Wavelets and edge detection

WTBV WS 2016/17

February 7, 2018

1D edge detection
Approximating derivatives: numerical instability
Continuous wavelet transform (CWT)
Wavelet functions and derivatives
CWT, scaling and wavelet identities
The algorithme-à-trous

2D edge detection
Canny's method
2D separable CWT and gradients
Gradient computation using scaling and wavelet identities

- Initial event:
A. Grossmann and J. Morlet,

Decompositions of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Analysis, 1984
(Analysis of seismic signals)

- ... but there were precursors ...e.g.
A. P. Caldéron,

Intermediate Spaces and Interpolation, the Complex Method, Studia Mathematica, 1964

- see:
S. Jaffard, Y. Meyer, R. Ryan, Wavelets, Tools for Science and Technology, SIAM 2001, in particular: Chap. 2: Wavelets from a Historical Perspective
- J. Canny,

A computational approach to edge detection, IEEE Trans Patt. Recog. and Mach. Intell. 6, 961-1005, 1986.

- S. G. Mallat and S. Zhong,

Characterization of signals from multiscale edges, IEEE Trans Patt. Recog. and Mach. Intell., 14, 710-732, 1992.

- When dealing with a discretized version of a function $f(t)$

$$
\ldots f\left(t_{0}\right), f\left(t_{0}+h\right), f\left(t_{0}+2 h\right), \ldots
$$

(step size h for sampling) one may take the difference quotient as a numerical approximation of the derivative

$$
f^{\prime}\left(t_{0}\right)=\frac{d}{d t} f\left(t_{0}\right) \approx \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

- From the numerical point of view this is a highly dangerous method (in particular if it is used iteratively) if the step size h is small
- As a rule: first apply a smoothing operator to the data before taking differences
- See the notebook ramp-en.pdf for illustration
- See handout cwt-en.pdf for the details and more information
- See notebook CWT-15-en.pdf for illustrations of the countinuous wavelet transform
- Relevant notebooks for illustration of edge detection
- ramp-en.pdf
- atrous-poly-en.pdf
- sobel-en.pdf
- circletest.pdf
- wvedges-en.pdf

Figure: mexican-hat wavelet as second derivative of a Gaussian

- Generally: wavelet transforms consist in both
- smoothing operations (approximation, low-pass filtering)
- differencing operations (detail, high-pass filtering)
- $\psi(t)$ a "suitable" wavelet function, e.g.,
(1) $\psi(t)$ is continuous and has vanishing zero-th moment

$$
\widehat{\psi}(0)=\int_{\mathbb{R}} \psi(t) d t=0
$$

(2) $\psi(t)$ decays rapidly as $t \rightarrow \pm \infty$

$$
|\psi(t)| \leq A e^{-B|t|}(t \in \mathbb{R}) \text { for some constants } A, B>0
$$

- normalization (for convenience) $\|\psi\|^{2}=1$
- Localization (mean and variance)

$$
\mu=\int_{\mathbb{R}} t|\psi(t)|^{2} d t \quad \sigma^{2}=\int_{\mathbb{R}}(t-\mu)^{2}|\psi(t)|^{2} d t
$$

- continuous scaling (dilation and translation) of $\psi(t)$

$$
\psi_{s, a}(t)=\frac{1}{\sqrt{|s|}} \psi\left(\frac{t-a}{s}\right) \quad(s, a \in \mathbb{R})
$$

(this notation differs from the one used in the DWT context)

- Localization

$$
\begin{aligned}
& \mu_{s, a}=\int t\left|\psi_{s, a}(t)\right|^{2} d t=\ldots=s \mu+a \\
& \sigma_{s, a}^{2}=\int\left(t-\mu_{s, a}\right)^{2}\left|\psi_{s, a}(t)\right|^{2} d t=\ldots=s^{2} \sigma^{2}
\end{aligned}
$$

- Fourier transform

$$
\widehat{\psi_{s, a}}(\lambda)=\sqrt{s} e^{-2 \pi i a \lambda} \widehat{\psi}(s \lambda)
$$

- Definition of the continuous wavelet transform (CWT)

$$
\begin{aligned}
f(t) \longmapsto f^{\psi}(s, a) & =\left\langle f \mid \psi_{s, a}\right\rangle \\
& =\int_{\mathbb{R}} f(t) \overline{\psi_{s, a}(t)} d t
\end{aligned}
$$

- Note

$$
\left\|f-\psi_{s, a}\right\|^{2}=\|f\|^{2}+\|\psi\|^{2}-2 \Re\left[f^{\psi}(s, a)\right]
$$

- Intuitively: $f^{\psi}(s, a)$ correlates the behavior of $f(t)$ with that of $\psi(t)$ in the vicinity of $a \in \mathbb{R}$ (if $\mu=0$) in resolution (scaling) $s \in \mathbb{R}$
- The CWT transform data $\left\{f^{\psi}(s, a)\right\}_{s, a \in \mathbb{R}}$ are highly redundant!
- CALDÉRON's reconstruction formula
$f(t)$ can be reconstructed from its CWT transform data $\left\{f^{\psi}(s, a)\right\}_{s, a \in \mathbb{R}}$ under suitable conditions

$$
f(t)=\frac{1}{C_{\psi}} \int_{s \in \mathbb{R}} \int_{a \in \mathbb{R}} f^{\psi}(s, a) \psi_{s, a}(t) d a \frac{d s}{s^{2}}
$$

- Here the number

$$
C_{\psi}=\int_{\lambda \in \mathbb{R}} \frac{|\widehat{\psi}(\lambda)|^{2}}{|\lambda|} d \lambda
$$

must be finite and >0

- This holds if conditions (1) and (2) for $\psi(t)$ are satisfied
- The HAAR wavelet function $\psi_{\text {haar }}(t)$ can be regarded as a derivative

$$
\psi_{\text {haar }}(t)=\frac{d}{d t} \Delta(t) \text { where } \Delta(t)= \begin{cases}t & 0 \leq t \leq 1 / 2 \\ 1-t & 1 / 2 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$\Delta(t)$ is a smoothing function

- The mexican-hat wavelet function $\psi_{\text {mex }}(t)$ is a derivative

$$
\psi_{\operatorname{mex}}(t)=\frac{d}{d t}\left(t e^{-t^{2}}\right)=-\frac{1}{2} \frac{d^{2}}{d t^{2}} e^{-t^{2}}
$$

but $t e^{-t^{2}}$ is not really a smoothing function

- Take $\psi(t)$ as the derivative of a smoothing function $\theta(t)$

$$
\psi(t)=\frac{d}{d t} \theta(t)
$$

and define the scaled (dilated) and reversed version of $\theta(t)$ as

$$
\overleftarrow{\theta_{s}}(t)=\frac{1}{\sqrt{s}} \theta\left(-\frac{t}{s}\right)
$$

- Then one has (simple exercise in differentiating under the integral)

$$
f^{\psi}(s, a)=-s \frac{d}{d a}\left(f \star \overleftarrow{\theta_{s}}\right)(a)
$$

- Note: the convolution $f \star \overleftarrow{\theta_{s}}$ is a $\overleftarrow{\theta_{s}}$-smoothed version of f
- Interpretation: Edges in the graph of $f(t)$ (high absolute values of the derivative) can be recognized by absolutely large values of the wavelet coefficients $f^{\psi}(s, a)$ over many scales (s values)
- Assume that for the wavelet function $\psi(t)$ one has a scaling function $\phi(t)$ (as in the MRA situation)
- Scaling and wavelet identities are

$$
\begin{aligned}
& \phi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} h_{k} \phi(2 t-k) \\
& \psi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} g_{k} \phi(2 t-k)
\end{aligned}
$$

- Consider dyadic scaling for $\phi(t)$ and $\psi(t)$, i.e.,

$$
\phi_{2^{m}, a}(t)=\frac{1}{2^{m / 2}} \phi\left(\frac{t-a}{2^{m}}\right) \quad \psi_{2^{m}, a}(t)=\frac{1}{2^{m / 2}} \psi\left(\frac{t-a}{2^{m}}\right)
$$

- Scaling and wavelet identities turn into

$$
\begin{aligned}
& \phi_{2^{m+1}, a}(t)=\sum_{k \in \mathbb{Z}} h_{k} \phi_{2^{m}, a+k 2^{m}}(t) \\
& \psi_{2^{m+1}, a}(t)=\sum_{k \in \mathbb{Z}} g_{k} \phi_{2^{m}, a+k 2^{m}}(t)
\end{aligned}
$$

- Approximation and detail coefficients of a function $f(t)$, for dyadic scaling and integer translation

$$
\begin{aligned}
(s, a)=\left(2^{m}, n\right) & (m, n \in \mathbb{Z}) \\
& a_{m, n}=\left\langle f \mid \phi_{2^{m}, n}\right\rangle
\end{aligned} \quad d_{m, n}=\left\langle f \mid \psi_{2^{m}, n}\right\rangle
$$

- Recursion formulas for approximation and wavelet coefficients

$$
\begin{array}{ll}
a_{m+1, n}=\sum_{k \in \mathbb{Z}} h_{k} a_{m, n+k 2^{m}} \quad(n \in \mathbb{Z}) \\
d_{m+1, n}=\sum_{k \in \mathbb{Z}} g_{k} a_{m, n+k 2^{m}} \quad(n \in \mathbb{Z})
\end{array}
$$

- Written as filtering operations

$$
\begin{aligned}
\boldsymbol{a}^{(m+1)} & =\left(a_{m+1, n}\right)_{n \in \mathbb{Z}}=\overleftarrow{\left[\left(\uparrow_{2}\right)^{m} \boldsymbol{h}\right]} \star \boldsymbol{a}^{(m)} \\
\boldsymbol{d}^{(m+1)} & =\left(d_{m+1, n}\right)_{n \in \mathbb{Z}}=\overleftarrow{\left[\left(\uparrow_{2}\right)^{m} \boldsymbol{g}\right]} \star \boldsymbol{a}^{(m)}
\end{aligned}
$$

- Here $\left(\uparrow_{2}\right)^{m} \boldsymbol{h}$ is the filter constructed from \boldsymbol{h} by using m-fold upsampling with factor 2 ("spreading")

Figure: Scheme of the Haar transform

Figure: à-trous scheme (one level) for the Haar transform

Figure: à-trous scheme (two levels) for the Haar transform

Figure: à-trous scheme (three levels) for the Haar transform

Figure: à-trous scheme (three levels)
high-pass filter: $\boldsymbol{g} \quad$ low-pass filter: $\boldsymbol{h} \quad$ signal: $\boldsymbol{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}$ filtered signals: $\boldsymbol{a}^{(k)}=\left(a_{n}^{(k)}\right)_{n \in \mathbb{Z}}$ (approximation),

$$
\boldsymbol{d}^{(k)}=\left(d_{n}^{(k)}\right)_{n \in \mathbb{Z}}(\text { detail })
$$

Consider a function (an "image") $f(x, y) \in \mathcal{L}^{2}\left(\mathbb{R}^{2}\right)$. $\partial_{x} f, \partial_{y} f$: partial derivatives of f,

$$
\nabla f\left(x_{0}, y_{0}\right)=\left(\partial_{x} f\left(x_{0}, y_{0}\right), \partial_{y} f\left(x_{0}, y_{0}\right)\right) \quad \text { gradient of } f
$$

- Canny's edge definition
$\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is an edge vertex of $f(x, y)$ if the function

$$
(x, y) \longmapsto|\nabla f(x, y)|=\sqrt{\left(\partial_{x} f(x, y)\right)^{2}+\left(\partial_{y} f(x, y)\right)^{2}}
$$

has a local maximum in $\left(x_{0}, y_{0}\right)$ when running through this point in the direction $(\nabla f)\left(x_{0}, y_{0}\right)$ of steepest ascent/descent, formally:

$$
\left|\nabla f\left[\left(x_{0}, y_{0}\right)+\varepsilon \cdot \nabla f\left(x_{0}, y_{0}\right)\right]\right| \leq\left|\nabla f\left(x_{0}, y_{0}\right)\right| \text { for } \varepsilon \approx 0
$$

- Discretization and approximation of the gradient
- Discretized function

$$
A=\left[a_{p, q}\right]_{\substack{1 \leq p \leq m \\ 1 \leq q \leq n}}^{\substack{\text { and }}} \quad \text { where } \quad a_{p, q}=f\left(\xi_{p, q}\right)
$$

- Approximation of the gradient

$$
\begin{array}{lll}
D^{x}=\left[d_{p, q}^{\times}\right]_{1 \leq p \leq m}^{1 \leq \leq \leq n} & \text { where } & d_{p, q}^{x} \approx\left(\partial_{x} f\right)\left(\xi_{p, q}\right) \\
D^{y}=\left[d_{p, q}^{y}\right]_{1 \leq p \leq m}^{1 \leq q \leq n} 1 & \text { where } & d_{p, q}^{y} \approx\left(\partial_{y} f\right)\left(\xi_{p, q}\right)
\end{array}
$$

computed using

- $A \longmapsto D^{x}$: "derivation" in x-direction, smoothing in y-direction
- $A \longmapsto D^{y}$: "derivation" in y-direction, smoothing in x-direction
- Example: The Sobel operators

$$
\begin{aligned}
& S_{h}: A \longmapsto D^{x}=A \star\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] \\
& S_{v}: A \longmapsto D^{y}=A \star\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

- Written as Kronecker products:

$$
\begin{aligned}
{\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \otimes\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

- From rectangular coordinates to polar coordinates

$$
\langle x, y\rangle \longmapsto\langle r, \phi\rangle=\left[\sqrt{x^{2}+y^{2}}, \arctan (y / x)\right]
$$

where $-\pi<\arctan (y / x) \leq \pi$

- Discretizing the directions

- The 8 neighbors $\langle\tilde{p}, \tilde{q}\rangle$ of a vertex $\langle p, q\rangle$ with integer coordinates are

$$
\begin{aligned}
& \langle\tilde{p}, \tilde{q}\rangle=\left\{\begin{array}{l}
\langle p \pm 1, q \pm 1\rangle \\
\langle p \pm 1,0\rangle \\
\langle 0, q \pm 1\rangle
\end{array}\right\}=\langle p, q\rangle+\delta \\
& \text { where } \delta \in \Delta=\{\langle \pm 1, \pm 1\rangle,\langle \pm 1,0\rangle,\langle 0, \pm 1\rangle\}
\end{aligned}
$$

- They define 8 conic sectors rooted in $\langle p, q\rangle$ and of 45° angular width, symmetric w.r.t. to the respective straight lines joining $\langle p, q\rangle \longleftrightarrow\langle\tilde{p}, \tilde{q}\rangle$
- For an integer vertex $\langle p, q\rangle$ any direction [1, ϕ] defines a unique sector containing the straight line with direction $[1, \phi]$ rooted in $\langle p, q\rangle$, hence a neighbor $\langle\tilde{p}, \tilde{q}\rangle$ and the vector

$$
\delta_{p, q}(\phi)=\langle\tilde{p}, \tilde{q}\rangle-\langle p, q\rangle=\langle\tilde{p}-p, \tilde{q}-q\rangle \in \Delta
$$

- From the gradient matrices

$$
D^{x}=\left[d_{p, q}^{x}\right] \quad D^{y}=\left[d_{p, q}^{y}\right]
$$

one obtains

- the matrix of absolute length of the gradient vectors

$$
R=\left[r_{p, q}\right]=\left[\sqrt{\left(d_{p, q}^{x}\right)^{2}+\left(d_{p, q}^{y}\right)^{2}}\right]
$$

- the matrix of discretized gradient directions

$$
S=\left[\delta_{p, q}(\phi)\right] \text { where } \phi=\arctan \left(d_{p, q}^{y} / d_{p, q}^{x}\right)
$$

- Given f, A, D^{x}, D^{y}, R, S one defines
- $\langle p, q\rangle$ is an edge-candidate if

$$
r_{p, q}=\max \left\{r_{p, q}, r_{\langle p, q\rangle \pm \delta_{p, q}(\phi)}\right\}
$$

- $\langle p, q\rangle$ is a level- λ edge vertex (for $\lambda \in[0,1]$) if

$$
r_{p, q}=\max \left\{r_{p, q}, r_{\langle p, q\rangle \pm \delta_{p, q}(\phi)}\right\} \quad \text { and } \quad r_{p, q} \geq \lambda \cdot \max _{p^{\prime}, q^{\prime}} r_{p^{\prime}, q^{\prime}}
$$

$$
\left(\text { or } r_{p, q} \geq \lambda \cdot \text { aver }_{p^{\prime}, q^{\prime}} r_{p^{\prime}, q^{\prime}}\right)
$$

- Two-level method with $0<\lambda_{\text {low }}<\lambda_{\text {high }} \leq 1$:
- $\langle p, q\rangle$ is a strong edge vertex if it is a level- $\lambda_{\text {high }}$ edge vertex
- $\langle p, q\rangle$ is a weak edge vertex if it is a level- $\lambda_{\text {low }}$ edge vertex, but not a strong one
- Weak edge vertices are iteratively turned into strong edge vertices
if they are neighbors of strong edge vertices
- For a 1D wavelet function $\psi(x)$ let

$$
\psi(x, y)=\psi(x) \psi(y)
$$

be the 2D separable wavelet function constructed from it

- The 2D CWT of a function $f(x, y)$ is defined as

$$
f^{\Psi}(a, b, s)=\frac{1}{s} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Psi\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y
$$

- As in the 1D case, let $\psi(x)=\frac{d}{d x} \theta(x)$ be the derivative of a "smoothing function" $\theta(x)$
- The 2D separable smoothing function constructef from $\theta(x)$ is

$$
\Theta(x, y)=\theta(x) \theta(y)
$$

- The 2D partial wavelet functions are

$$
\begin{aligned}
& \psi^{x}(x, y)=\psi(x) \theta(y)=\partial_{x} \Theta(x, y) \\
& \psi^{y}(x, y)=\theta(x) \psi(y)=\partial_{y} \Theta(x, y)
\end{aligned}
$$

- The 2D partial continuous wavelet transform (CWT) is defined as

$$
\begin{aligned}
& f^{\psi^{x}}(a, b, s)=\frac{1}{s} \iint f(x, y) \psi^{x}\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y \\
& f^{\psi^{y}}(a, b, s)=\frac{1}{s} \iint f(x, y) \psi^{y}\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y
\end{aligned}
$$

- Defining a smoothed version of f using an s-scaling of Θ

$$
f^{\Theta}(a, b, s)=\iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Theta\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y
$$

one has

$$
\left[\begin{array}{c}
-f^{\Psi^{\times}}(a, b, s) \\
\left.-f^{\Psi^{y}}(a, b, s)\right)
\end{array}\right]=\left[\begin{array}{l}
\partial_{a} f^{\Theta}(a, b, s) \\
\partial_{b} f^{\Theta}(a, b, s)
\end{array}\right]=\nabla f^{\Theta}(a, b, s)
$$

- This shows how to to compute gradient values of f^{Θ} using the 2D CWT
- Assume that 1D scaling, wavelet functions are described by

$$
\phi(x)=\sqrt{2} \sum_{k} h_{k} \phi(2 x-k) \quad \psi(x)=\sqrt{2} \sum_{k} g_{k} \phi(2 x-k)
$$

- and that the smoothing function $\theta(x)$ also satisfies a scaling identity

$$
\theta(x / 2)=\sqrt{2} \sum_{\ell} r_{\ell} \theta(x-\ell / 2)
$$

- A scaling function $\Phi^{x}(x, y)$ for the wavelet function $\Psi^{x}(x, y)=\psi(x) \theta(y)$ can be defined as

$$
\Phi^{x}(x, y)=\phi(x) \theta(y / 2)
$$

which then satisfies a 2D scaling identity

$$
\Phi^{x}(x, y)=2 \sum_{k, \ell} h_{k} r_{\ell} \Phi^{x}(2 x-k, 2 y-\ell)
$$

- The 2D wavelet identity for $\Psi^{x}(x, y)$ is simply
$\Psi^{x}(x, y)=\sqrt{2} \sum_{k} g_{k} \Phi^{x}(2 x-k, 2 y)=2 \sum_{k, \ell} g_{k} \epsilon_{\ell} \Phi^{x}(2 x-k, 2 y-\ell)$
with $\epsilon_{\ell}=\frac{1}{\sqrt{2}} \delta_{\ell, 0}$. Similarly for $\Phi^{y}(x, y)$ and $\Psi^{y}(x, y)$
- Example: The HAAR wavelet function $\psi_{\text {har }}(t)$ is the derivative of the smoothing function $\theta(t)=\Delta(t)$:

$$
\psi_{\text {haar }}(t)=\frac{d}{d t} \Delta(t) \text { where } \Delta(t)= \begin{cases}t & 0 \leq t \leq 1 / 2 \\ 1-t & 1 / 2 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- The function $\Delta(t)$ satisfies

$$
\Delta(x)+2 \Delta(x-1 / 2)+\Delta(x-1)=2 \Delta(x / 2)
$$

- which can be written as a scaling equation

$$
\Delta(x)=\frac{1}{2}(\Delta(2 x)+2 \Delta(2 x-1)+\Delta(2 x-2))
$$

- so that

$$
\boldsymbol{r}=\frac{1}{2 \sqrt{2}}\langle 1,2,1\rangle
$$

is a B-spline filter

- Approximation and detail coefficients are defined as usual

$$
\begin{aligned}
& a_{m ; k, \ell}^{x}=\left\langle f \mid \Phi_{2^{m}, k, \ell}^{x}\right\rangle=\iint f(x, y) \frac{1}{2^{m}} \Phi^{x}\left(\frac{x-k}{2^{m}}, \frac{y-\ell}{2^{m}}\right) d x d y \\
& d_{m ; k, \ell}^{x}=\left\langle f \mid \Psi_{2^{m}, k, \ell}^{x}\right\rangle=\iint f(x, y) \frac{1}{2^{m}} \Psi^{x}\left(\frac{x-k}{2^{m}}, \frac{y-\ell}{2^{m}}\right) d x d y
\end{aligned}
$$

and analogously for $a_{m ; k, \ell}^{y}$ and $d_{m ; k, \ell}^{y}$

- Recursion formulas for the approximation coefficients

$$
\begin{aligned}
a_{m+1 ; p, q}^{x} & =\sum_{k, \ell} h_{k} r_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{x} \\
a_{m+1 ; p, q}^{y} & =\sum_{k, \ell} r_{k} h_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{y}
\end{aligned}
$$

- Formulas for the detail coefficients

$$
\begin{aligned}
& d_{m+1 ; p, q}^{x}=\sum_{k, \ell} g_{k} \epsilon_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{x}=\frac{1}{\sqrt{2}} \sum_{k} g_{k} a_{m ; p+k 2^{m}, q}^{x} \\
& d_{m+1 ; p, q}^{y}=\sum_{k, \ell} \epsilon_{k} g_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{y}=\frac{1}{\sqrt{2}} \sum_{k} g_{\ell} a_{m ; p, q+\ell 2^{m}}^{y}
\end{aligned}
$$

- Computational scheme (à trous algorithm)

$$
\begin{array}{ll}
A_{m}^{x}=\left[f^{\Phi^{\times}}\left(2^{m} ; p, q\right)\right]_{p, q} & A_{m}^{y}=\left[f^{\Phi^{y}}\left(2^{m} ; p, q\right)\right]_{p, q} \\
D_{m}^{x}=\left[f^{\psi^{\times}}\left(2^{m} ; p, q\right)\right]_{p, q} & D_{m}^{y}=\left[f^{\psi^{y}}\left(2^{m} ; p, q\right)\right]_{p, q}
\end{array}
$$

where $A_{0}=A_{0}^{x}=A_{0}^{y}=[f(p, q)]_{p, q}$

