Constructing biorthogonal filter pairs

WTBV

January 24, 2018

Bspline filters of odd length $N+1=2 \ell+1$

- Frequency representation

$$
H(\omega)=\sqrt{2} \cos ^{N}(\omega / 2)
$$

- Filter coefficients

$$
\begin{aligned}
\boldsymbol{h} & =\left(h_{-\ell}, h_{-\ell+1}, \ldots, h_{\ell}\right) \\
& =\frac{\sqrt{2}}{2^{N}}\left(\binom{N}{0},\binom{N}{1}, \ldots,\binom{N}{N}\right)
\end{aligned}
$$

- This is a symmetric low-pass filter

$$
H(0)=\sqrt{2}, H(\pi)=H^{\prime}(\pi)=\ldots=H^{(N-1)}(\pi)=0
$$

- Daubechies polynomials

$$
P_{M}(z)=\sum_{m=0}^{M}\binom{M+m}{m} z^{m}
$$

- The "Bézout property" of the Daubechies polynomials

$$
(1-z)^{M+1} P_{M}(z)+z^{M+1} P_{M}(1-z)=1
$$

Biorthogonal partners of the Bspline filters

- \boldsymbol{h} : Bspline filter of odd length $N+1=2 \ell+1$, as before, with

$$
H(\omega)=\sqrt{2} \cos ^{N}(\omega / 2)
$$

- $\tilde{N}+1=2 \tilde{\ell}+1$, so that $2 \tilde{N}+N-1$ is odd
- $\tilde{\boldsymbol{h}}$: a filter defined by its frequency representation

$$
\tilde{H}(\omega)=\sqrt{2} \cos ^{\tilde{N}}(\omega / 2) \cdot P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
$$

- Filter coefficients

$$
\tilde{\boldsymbol{h}}=\left(h_{-2 \tilde{\ell}-\ell+1}, h_{-2 \tilde{\ell}-\ell+2}, \ldots, h_{2 \tilde{\ell}+\ell-1}\right)
$$

- The filter $\tilde{\boldsymbol{h}}$
- has length $\tilde{N}+2(\ell+\tilde{\ell}-1)+1=2 \tilde{N}+N-1$
- is symmetric
- is orthogonal to \boldsymbol{h}
- But is it a good low-pass filter?
- Orthogonality of (h, $\boldsymbol{h})$, i.e.

$$
\tilde{H}(\omega) \overline{H(\omega)}+\tilde{H}(\omega+\pi) \overline{H(\omega+\pi)}=2
$$

follows from

$$
H(\omega) \tilde{H}(\omega)=2 \cos ^{N+\tilde{N}}(\omega / 2) P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
$$

by making use of properties of the Daubechies polynomials, in particular the "Bézout property" mentioned before

- Notabene: a similar argument can be made to construct orthogonal pairs of symmetric filters of even length
- Notation: $K_{M, N}$ is the bi-orthogonal partner filter $\tilde{\boldsymbol{h}}$ of length $2 M+N-1$ of a Bspline filter \boldsymbol{h} of length $N+1$

Figure: Frequency representations of the Bspline filters of length 2,3,4,8

Figure: Bspline filter partners $K_{1,1}, K_{3,1}, K_{5,1}, K_{7,1}$

Figure: Bspline filter partners $K_{2,2}, K_{2,4}, K_{2,6}, K_{2,8}$

Figure: Bspline filter partners $K_{1,3}, K_{3,3}, K_{5,3}, K_{7,3}$

Figure: Bspline filter partners $K_{4,2}, K_{4,4}, K_{4,6}, K_{4,8}$

Figure: $(7,9)$ Bspline filter pair

A better idea (Cohen-Daubechies-Feauvau)

- The properties of the product

$$
\begin{aligned}
H(\omega) \cdot \tilde{H}(\omega) & =\sqrt{2} \cos ^{2 \ell}(\omega / 2) \cdot \sqrt{2} \cos ^{2 \tilde{\ell}}(\omega / 2) \cdot P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right) \\
& =2 \cos ^{2(\ell+\tilde{\ell})}(\omega / 2) \cdot P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
\end{aligned}
$$

are instrumental in proving orthogonality

- Thus any factorization of

$$
2 \cos ^{2(\ell+\tilde{\ell})}(\omega / 2) \cdot P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
$$

into two factors

$$
\underbrace{\sqrt{2} \cos ^{2 \ell}(\omega / 2) \cdot p(\cos (\omega))}_{H(\omega)} \cdot \underbrace{\sqrt{2} \cos ^{2 \tilde{\ell}}(\omega / 2) \cdot \tilde{p}(\cos (\omega))}_{\tilde{H}(\omega)}
$$

with polynomials p, \tilde{p} s.th.

$$
p(\cos (\omega)) \cdot \tilde{p}(\cos (\omega))=P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
$$

would give a pair of biorthogonal filters

- The factorization considered so far is too unbalanced

Constructing the Cohen-Daubechies-Feauveau-7/9 filter pair

- Start with the Daubechies polynomial

$$
P_{3}(z)=\binom{3}{0}+\binom{4}{1} z+\binom{5}{2} z^{2}+\binom{6}{3} z^{3}=1+4 z+10 z^{2}+20 z^{3}
$$

- The 3 complex roots of this polynomial can be determined exactly

$$
\begin{aligned}
& z_{1}=\frac{1}{6}\left(-1-\frac{7^{2 / 3}}{\sqrt[3]{5(3 \sqrt{15}-10)}}+\frac{\sqrt[3]{7(3 \sqrt{15}-10)}}{5^{2 / 3}}\right) \\
& z_{2}=-\frac{1}{6}+\frac{7^{2 / 3}(1+i \sqrt{3})}{12 \sqrt[3]{5(3 \sqrt{15}-10)}}-\frac{(1-i \sqrt{3}) \sqrt[3]{7(3 \sqrt{15}-10)}}{125^{2 / 3}} \\
& z_{3}=-\frac{1}{6}+\frac{7^{2 / 3}(1-i \sqrt{3})}{12 \sqrt[3]{5(3 \sqrt{15}-10)}}-\frac{(1+i \sqrt{3}) \sqrt[3]{7(3 \sqrt{15}-10)}}{125^{2 / 3}}
\end{aligned}
$$

- It suffices to take approximate values

$$
\begin{aligned}
& z_{1} \approx-0.342384 \\
& z_{2} \approx-0.078808+0.373931 i \\
& z_{3} \approx-0.078808-0.373931 i
\end{aligned}
$$

- The polynomial $P_{3}(z)$ factors into two polynomials

$$
\begin{aligned}
& p(z)=a \cdot\left(z-z_{1}\right) \\
& \widetilde{p}(z)=\frac{1}{a} \cdot\left(z-z_{2}\right)\left(z-z_{3}\right)
\end{aligned}
$$

where the constant a has to be determined

- In terms of approximate values

$$
\begin{aligned}
p(z) & \approx a \cdot(z+0.342384) \\
\widetilde{p}(z) & \approx \frac{1}{a}(z+0.078808-0.373931 i)(z+0.078808+0.373931 i) \\
& \approx \frac{1}{a}\left(2.9207+3.15232 z+20 z^{2}\right)
\end{aligned}
$$

- The two filters $\boldsymbol{h}=\left(h_{j}\right)_{j=-3.3}$ and $\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{j}\right)_{j=-4 . .4}$ are defined through their frequency representations (note that $K=4, \ell=\widetilde{\ell}=2$)

$$
\begin{aligned}
H(\omega) & =\sqrt{2} \cos (\omega / 2)^{4} p\left(\sin (\omega / 2)^{2}\right) \\
& =a \cdot \sqrt{2} \cos (\omega / 2)^{4}\left(0.342384+\sin (\omega / 2)^{2}\right) \\
\widetilde{H}(\omega) & =\sqrt{2} \cos (\omega / 2)^{4} \widetilde{p}\left(\sin (\omega / 2)^{2}\right) \\
& =\frac{1}{a} \cos (\omega / 2)^{4}\left(4.13049+4.45805 \sin (\omega / 2)^{2}+20 \sqrt{2} \sin (\omega / 2)^{4}\right)
\end{aligned}
$$

- Now the value of a can be fixed by requiring $H(0)=\sqrt{2}$ (and also $\widetilde{H}(0)=\sqrt{2})$, which gives

$$
a=2.9207
$$

- so that

$$
\begin{aligned}
& H(\omega)=4.13049 \cos (\omega / 2)^{4}\left(0.342384+\sin (\omega / 2)^{2}\right) \\
& \widetilde{H}(\omega)=\cos (\omega / 2)^{4}\left(1.41421+1.52637 \sin (\omega / 2)^{2}+9.68408 \sin (\omega / 2)^{4}\right)
\end{aligned}
$$

- Converting the sin- and cos-expressions into exponentials then gives the filter coefficients

$\left(\widetilde{h}_{j}\right)_{j=-4 . .4}=\left[\begin{array}{r}0.0378284555 \\ -0.0238494650 \\ -0.1106244044 \\ 0.3774028555 \\ 0.8526986788 \\ 0.3774028555 \\ -0.1106244044 \\ -0.0238494650 \\ 0.0378284555\end{array}\right]$
- Low-pass properties: from the definition it is clear that both filters $\boldsymbol{h}=\left(h_{j}\right)_{j=-3.3}$ and $\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{j}\right)_{j=-4.4}$ have 4 vanishing moments, i.e., they have very good smoothness properties for reconstruction

Figure: Frequency picture of the Cohen-Daubechies-Feauveau-(7,9) filter pair

Figure: Scaling and wavelet functions for the CDF-7 filter

Figure: Scaling and wavelet functions for the CDF-9 filter

