+k-1, m}^{(k-1)}=\left\langle f \mid \phi_{J+k-1, m}\right\rangle, \\
a_{J+k-2, m}^{(k-2)}=\left\langle f \mid \phi_{J+k-2, m}\right\rangle, \\
\cdots \\
d_{J+1, m}^{\prime}=\left\langle f \mid \phi_{J+1, m}^{\prime}\right\rangle .
\end{array}
$$



Figure: Scheme of a three-level Haar transform (analysis)

$$
\begin{aligned}
& \begin{aligned}
& \mathbf{a}_{24}=\left(a_{0}, a_{1}, \ldots, a_{23}\right) \\
& \downarrow \\
&\left(\mathbf{a}_{3}^{\prime \prime \prime}, \mathbf{d}_{3}^{\prime \prime \prime}, \mathbf{d}_{6}^{\prime \prime}, \mathbf{d}_{12}^{\prime}\right) \stackrel{ }{=}\left(a_{0}^{\prime \prime \prime}, \ldots, a_{2}^{\prime \prime \prime}, d_{0}^{\prime \prime \prime}, \ldots, d_{2}^{\prime \prime \prime}, d_{0}^{\prime \prime}, \ldots, d_{5}^{\prime \prime}, d_{0}^{\prime}, \ldots, d_{7}^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Figure: Three-level Haar transform (analysis) of a vector of length 24

$$
\begin{aligned}
& \mathbf{a}_{24}=\left(a_{0}, a_{1}, \ldots, a_{23}\right) \\
& \left(\mathbf{a}_{3}^{\prime \prime \prime}, \mathbf{d}_{3}^{\prime \prime \prime}, \mathbf{d}_{6}^{\prime \prime}, \mathbf{d}_{12}^{\prime}\right) \stackrel{\uparrow}{=}\left(a_{0}^{\prime \prime \prime}, \ldots, a_{2}^{\prime \prime \prime}, d_{0}^{\prime \prime \prime}, \ldots, d_{2}^{\prime \prime \prime}, d_{0}^{\prime \prime}, \ldots, d_{5}^{\prime \prime}, d_{0}^{\prime}, \ldots, d_{7}^{\prime}\right)
\end{aligned}
$$

Figure: Three-level Haar transform (synthesis) of a vector of length 24

## Complexity of the HAAR transform

- In practice: the multiplication of a vector of length $2 n$ with the matrix [ $A_{n} D_{n}$ ] should NEVER be implemented as a vector $\times$ matrix operation, because these matrices a very sparse.
One needs only const $\times 2 n$ elementary operations
- Computation of $\mathrm{DHT}_{k}$ on a vector of length $2^{k} n$ needs then only

$$
\text { const } \cdot\left(2^{k}+2^{k-1}+\cdots+2^{1}\right) n=\mathcal{O}\left(2^{k} n\right)
$$

elementary operations, which is linear (!) in the input size

- The same argument holds for the complexity of the inverse transform $\mathrm{DHT}_{k}^{-1}$


## HAAR transform as filtering operation

- HaAr wavelet analysis and HaAR wavelet synthesis can be understood as filtering operations
- The $A$-matrices act as low-pass filters
- the $D$-matrices act as high-pass filters
- To make this precise, it is convenient to consider bi-infinite sequences of (complex) values ("signals") as inputs

$$
\mathbf{a}=(a[n])_{n \in \mathbb{Z}}=(\ldots a[-2], a[-1], a[0], a[1], a[2], \ldots)
$$

## Low-pass filter

- approximation (low-pass) matrix $\mathcal{A}=\left[a_{i, j}\right]_{i, j \in \mathbb{Z}}$ is a matrix of infinite size with

$$
a_{i, j}= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } i=j \text { or } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

visualized by

$$
\mathcal{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{cccccc}
\ddots & & & & & \\
\ddots & 1 & & & & \\
& 1 & 1 & & & \\
& & 1 & 1 & & \\
& & & 1 & 1 & \\
& & & & \ddots & \ddots
\end{array}\right]
$$

## High-pass filter

- Detail (high pass) matrix $\mathcal{D}=\left[d_{i, j}\right]_{i, j \in \mathbb{Z}}$ is an infinite matrix with

$$
d_{i, j}= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } i=j \\ -\frac{1}{\sqrt{2}} & \text { if } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

visualized by

$$
\mathcal{D}=\frac{1}{\sqrt{2}}\left[\begin{array}{cccccc}
\ddots & & & & & \\
\ddots & 1 & & & & \\
& -1 & 1 & & & \\
& & -1 & 1 & & \\
& & & -1 & 1 & \\
& & & & \ddots & \ddots
\end{array}\right]
$$

## Adjoint low-pass filter

- Adjoint approximation matrix $\mathcal{A}^{\dagger}=\left[a_{i, j}^{\dagger}\right]_{i, j \in \mathbb{Z}}$ with

$$
a_{i, j}^{\dagger}= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } i=j \text { or } i=j-1 \\ 0 & \text { otherwise }\end{cases}
$$

visualized by

$$
\mathcal{A}^{\dagger}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccccc}
\ddots & \ddots & & & & \\
& 1 & 1 & & & \\
& & 1 & 1 & & \\
& & & 1 & 1 & \\
& & & & 1 & \ddots \\
& & & & & \ddots
\end{array}\right]
$$

## Adjoint high-pass filter

- Adjoint detail matrix $\mathcal{D}^{\dagger}=\left[d_{i, j}^{\dagger}\right]_{i, j \in \mathbb{Z}}$

$$
d_{i, j}^{\dagger}= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } i=j \\ -\frac{1}{\sqrt{2}} & \text { if } i=j-1 \\ 0 & \text { otherwise }\end{cases}
$$

visualized by

$$
\mathcal{D}^{\dagger}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccccc}
\ddots & \ddots & & & & \\
& 1 & -1 & & & \\
& & 1 & -1 & & & \\
& & & & -1 & \\
& & & & 1 & \ddots \\
& & & & & \ddots
\end{array}\right]
$$

## Filtering operations as convolution (1)

- Acting with these matrices from the right (!) on a signal vector $\mathbf{a}=(\ldots a[-1], a[0], a[1], a[2] \ldots)=(a[n])_{n \in \mathbb{Z}}$ gives:

$$
\begin{aligned}
\mathbf{a} \cdot \mathcal{A} & =\left(\frac{a[n]+a[n+1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}} \\
\mathbf{a} \cdot \mathcal{D} & =\left(\frac{a[n]-a[n+1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}} \\
\mathbf{a} \cdot \mathcal{A}^{\dagger} & =\left(\frac{a[n]+a[n-1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}} \\
\mathbf{a} \cdot \mathcal{D}^{\dagger} & =\left(\frac{a[n]-a[n-1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}
\end{aligned}
$$

## Filtering operations as convolution (2)

Defining HaAR filters as

$$
\begin{aligned}
& h_{\phi}[n]= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } n=0,1 \\
0 & \text { otherwise }\end{cases} \\
& h_{\psi}[n]= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } n=0 \\
-\frac{1}{\sqrt{2}} & \text { if } n=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

the matrix multiplications turn out to be convolution operations:

$$
\begin{aligned}
\mathbf{a} & \mapsto \mathbf{a} \cdot \mathcal{A}=\mathbf{a} \star\left(h_{\phi}[-n]\right)_{n \in \mathbb{Z}} & & \text { convolution with }\left(h_{\phi}[-n]\right)_{n \in \mathbb{Z}} \\
\mathbf{a} & \mapsto \mathbf{a} \cdot \mathcal{D}=\mathbf{a} \star\left(h_{\psi}[-n]\right)_{n \in \mathbb{Z}} & & \text { convolution with }\left(h_{\psi}[-n]\right)_{n \in \mathbb{Z}} \\
\mathbf{a} & \mapsto \mathbf{a} \cdot \mathcal{A}^{\dagger}=\mathbf{a} \star\left(h_{\phi}[n]\right)_{n \in \mathbb{Z}} & & \text { convolution with }\left(h_{\phi}[n]\right)_{n \in \mathbb{Z}} \\
\mathbf{a} & \mapsto \mathbf{a} \cdot \mathcal{D}^{\dagger}=\mathbf{a} \star\left(h_{\psi}[n]\right)_{n \in \mathbb{Z}} & & \text { convolution with }\left(h_{\psi}[n]\right)_{n \in \mathbb{Z}}
\end{aligned}
$$

## Downsampling and upsampling

downsampling $\downarrow_{2}$ and upsampling $\uparrow_{2}$

$$
\begin{array}{ll}
\mathbf{a} \downarrow_{2}=(a[2 n])_{n \in \mathbb{Z}} & =(\ldots a[-2], a[0], a[2], a[4] \ldots) \\
\mathbf{a} \uparrow_{2}=\left(a[n / 2] \mathbf{1}_{\text {even }}(n)\right)_{n \in \mathbb{Z}} & =(\ldots a[-1], 0, a[0], 0, a[1], 0, a[2], 0 \ldots)
\end{array}
$$

Written in matrix form:

The matrix for upsampling $\uparrow_{2}$ is the adjoint (transpose) of the downsampling

## HAAR wavelet transform as a filtering operation

In perfect analogy to the HAAR wavelet transform one has the transforms for analysis

- low-pass filtering followed by downsampling:

$$
\mathcal{A} \circ \downarrow_{2}: \mathbf{a} \mapsto(\mathbf{a} \mathcal{A}) \downarrow_{2}=\left(\frac{a[2 n]+a[2 n+1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}=\mathbf{a}^{\prime}
$$

- high-pass filtering followed by downsampling:

$$
\mathcal{D} \circ \downarrow_{2} \quad: \mathbf{a} \mapsto(\mathbf{a} \mathcal{D}) \downarrow_{2}=\left(\frac{a[2 n]-a[2 n+1]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}=\mathbf{d}^{\prime}
$$



Figure: HAAR analysis (1 level)

## Wavelet reconstruction as a filtering operation (1)

- The synthesis transformation for reconstruction of a uses upsampling and the adjoint matrices:

$$
\mathbf{a}^{\prime} \uparrow_{2} \mathcal{A}^{\dagger}+\mathbf{d}^{\prime} \uparrow_{2} \mathcal{D}^{\dagger}=\mathbf{a}
$$

- Check how the operations $\mathbf{a} \mapsto \mathbf{a} \uparrow_{2} \mathcal{A}^{\dagger}$ and $\mathbf{a} \mapsto \mathbf{a} \uparrow_{2} \mathcal{D}^{\dagger}$ act on an arbitrary sequence $\mathbf{a}=(a[n])_{n \in \mathbb{Z}}$ :

$$
\begin{aligned}
& \mathbf{a} \uparrow_{2} \mathcal{A}^{\dagger}=\left(\frac{a[\lfloor n / 2\rfloor]}{\sqrt{2}}\right)_{n \in \mathbb{Z}} \\
& \mathbf{a} \uparrow_{2} \mathcal{D}^{\dagger}=\left(\frac{(-1)^{n} a[\lfloor n / 2\rfloor]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}
\end{aligned}
$$

## Wavelet reconstruction as a filtering operation (2)

- We have

$$
\begin{aligned}
\mathbf{a}^{\prime} \uparrow_{2} \mathcal{A}^{\dagger}+\mathbf{d}^{\prime} \uparrow_{2} \mathcal{D}^{\dagger} & =\left(\frac{a^{\prime}[\lfloor n / 2\rfloor]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}+\left(\frac{(-1)^{n} d^{\prime}[\lfloor n / 2\rfloor]}{\sqrt{2}}\right)_{n \in \mathbb{Z}} \\
& =\left(\frac{a^{\prime}[\lfloor n / 2\rfloor]+(-1)^{n} d^{\prime}[\lfloor n / 2\rfloor]}{\sqrt{2}}\right)_{n \in \mathbb{Z}}
\end{aligned}
$$

- so that for $n$ even:
$\frac{1}{\sqrt{2}}\left(a^{\prime}[\lfloor n / 2\rfloor]+(-1)^{n} d^{\prime}[\lfloor n / 2\rfloor]\right)=\frac{1}{\sqrt{2}}\left(\frac{a[n]+a[n+1]}{\sqrt{2}}+\frac{a[n]-a[n+1]}{\sqrt{2}}\right)=a[n]$
- and for $n$ odd:

$$
\frac{1}{\sqrt{2}}\left(a^{\prime}[\lfloor n / 2\rfloor]+(-1)^{n} d^{\prime}[\lfloor n / 2\rfloor]\right)=\frac{1}{\sqrt{2}}\left(\frac{a[n-1]+a[n]}{\sqrt{2}}-\frac{a[n-1]-a[n]}{\sqrt{2}}\right)=a[n]
$$

## Wavelet reconstruction as a filtering operation (3)

- Putting things together:

$$
\mathcal{A} \downarrow_{2} \uparrow_{2} \mathcal{A}^{\dagger}+\mathcal{D} \downarrow_{2} \uparrow_{2} \mathcal{D}^{\dagger}=I d
$$

- Using the fact that downsampling and upsampling are adjoint operations, one can write this in a more concise way as: for $A=\mathcal{A} \downarrow_{2}, D=\mathcal{D} \downarrow_{2}$ one has

$$
A A^{\dagger}+D D^{\dagger}=I d
$$

- The following relations between the transformations are easily checked:

$$
A^{\dagger} A=I d, \quad D^{\dagger} D=I d, \quad A^{\dagger} D=0=D^{\dagger} A
$$



Figure: HaAR synthesis (one level)



Figure: HaAR analysis (2 levels) and frequency separation


Figure: HAAR-synthesis (2 levels)


Figure: HAAR analysis (2 levels) - example


Figure: HAAR synthesis (2 levels) - example

## Reminder (1)

- The 1D HaAR functions are

$$
\begin{aligned}
\text { scaling function } & \phi(t)=\mathbf{1}_{[0,1)}(t) \\
\text { wavelet function } & \psi(t)=\mathbf{1}_{[0,1 / 2)}(t)-\mathbf{1}_{[1 / 2,1)}(t)
\end{aligned}
$$

- The other functions are derived by using dilation and translation w.r.t. the dyadic intervals $l_{j, k}(j, k \in \mathbb{Z})$ :

$$
\begin{aligned}
& \phi_{j, k}(t)=2^{j / 2} \mathbf{1}_{l_{j, k}}(t) \\
& =2^{j / 2} \phi\left(2^{j} t-k\right) \\
& \psi_{j, k}(t)=2^{j / 2}\left(\mathbf{1}_{I_{j+1,2 k}}(t)-\mathbf{1}_{l_{j+1,2 k+1}}(t)\right)=2^{j / 2} \psi\left(2^{j} t-k\right)
\end{aligned}
$$

## Reminder (2)

- Using $\left.H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\right)$ one has

$$
\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]=H \cdot\left[\begin{array}{l}
\phi_{1,0} \\
\phi_{1,1}
\end{array}\right] \quad, \quad\left[\begin{array}{l}
\phi_{1,0} \\
\phi_{1,1}
\end{array}\right]=H \cdot\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]
$$

- and thus for all $j, k \in \mathbb{Z}$

$$
\left[\begin{array}{l}
\phi_{j, k} \\
\psi_{j, k}
\end{array}\right]=H \cdot\left[\begin{array}{c}
\phi_{j+1,2 k} \\
\phi_{j+1,2 k+1}
\end{array}\right] \quad, \quad\left[\begin{array}{c}
\phi_{j+1,2 k} \\
\phi_{j+1,2 k+1}
\end{array}\right]=H \cdot\left[\begin{array}{c}
\phi_{j, k} \\
\psi_{j, k}
\end{array}\right]
$$

## 2D HAAR functions (1)

- The 2D HaAR functions are the four functions

$$
\begin{aligned}
\phi(x, y) & =\phi(x) \cdot \phi(y) \\
\psi^{H}(x, y) & =\psi(x) \cdot \phi(y) \\
\psi^{V}(x, y) & =\phi(x) \cdot \psi(y) \\
\psi^{D}(x, y) & =\psi(x) \cdot \psi(y)
\end{aligned}
$$

- $\phi$ is the 2D HaAR scaling function
- the $\psi^{H}, \psi^{V}, \psi^{D}$ are the 2D HaAR wavelet functions
- Suggestively: " $H$ " stands for horizontal, ' ' $V$ " for vertical, and "D" für diagonal, corresponding to the directions in which these functions register changes


## 2D HaAr functions (2)

- Obviously

$$
\begin{aligned}
{\left[\begin{array}{c}
\phi \\
\psi^{H} \\
\psi^{V} \\
\psi^{D}
\end{array}\right]=} & \frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\phi_{1,0,0} \\
\phi_{1,1,0} \\
\phi_{1,0,1} \\
\phi_{1,1,1}
\end{array}\right] \\
& =(H \otimes H)\left[\begin{array}{l}
\phi_{1,0,0} \\
\phi_{1,1,0} \\
\phi_{1,0,1} \\
\phi_{1,1,1}
\end{array}\right]
\end{aligned}
$$

- $H \otimes H$ is again an orthogonal matrix


## 2D Haar functions (3)

- For any $a, b, c, d$ one has

$$
(H \otimes H)\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime} \\
d^{\prime}
\end{array}\right] \Longleftrightarrow H \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot H=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]
$$

## 2D HaAr functions (4)

- By dilation and translation one generates the 2D HAAR functions for $j, k, \ell \in \mathbb{Z}$ :

$$
\begin{aligned}
& \phi_{j, k, \ell}(x, y)=\phi_{j, k}(x) \cdot \phi_{j, \ell}(y)=2^{j} \phi\left(2^{j} x-k, 2^{j} y-\ell\right) \\
& \psi_{j, k, \ell}^{H}(x, y)=\psi_{j, k}(x) \cdot \phi_{j, \ell}(y)=2^{j} \psi^{H}\left(2^{j} x-k, 2^{j} y-\ell\right) \\
& \psi_{j, k, \ell}^{V}(x, y)=\phi_{j, k}(x) \cdot \psi_{j, \ell}(y)=2^{j} \psi^{V}\left(2^{j} x-k, 2^{j} y-\ell\right) \\
& \psi_{j, k, \ell}^{D}(x, y)=\psi_{j, k}(x) \cdot \psi_{j, \ell}(y)=2^{j} \psi^{D}\left(2^{j} x-k, 2^{j} y-\ell\right)
\end{aligned}
$$

## 2D HAAR functions (5)

- 2D scaling equations and wavelet equations written in matrix form:

$$
\left[\begin{array}{cc}
\phi_{j, k, \ell} & \psi_{j, k, \ell}^{H} \\
\psi_{j, k, \ell}^{V} & \psi_{j, k, \ell}^{D}
\end{array}\right]=H \cdot\left[\begin{array}{cc}
\phi_{j+1,2 k, 2 \ell} & \phi_{j+1,2 k+1,2 \ell} \\
\phi_{j+1,2 k, 2 \ell+1} & \phi_{j+1,2 k+1,2 \ell+1}
\end{array}\right] \cdot H
$$

- Equivalently

$$
\left[\begin{array}{l}
\phi_{j, k, \ell} \\
\psi_{j, k, \ell}^{H} \\
\psi_{j, k, \ell}^{v} \\
\psi_{j, k, \ell}^{D}
\end{array}\right]=(H \otimes H)\left[\begin{array}{c}
\phi_{j+1,2 k, 2 \ell} \\
\phi_{j+1,2 k+1,2 \ell} \\
\phi_{j+1,2 k, 2 \ell+1} \\
\phi_{j+1,2 k+1,2 \ell+1}
\end{array}\right]
$$



## Vector spaces (1)

- The vector spaces relevant for 2D wavelet analysis and synthesis are:

$$
\begin{aligned}
\mathcal{V}_{j} & =\overline{\operatorname{span}}\left\{\phi_{j, k, \ell}\right\} \\
\mathcal{W}_{j}^{H} & =\overline{\operatorname{span}}\left\{\psi_{j, k, \ell}^{H}\right\} \\
\mathcal{W}_{j}^{V} & =\overline{\operatorname{span}}\left\{\psi_{j, k, \ell}^{V}\right\} \\
\mathcal{W}_{j}^{D} & =\overline{\operatorname{span}}\left\{\psi_{j, k, \ell}^{D}\right\}
\end{aligned}
$$

- For $\mathcal{L}^{2}\left(\mathbb{R}^{2}\right)$ HaAR wavelets take all indices $j, k, \ell \in \mathbb{Z}$
- For $\mathcal{L}^{2}\left([0,1]^{2}\right)$ HAAR wavelets take indices $j \geq 0,0 \leq k, \ell<2^{j}$
- Spaces $\mathcal{V}_{j}$ are the approximation spaces, spaces $\mathcal{W}_{j}^{H}, \mathcal{W}_{j}^{V}, \mathcal{W}_{j}^{D}$ are the detail spaces or wavelet spaces


## Vector spaces (2)

- The results about complete bases for the $\mathcal{L}^{2}$ spaces carry over to the 2D situation without problems. Similarly one has the corresponding identities for the wavelet coefficients
- For any $j \in \mathbb{Z}$ one has

$$
\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}^{H} \oplus \mathcal{W}_{j}^{V} \oplus \mathcal{W}_{j}^{D}
$$

- which says: any function $f \in \mathcal{V}_{j+1}$ has a unique orthogonal decomposition

$$
f_{j+1}=f_{j}+g_{j}^{H}+g_{j}^{V}+g_{j}^{D} \quad \text { with } f_{j} \in \mathcal{V}_{j}, g_{j}^{x} \in \mathcal{W}_{j}^{x} \quad(x \in\{H, D, V\})
$$

## Vector spaces (3)

- For HaAR wavelet analysis in $[0,1]^{2}$ one ranges the coefficients of these functions w.r.t. the bases in the respective subspaces with side length $2^{j+1}$ :

$$
\begin{array}{|c|}
\hline f_{j+1}
\end{array} \begin{array}{|c|c|}
\hline f_{j} & g_{j}^{H} \\
\hline g_{j}^{V} & g_{j}^{D} \\
\hline
\end{array}
$$

- One phase of HAAR wavelet analysis consists in computing the data on the right from the data on the left
- One level of HAAR-wavelet synthesis consists in computing the data on the left from the data on the right


## Analysis

- A (discrete) image is a ( $2 m \times 2 n$ ) matrix $\mathbf{a}_{2 m, 2 n}$ (of gray values, say)
- One phase of wavelet analysis replaces this image by four $(m \times n)$ images $\mathbf{a}_{m, n}^{\prime}, \overline{\mathbf{d}_{m, n}^{H}, \mathbf{d}_{m, n}^{V}, \mathbf{d}_{m, n}^{D}}$ following the scheme

- Again: a stands for "approximation" and d stands for "detail".
- for level- $k$ Haar analysis it is required that the side lengths are multiples if $2^{k}$


## Transformation matrices

- The transformation can be conveniently described using the matrices used in the 1D case. Let

$$
A_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{llll}
1 & & & \\
1 & & & \\
& 1 & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
& & & 1
\end{array}\right] \quad D_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
1 & & & \\
-1 & & & \\
& 1 & & \\
& -1 & & \\
& & \ddots & \\
& & & 1 \\
& & & -1
\end{array}\right]
$$

These are matrices of format $(2 n \times n)$

## Analysis as a matrix operation (1)

- Then

$$
\mathbf{a}_{2 m, 2 n} \rightarrow \begin{array}{|l|l|}
\hline \mathbf{a}_{m, n}^{\prime} & \mathbf{d}_{m, n}^{H} \\
\hline \mathbf{d}_{m, n}^{V} & \mathbf{d}_{m, n}^{D} \\
\hline
\end{array}=\left[\begin{array}{c}
A_{m}^{\dagger} \\
D_{m}^{\dagger}
\end{array}\right] \cdot \mathbf{a}_{2 m, 2 n} \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right]
$$

- Written in full detail:

$$
\begin{aligned}
\mathbf{a}_{m, n}^{\prime} & =A_{m}^{\dagger} \cdot \mathbf{a}_{2 m, 2 n} \cdot A_{n} \\
\mathbf{d}_{m, n}^{H} & =A_{m}^{\dagger} \cdot \mathbf{a}_{2 m, 2 n} \cdot D_{n} \\
\mathbf{d}_{m, n}^{V} & =D_{m}^{\dagger} \cdot \mathbf{a}_{2 m, 2 n} \cdot A_{n} \\
\mathbf{d}_{m, n}^{D} & =D_{m}^{\dagger} \cdot \mathbf{a}_{2 m, 2 n} \cdot D_{n}
\end{aligned}
$$

## Analysis as a matrix operation (2)

- One can and one should read this as follows:

The 2D Haar transform executed on an image $\mathbf{a}_{2 m, 2 n}$ consists in

- first executing the 1D Haar transform on the rows of $\mathbf{a}_{2 m, 2 n}$ (in parallel), which gives

$$
\widetilde{\mathbf{a}}_{2 m, 2 n}=\mathbf{a}_{2 m, 2 n} \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right] ;
$$

- then executing the 1D Haar transform on the columns of $\widetilde{\mathbf{a}}_{2 m, 2 n}$ (in parallel), which gives

$$
\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right] \cdot \widetilde{\mathbf{a}}_{2 m, 2 n}=\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right] \cdot \mathbf{a}_{2 m, 2 n} \cdot\left[\begin{array}{ll}
A_{n} & D_{n}
\end{array}\right] .
$$

- One can do it also the other way round: first acting on the columns and then on the rows. The result is the same


## Synthesis as a matrix operation

- For synthesis the above relation has to be inverted, which is no problem at all because of the orthogonality of the matrices $\left[\begin{array}{ll}A_{n} & D_{n}\end{array}\right]$ :

$$
\mathbf{a}_{2 m, 2 n}=\left[\begin{array}{ll}
A_{m} & D_{m}
\end{array}\right] \cdot \begin{array}{|l|l|}
\hline \mathbf{a}_{m, n}^{\prime} & \mathbf{d}_{m, n}^{H} \\
\hline \mathbf{d}_{m, n}^{V} & \mathbf{d}_{m, n}^{D} \\
\hline
\end{array} \cdot\left[\begin{array}{c}
A_{n}^{\dagger} \\
D_{n}^{\dagger}
\end{array}\right]
$$

- Written explicitly:

$$
\mathbf{a}_{2 m, 2 n}=A_{m} \cdot \mathbf{a}_{m, n}^{\prime} \cdot A_{n}^{\dagger}+D_{m} \cdot \mathbf{d}_{m, n}^{V} \cdot A_{n}^{\dagger}+A_{m} \cdot \mathbf{d}_{m, n}^{H} \cdot D_{n}^{\dagger}+D_{m} \cdot \mathbf{d}_{m, n}^{D} \cdot D_{n}^{\dagger}
$$



Figure: One-level 2D HaAR WT as a filter bank (analysis)


Figure: One level 2D HaAr WT as a filter bank (synthesis)

## 2D multilevel Haar transform

- The 2D Haar transform can be extended to a transformation running over several levels by iteratively applying the very same procedure to the arrays of approximation coefficients generated. This scheme applies to other wavelet transforms as well


Figure: Decomposition scheme for a 2D-3-level-WT

## 2D multilevel Haar transform

| $V_{J} \mid W_{J}^{H}$ | $W_{J+1}^{H}$ | $W_{J+2}^{H}$ |
| :---: | :---: | :---: |
| \| $W_{J}^{V} W_{J}^{D}$ |  |  |
| $W_{J+1}^{V}$ | $W_{J+1}^{D}$ |  |
|  |  | $W_{J+2}^{D}$ |

Figure: Coefficient scheme for a 2D-3-level-WT

