$\varepsilon_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \varepsilon_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \alpha=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right], \delta=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Figure: Optimal approximation in the plane

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=a \varepsilon_{1}+b \varepsilon_{2}=\frac{a+b}{\sqrt{2}} \alpha+\frac{a-b}{\sqrt{2}} \delta
$$

Another basis for $\mathcal{V}=\mathcal{L}^{2}([0,1))$

- Use step functions for approximation!
- This allows for
- capturing local properties of functions (localization)
- refinement by adjusting the step width (resolution)

The relevant operations are known as translation and dilation

- Two basic scaling operations for functions $f: \mathbb{R} \rightarrow \mathbb{C}$, in particular for $f \in \mathcal{L}^{2}(\mathbb{R})$
- dilation: for $a>0$

$$
\left(D_{a} f\right)(t)=\sqrt{a} f(a t)
$$

- translation: for $b \in \mathbb{R}$

$$
\left(T_{b} f\right)(t)=f(t-b)
$$

Illustration of Dilation and Translation (1)

Figure: The function $f(t)=\sin \left(t^{2}\right) \cdot \mathbf{1}_{[0,3 \pi)}(t)$

Figure: The functions $f(t)$ (black), $T_{2} f(t)$ (green), $T_{-2} f(t)$ (blue)

Illustration of Dilation and Translation (2)

Figure: The function $f(t)=\sin \left(t^{2}\right) \cdot \mathbf{1}_{[0,3 \pi)}(t)$

Figure: The functions $f(t)$ (black), $D_{1 / 2} f(t)$ (green), $D_{2} f(t)$ (blue)

Illustration of Dilation and Translation (2)

Figure: The function $f(t)=\sin \left(t^{2}\right) \cdot \mathbf{1}_{[0,3 \pi)}(t)$

Figure: The functions $f(t)$ (black), $D_{1 / 2} f(t)$ (green), $D_{2} f(t)$ (blue)

Illustration of Dilation and Translation (3)

Figure: The functions $T_{2} D_{2} f(t)$ (green) and $D_{3 / 2} T_{-1}(t)$ (blue)

Figure: The functions $T_{1} D_{1 / 2} f(t)$ (green), $D_{1 / 2} T_{1} f(t)$ (blue)

Properties of Dilation and Translation

- Check!

$$
\begin{aligned}
& \text { 1. } D_{a}\left(D_{b} f\right)=D_{a \cdot b} f \\
& \text { 2. } T_{a}\left(T_{b} f\right)=T_{a+b} f \\
& \text { 3. } D_{a}\left(T_{b} f\right)=T_{b / a}\left(D_{a} f\right) \\
& \text { 4. }\left\langle f \mid D_{a} g\right\rangle=\left\langle D_{1 / a} f \mid g\right\rangle \\
& \text { 5. }\left\langle f \mid T_{b} g\right\rangle=\left\langle T_{-b} f \mid g\right\rangle \\
& \text { 6. }\left\langle D_{a} f \mid D_{a} g\right\rangle=\langle f \mid g\rangle \text {, in particular }\left\|D_{a} f\right\|=\|f\| \\
& \text { 7. }\left\langle T_{b} f \mid T_{b} g\right\rangle=\langle f \mid g\rangle \text {, in particular }\left\|T_{b} f\right\|=\|f\|
\end{aligned}
$$

The Haar scaling function

- For an interval $I=[a, b) \subset \mathbb{R}$ its indicator function is

$$
\mathbf{1}_{l}(t)=\mathbf{1}_{[a, b)}(t)= \begin{cases}1 & \text { if } a \leq t<b \\ 0 & \text { otherwise }\end{cases}
$$

Similarly for intervals $[a, b]$ or $(a, b]$ or (a, b)

- The dyadic itervals $l_{j, k}$ (for $j, k \in \mathbb{Z}$) are defined as

$$
I_{j, k}=\left[k \cdot 2^{-j},(k+1) \cdot 2^{-j}\right)
$$

- The Haar scaling function is defined as

$$
\phi(t)=\mathbf{1}_{l_{0,0}}(t)=\mathbf{1}_{[0,1)}(t)= \begin{cases}1 & \text { if } 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

- For $j, k \in \mathbb{Z}$ put

$$
\phi_{j, k}(t)=\left(D_{2^{j}} T_{k} \phi\right)(t)=2^{j / 2} \cdot \phi\left(2^{j} t-k\right)=2^{j / 2} \mathbf{1}_{l_{j, k}}(t)
$$

- j : dilation parameter (resolution),
- k : translation parameter (localization)

Properties of the $\phi_{j, k}$

- Orthogonality

$$
\left\langle\phi_{j, k} \mid \phi_{j, \ell}\right\rangle=\int_{\mathbb{R}} \phi_{j, k}(t) \phi_{j, \ell}(t) d t=\delta_{k, \ell}
$$

- That is: for any fixed $j \geq 0$ the family

$$
\Phi_{j}=\left\{\phi_{j, k}(t) ; 0 \leq k<2^{j}\right\}
$$

is an orthonormal system in $\mathcal{L}^{2}([0,1))$

- The subspace \mathcal{V}_{j} of $\mathcal{V}=\mathcal{L}^{2}([0,1))$ generated by taking Φ_{j} as its basis is the space of dyadic step functions with step width 2^{-j}
The space \mathcal{V}_{j} has dimension 2^{j}
This space is known as approximation subspace on level j
- The scaling equation relates \mathcal{V}_{j} and \mathcal{V}_{j+1}

$$
\phi_{j, k}(t)=\frac{1}{\sqrt{2}}\left(\phi_{j+1,2 k}(t)+\phi_{j+1,2 k+1}(t)\right)
$$

Illustrations of the Haar scaling function

Figure: The Haar scaling function $\phi(t)$

Figure: $\phi_{1,1}(t)$ (black), $\phi_{2,-3}(t)$ (red), $\phi_{3,10}(t)$ (green), $\phi_{-1,0}(t)$ (blue)

Optimal approximation with step functions

- Optimal approximation in \mathcal{V}_{j} for $f \in \mathcal{L}^{2}([0,1))$

$$
\alpha_{j}(f ; t)=\sum_{0 \leq k<2^{j}} a_{j, k} \phi_{j, k}(t)
$$

has approximation coefficients

$$
a_{j, k}=\left\langle f \mid \phi_{j, k}\right\rangle=2^{j / 2} \int_{I_{j, k}} f(t) d t
$$

- Important: unlike the Fourier coefficients, the approximation coefficients $a_{j, k}$ only depend locally on $f(t)$, precisely:

$$
\begin{aligned}
a_{j, k} \cdot \phi_{j, k}(t) & =\mu_{j, k}(f) \cdot \mathbf{1}_{l_{j, k}}(t) \\
\mu_{j, k}(f) & =\frac{1}{\left|I_{j, k}\right|} \int_{I_{j, k}} f(t) d t
\end{aligned}
$$

where
is the average of $f(t)$ over $l_{j, k}$

Changing the resolution

- Important question: how do the approximation coefficients $a_{j, k}$ change when changing the resolution parameter j ?
- Partial answer: from $I_{j, k}=I_{j+1,2 k} \uplus I_{j+1,2 k+1}$ it follows that

$$
\begin{aligned}
a_{j, k} & =2^{j / 2} \int_{I_{j, k}} f(t) d t \\
& =2^{j / 2}\left(\int_{I_{j+1,2 k}} f(t) d t+\int_{I_{j+1,2 k+1}} f(t) d t\right) \\
& =\frac{2^{(j+1) / 2}}{\sqrt{2}}\left(\int_{I_{j+1,2 k}} f(t) d t+\int_{I_{j+1,2 k+1}} f(t) d t\right) \\
& =\frac{1}{\sqrt{2}}\left(a_{j+1,2 k}+a_{j+1,2 k+1}\right)
\end{aligned}
$$

Changing the resolution

- The recurrence equation for the Haar approximation coefficients

$$
a_{j, k}=\frac{1}{\sqrt{2}}\left(a_{j+1,2 k}+a_{j+1,2 k+1}\right)
$$

is really a consequence of the scaling equation

$$
\phi_{j, k}(t)=\frac{1}{\sqrt{2}}\left(\phi_{j+1,2 k}(t)+\phi_{j+1,2 k+1}(t)\right)
$$

because by linearity of the inner product

$$
\left\langle f \mid \phi_{j, k}\right\rangle=\frac{1}{\sqrt{2}}\left(\left\langle f \mid \phi_{j+1,2 k}\right\rangle+\left\langle f \mid \phi_{j+1,2 k+1}\right\rangle\right)
$$

Changing the resolution

- The complete answer:
- Define detail coefficients for $0 \leq k<2^{j}$

$$
d_{j, k}=\frac{1}{\sqrt{2}}\left(a_{j+1,2 k}-a_{j+1,2 k+1}\right)
$$

then

$$
\left[\begin{array}{l}
a_{j, k} \\
d_{j, k}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]
$$

and consequently

$$
\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
a_{j, k} \\
d_{j, k}
\end{array}\right]
$$

- This defines the HaAR transformation at level $j+1$!

$$
\begin{aligned}
&\left(a_{j+1,0}, a_{j+1,1}, \ldots, a_{j+1,2^{j+1}-1}\right) \\
& \uparrow \\
&\left(a_{j, 0}, a_{j, 1}, \ldots, a_{j, 2^{j}-1}, d_{j, 0}, d_{j, 1}, \ldots, d_{j, 2^{j}-1}\right)
\end{aligned}
$$

What the $d_{j, k}$ really are

- From the definition:

$$
\begin{aligned}
d_{j, k} & =\frac{1}{\sqrt{2}}\left(a_{j+1,2 k}-a_{j+1,2 k+1}\right) \\
& =\frac{2^{(j+1) / 2}}{\sqrt{2}}\left(\int_{I_{j+1,2 k}} f(t) d t-\int_{I_{j+1,2 k+1}} f(t) d t\right) \\
& =\left\langle f \mid \psi_{j, k}\right\rangle
\end{aligned}
$$

where

$$
\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right) \quad \text { and where }
$$

$$
\psi(t)=\mathbf{1}_{[0,1 / 2)}(t)-\mathbf{1}_{[1 / 2,1)}(t)= \begin{cases}1 & \text { für } 0 \leq t<1 / 2 \\ -1 & \text { für } 1 / 2 \leq t<1 \\ 0 & \text { sonst }\end{cases}
$$

is known as the Haar wavelet function

- Note that

$$
\psi_{j, k}(t)=\left(D_{2^{j}} T_{k} \psi\right)(t)
$$

Illustration of the Haar wavelet function

Figure: The Haar wavelet function $\psi(t)$

Figure: $\psi_{1,1}(t)$ (black), $\psi_{2,-3}(t)($ red $), \psi_{3,10}(t)$ (green) $\psi_{-1,0}(t)$ (blue)

The wavelet equation appears

- The definition of the $d_{j, k}$ is equivalent to the wavelet equation

$$
\psi_{j, k}(t)=\frac{1}{\sqrt{2}}\left(\phi_{j+1,2 k}(t)-\phi_{j+1,2 k+1}(t)\right)
$$

- The family

$$
\Psi_{j}=\left\{\psi_{j, k}(t)\right\}_{0 \leq k<2^{j}}
$$

is an ONS in $\mathcal{V}=\mathcal{L}^{2}([0,1))$

- The subspace \mathcal{W}_{j} of $\mathcal{V}=\mathcal{L}^{2}([0,1))$ generated by Ψ_{j} is called wavelet or detail subspace at level j
- The space \mathcal{W}_{j} has dimension 2^{j}
- Check: All $\phi_{j, k}$ are orthogonal to all $\psi_{j^{\prime}, \ell}$ for $j \leq j^{\prime}$ and $\left(0 \leq k<2^{j}, 0 \leq \ell<2^{j^{\prime}}\right)$
- Check: All $\psi_{j, k}$ are orthogonal to all $\psi_{j^{\prime}, \ell}$ for $j^{\prime} \neq j$

Putting ϕ and ψ together

- The functions

$$
\Phi_{j+1}=\left\{\phi_{j+1, k}(t)\right\}_{0 \leq k<2^{j+1}}
$$

generate (as an ONS) the subspace \mathcal{V}_{j+1} of $\mathcal{V}=\mathcal{L}^{2}([0,1))$ of step functions of step width 2^{-j-1}
This space has dimension 2^{j+1}

- By definition

$$
\mathcal{V}_{j} \subset \mathcal{V}_{j+1} \text { and } \mathcal{W}_{j} \subset \mathcal{V}_{j+1}
$$

- But the space \mathcal{V}_{j+1} also has

$$
\Phi_{j} \cup \Psi_{j}=\left\{\phi_{j, k}(t)\right\}_{0 \leq k<2^{j}} \cup\left\{\psi_{j, k}(t)\right\}_{0 \leq k<2^{j}}
$$

as an ONS! Hence

$$
\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}
$$

Two bases in one space

- The 1-level Haar transformation (at level $j+1$) is an orthogonal basis transformation in the space \mathcal{V}_{j+1} between bases

$$
\Phi_{j+1} \quad \text { and } \quad \Phi_{j} \oplus \Psi_{j}
$$

- which explicitly reads

$$
\left[\begin{array}{c}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right]
$$

and equivalently

$$
\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right]
$$

Basic identities

- Haar scaling identity (Analysis)

$$
\phi_{j, k}(t)=\frac{1}{\sqrt{2}}\left(\phi_{j+1,2 k}(t)+\phi_{j+1,2 k+1}(t)\right)
$$

- Haar wavelet identity (Analysis)

$$
\psi_{j, k}(t)=\frac{1}{\sqrt{2}}\left(\phi_{j+1,2 k}(t)-\phi_{j+1,2 k+1}(t)\right)
$$

- Both identities together (Analysis)

$$
\left[\begin{array}{l}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right]
$$

- Reconstruction (Synthesis)

$$
\left[\begin{array}{c}
\phi_{j+1,2 k}(t) \\
\phi_{j+1,2 k+1}(t)
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
\phi_{j, k}(t) \\
\psi_{j, k}(t)
\end{array}\right]
$$

Transforming the coefficients

- Analysis

$$
\left[\begin{array}{l}
a_{j, k} \\
d_{j, k}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]
$$

- Synthesis

$$
\left[\begin{array}{c}
a_{j+1,2 k} \\
a_{j+1,2 k+1}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
a_{j, k} \\
d_{j, k}
\end{array}\right]
$$

- This defines the HAAR transformation at level $j+1$!

$$
\begin{array}{r}
\left(a_{j+1,0}, a_{j+1,1}, \ldots, a_{j+1,2^{j+1}-1}\right) \\
\downarrow \\
\left(a_{j, 0}, a_{j, 1}, \ldots, a_{j, 2^{j}-1}, d_{j, 0}, d_{j, 1}, \ldots, d_{j, 2^{j}-1}\right)
\end{array}
$$

Outlook (for $\mathcal{L}([0,1))$

- The set of functions

$$
\{\phi(t)\} \cup \bigcup_{j \geq 0} \Psi_{j}=\{\phi(t)\} \cup\left\{\psi_{j, \ell}(t) ; j \geq 0,0 \leq \ell<2^{j}\right\}
$$

is a Hilbert basis in the space $\mathcal{L}([0,1))$

- This is the HaAR wavelet basis.
- This means that functions $f \in \mathcal{L}^{2}([0,1))$ can be written as

$$
\begin{aligned}
f(t) & =\langle f(t) \mid \phi(t)\rangle \phi(t)+\sum_{\substack{j \geq 0 \\
0 \leq \ell<2^{j}}}\left\langle f \mid \psi_{j, \ell}\right\rangle \psi_{j, \ell}(t) \\
& =\int_{0}^{1} f(t) d t+\sum_{\substack{j \geq 0 \\
0 \leq \ell<2^{j}}} d_{j, \ell} \psi_{j, \ell}(t)
\end{aligned}
$$

Outlook (for $\mathcal{L}([0,1))$

- For each fixed $J \geq 0$, the set of functions

$$
\begin{aligned}
\mathcal{H}_{J} & =\Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j} \\
& =\left\{\phi_{J, k} ; 0 \leq k<2^{J}\right\} \cup\left\{\psi_{j, \ell}(t) ; j \geq J, 0 \leq \ell<2^{j}\right\}
\end{aligned}
$$

is a Hilbert basis in the space $\mathcal{L}([0,1))$

- This means that functions $f \in \mathcal{L}^{2}([0,1))$ can be written as

$$
\begin{aligned}
f(t) & =\sum_{0 \leq k<2^{J}}\left\langle f(t) \mid \phi_{J, k}(t)\right\rangle \phi_{J, k}(t)+\sum_{\substack{j \geq J \\
0 \leq \ell<2^{j}}}\left\langle f \mid \psi_{j, \ell}\right\rangle \psi_{j, \ell}(t) \\
& =\sum_{0 \leq k<2^{J}} a_{J, k} \phi_{J, k}(t)+\sum_{\substack{j \geq J \\
0 \leq \ell<2^{j}}} d_{j, \ell} \psi_{j, \ell}(t)
\end{aligned}
$$

Outlook (for $\mathcal{L}(\mathbb{R})$)

- Take intervals $\boldsymbol{I}_{j, k}$ for $j, k \in \mathbb{Z}$
- Take functions $\phi_{j, k}$ and $\psi_{j, k}$ for $j, k \in \mathbb{Z}$
- Define

$$
\begin{array}{rlrl}
\Phi_{j} & =\left\{\phi_{j, k} ; k \in \mathbb{Z}\right\} & \Psi_{j} & =\left\{\psi_{j, k} ; k \in \mathbb{Z}\right\} \\
\mathcal{H}_{J} & =\Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j} & \mathcal{H} & =\Phi=\bigcup_{j \geq \mathbb{Z}} \Psi_{j} \\
\mathcal{V}_{J} & =\overline{\operatorname{span}}\left(\Phi_{j}\right) & \mathcal{W}_{J}=\overline{\operatorname{span}}\left(\Psi_{j}\right)
\end{array}
$$

- $\Phi_{j}, \Psi_{j}, \mathcal{H}_{J}$ and \mathcal{H} are orthogonal families
- $\mathcal{V}_{j+1}=\mathcal{V}_{j} \oplus \mathcal{W}_{j}$ is an orthogonal decomposition
- Scaling and wavelet identities are precisely the same as before
- Coefficient transformations are the same as before
- Haar transformation is the same as before

Outlook (for $\mathcal{L}(\mathbb{R})$)

- For each fixed $J \geq 0$, the set of functions

$$
\begin{aligned}
\mathcal{H}_{J} & =\Phi_{J} \cup \bigcup_{j \geq J} \Psi_{j} \\
& =\left\{\phi_{J, k} ; k \in \mathbb{Z}\right\} \cup\left\{\psi_{j, \ell}(t) ; j, \ell \in \mathbb{Z}\right\}
\end{aligned}
$$

is a Hilbert basis in the space $\mathcal{L}(\mathbb{R})$

- This means that functions $f \in \mathcal{L}^{2}(\mathbb{R})$ can be written as

$$
\begin{aligned}
f(t) & =\sum_{k \in \mathbb{Z}}\left\langle f(t) \mid \phi_{J, k}(t)\right\rangle \phi_{J, k}(t)+\sum_{\substack{j \geq J \\
\ell \in \mathbb{Z}}}\left\langle f \mid \psi_{j, \ell}\right\rangle \psi_{j, \ell}(t) \\
& =\sum_{k \in \mathbb{Z}} a_{J, k} \phi_{J, k}(t)+\sum_{\substack{j \geq J \\
\ell \in \mathbb{Z}}} d_{j, \ell} \psi_{j, \ell}(t)
\end{aligned}
$$

Outlook (for $\mathcal{L}(\mathbb{R})$)

- The set of functions

$$
\mathcal{H}=\Psi=\bigcup_{j \in \mathbb{Z}} \Psi_{j}=\left\{\psi_{j, k}(t) ; j, k \in \in \mathbb{Z}\right\}
$$

is a Hilbert basis in the space $\mathcal{L}(\mathbb{R})$

- This means that functions $f \in \mathcal{L}^{2}(\mathbb{R})$ can be written as

$$
f(t)=\sum_{j, k \in \mathbb{Z}}\left\langle f \mid \psi_{j, k}\right\rangle \psi_{j, k}(t)=\sum_{j, k \in \mathbb{Z}} d_{j, k} \psi_{j, k}(t)
$$

