
General considerations

I Objects of study are “signals” (either continuous or discrete)
I Mathematically they are represented as functions such as

I f : R→ R or f : R→ C
I g : Z→ R or g : Z→ C
I h : [0, 1)→ R or h : [0, 1)→ C
I Images with 28 grey values can be viewed as functions

k : ZN × ZM → Z256 where ZN = {0, 1, 2, . . . ,N − 1}
I . . .

I Intended high-level actions on signals are transformations like
I filtering
I compression, approximation
I denoising
I feature detection
I fusion, . . .

I Low-level actions implementing these are: translation,
modulation, scaling, addition, multiplication, convolution, . . .



General considerations (contd.)

I Mathematically:
I signals are elements of appropriate vector spaces

(real or complex)
I actions are (mostly, but not always) linear transformations

acting on vectors

I Signal spaces can be endowed with bases of “simple signals”,
general signals appear as (discrete or continuous)
linear combinations of simple signals, e.g. as in

f (t) =
∑
k

α[k]ek(t) or f (t) =

∫
α(s)es(t)ds

where the ek(t) resp. es(t) are simple signals and
the α[k] resp. α(s) are constants (w.r.t. the main variable t)

I Actions on signals are often realized as actions on the
coefficients



The ideal mathematical context
I In order to have a satisfactory framework for algorithmics the

vector spaces of signals need additional geometric structure,
i.e. concepts like length, distance, angle, orthogonality

I The ideal framework (besides of vector spaces of finite
dimension) is that of a (separable) Hilbert space
These are vector spaces H of countable dimension,
endowed with a norm function ‖ . ‖ : H → R+

that arises from an inner (scalar) product

〈 . | . 〉 : H×H → C

with the distance defined by

d(f , g) = ‖f − g‖, where ‖f ‖ =
√
〈f |f 〉

Orthogonality is defined by

f ⊥ g ⇔ 〈f |g〉 = 0

See the Lecture Notes (script) for details



Important examples

I Finite-dimensional vector spaces RN and CN

with the usual inner product w.r.t. an ON-basis
E = {e1, e2, . . . , eN}

x =
N∑
i=1

xi e
i , y =

N∑
i=1

yi e
i ⇒ 〈x | y〉 =

N∑
i=1

xi · yi

(Note the complex conjugation!)
In particular, the squared (Euclidean) length

‖x‖2 = 〈x | x〉 =
N∑
i=1

|xi |2



Important examples (cont.)

I The space `2 of bi-infinite discrete signals of finite energy

`2 = {x = (x [i ])i∈Z ; x [i ] ∈ C,
∑

i∈Z |x [i ]|2 <∞}

with the inner product

x = (x [i ])i∈Z, y = (y [i ])i∈Z ⇒ 〈x | y〉 =
∑
i∈Z

x [i ] · y [i ]

so that in particular

‖x‖2 = 〈x | x〉 =
∑
i∈Z
|x [i ]|2



Important examples (contd.)

I L2([a, b)), the space of square-integrable functions, i.e.,
f : [a, b)→ C over a finite interval [a, b) ⊂ R with∫ b

a
|f (t)|2 dt <∞

(To be honest the integral must be take in the sense of
Lebesgue, whence the letter L is used).
The inner product on the space is given by

〈f | g〉 =

∫ b

a
f (t) · g(t) dt

so that

‖f ‖2 = 〈f | f 〉 =

∫ b

a
|f (t)|2 dt



Important examples (contd.)

I L2(R), the space of square-integrable functions f : R→ C.
The definition is as before with
a replaced by −∞ and b replaced by +∞

I Important difference to the case of finite intervals is:

the complex exponentials and trigonometric functions belong
obviously to L2(I ) in the case of finite intervals I = [a, b),
but not for the infinite interval R!



1-periodic functions

I These are functions f : R→ C for which

f (t + 1) = f (t) for all t ∈ R

I They can be viewed as functions f : [0, 1)→ R
(or as functions f : [a, a + 1)→ R for any a ∈ R)

I The family of complex exponentials

ωm(t) = e2πimt (m ∈ Z)

is an orthonormal family in L2([0, 1)), i.e.,

〈ωk(t) |ω`(t)〉 =

∫ 1

0
e2πi(k−`)t = δk,` (k , ` ∈ Z)



1-periodic functions (contd.)

I Likewise, the trigonometric functions (harmonics)

cos(2πkt) (k ≥ 0, k ∈ Z), sin(2π`t) (` > 0, ` ∈ Z)

form an orthogonal family in L2([0, 1)) because of

〈cos(2πkt) | cos(2π`t)〉 =


1 if k = ` = 0

1/2 if k = ` > 0

0 if k 6= `

〈sin(2πkt) | sin(2π`t)〉 =

{
1/2 if k = ` > 0

0 if k 6= `

〈cos(2πkt) | sin(2π`t)〉 = 0 (k ≥ 0, ` > 0)



Fourier’s idea (1807)

I Any 1-periodic function can be represented as a linear
superposition of complex exponentials resp. of trigonometric
functions:

f (t) =
a[0]

2
+

∑
k>0

a[k] cos(2πkt) +
∑
`>0

b[`] sin(2π`t)

=
∑
m∈Z

c[m]ωm(t) =
∑
m∈Z

c[m] e2πimt



Fourier’s idea (contd.)
I Interpretation:

the Fourier coefficients a[k], b[`], c[m] tell the intensity
(or amplitude) with which the corresponding trigonometric
function or exponential is “contained” in the function f (t)

I By orthogonality, one expects that

c[m] = 〈f (t) |ωm(t)〉 =

∫ 1

0
f (t) e−2πimtdt

I and the Fourier series expansion can be written as

f (t) =
∑
m∈Z
〈f (t) |ωm(t)〉 · ωm(t)

I This is the “blueprint” for many other representations of
similar nature

I Similar formulas hold for the a[k] and b[`] – see the Lecture
Notes or any other text on the subject



Time domain and frequency domain

I The use of the variable t in f (t), e2πimt etc. suggests that one
often (but not always) considers t as a time (or space)
variable.
A function f (t) is considered as an object in the time domain.

I Parameters k , `,m etc. denote frequency (cycles / time unit).
In the frequency domain an object like f (t) is given by its
frequency coefficients c[m](m ∈ Z) (or a[k], b[`])

f (t) ↔ (c[m])m∈Z
f (t) ↔ (a[k])k≥0 ∪ (b[`])`>0

I The dual nature of signals living in time domain and
frequency domain is the fundamental aspect of Fourier theory



Analysis and synthesis

I The analysis formula

c[m] = 〈f (t) |ωm(t)〉 =

∫ 1

0
f (t) e−2πimtdt

shows how the amplitudes c[m] can be computed by
correlating the signal f (t) with the basic signals ωm(t)

I The synthesis formula

f (t) =
∑
m∈Z

c[m]ωm(t) =
∑
m∈Z

c[m] e2πimt

shows how the signal f (t) is obtained via superposition of
basic signals with the amplitudes as coefficients



Warning!

I The synthesis formula should be taken here at an intuitive
level, as in reality it involves an infinite sum of functions,
hence convergence question will show up

I Even if for a given function (signal) f (t) the Fourier
coefficients are well defined, it is not at all clear in which
sense the syntesis formula is true – if at all

I Making Fourier’s idea (arguably one of the most influential
ones in all of mathematics) precise turned out to be a major
problem in mathematical analysis which kept some of the the
best mathematicians busy! It took well over 150 years until a
completely satisfactory solution was established – this is a
very deep and broad subject with an immense number of
applications!



Big question

I To make things a bit more precise, consider for a given f (t),
for which the Fourier coefficients c[m] are well defined, the
partial sums

SN(t) =
N∑

m=−N
c[m] e2πimt

are approximations of f (t) for an integer N > 0

I Each approximation SN(t) is a finite linear combination of
exponentials, hence infinitely differentiable, i.e., as “nice” as a
function could possibly be

I The question is:

What happens to SN(t) as N →∞ ?



Classical results

I Two classical results must be mentioned in this context:

1. Pointwise convergence (Dirichlet)
If f (t) is piecewise differentiable, then

SN(t)→


f (t) for all t∈[0,1)

where f is continuous

f (t+) + f (t−)

2
for all t∈[0,1)

where f has a jump discontinuity

2. L2-convergence (convergence “in the quadratic mean”)
If f (t) ∈ L2([0, 1)), then, as N →∞,

d(f ,SN) = ‖f (t)− SN(t)‖ =

√∫ 1

0

|f (t)− SN(t)|2dt → 0



Side remark

I What has been said about 1-periodic functions carries over to
a-periodic functions, i.e., functions f : R→ C with

f (t + a) = f (t) for all t ∈ R

I Alternatively, on may regard these as functions
f : [b, b + a)→ C for some b ∈ R

I The formulas for the Fourier cofficients are obtained by simpe
variable transformation from the 1-periodic case, they can be
found in the Lecture Notes

I It is often convenient to take either the interval [0, a) or the
interval [−a/2, a/2) as domain of definition



Important example

I The “box” function f : [−1,+1)→ R, given by

f (t) =

{
1 if |t| ≤ 1/2

0 if 1/2 < |t| ≤ 1

I The computation of the Fourier coefficients is an easy
exercise, see the Lecture Notes

I The result is a series representation

f (t) “=”
1

2
− 2

π

∞∑
k=1

(−1)k
cos((2k − 1)πt)

2k − 1



Details
If one plots the partial sums

SN(t) =
1

2
− 2

π

N∑
k=1

(−1)k
cos((2k − 1)πt)

2k − 1

in the range 0 ≤ t ≤ 1 for increasing values of N, the one observes the
following (see the Mathematica notebook)

1. for t 6= 1/2 the value of SN(t) seems to eventually converge to
f (t) = 1 if 0 ≤ t < 1/2, or to f (t) = 0 if 1/2 < t ≤ 1

2. for t = 1/2 one always has SN(t) = 1/2

3. the function SN(t) heavily oscillates as t approaches the jump
discontinuity at t = 1/2 of f (t);
oscillations increase in frequency, as N grows

4. the position of the maximum deviation (“overshooting”) of SN(t)
from f (t) moves towards t = 1/2 as N grows, but the amount of
overshooting does not decrease!
It remains at about 0.09, independent of N



The Gibbs’ phenomenon

I Observations 1.-3. agree with the pointwise convergence
theorem, which is no surprise, as f (t) is piecewise
differentiable

I The overshooting should not really come as a surprise, since
the convergence SN(t)→n→∞ f (t) cannot be uniform –
because the limit function is not continuous

I The non-vanishing overshooting bears the name Gibbs
phenomenon (or Gibbs-Wilbraham phenomenon) in honor
of its discoverers. It is a fundamental property of Fourier
series and similarly of the Fourier transform



Conclusion

I To put the observation of the previous example on a general
level, on can state:

I In Fourier analysis (in the classical sense) one correlates
functions to be investigated with complex exponentials (or
trigonometric functions), which are functions that are

I perfectly localized in the frequency domain
I not at all localized in the time domain

I Fourier analysis
I is good for treating stationary features of signals
I it is not so good for analyzing transient features (like

discontinuities)



Outlook

Wavelet analysis is a technique designed to overcome these
limitations by

I taking as basis functions instead of the complex exponentials
functions that are well localized both w.r.t. time and
frequency

I generating these basic functions from two “blueprints”,
the scaling function and the wavelet function,
by using the operations of translation and dilation,
which leads to the fundamental concept of multiresolution

There are many way for constructing the “blueprints”, none of
them (except one) is obvious or simple


