Parallel Beam Reconstruction

WS 2017/18 A. Maier, J. Maier, B. Bier, A. Preuhs, C. Syben Pattern Recognition Lab (CS 5) Friedrich-Alexander University Erlangen-Nuremberg

TECHNISCHE FAKULTÄI

Topics

Tomography

Projection

Image Reconstruction

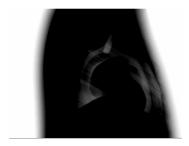
Important Methods

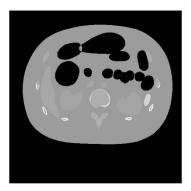
Central Slice Theorem

Filtered Backprojection

Basic Principles of Tomography

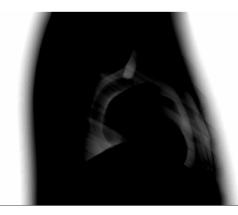
• $\pi \mathbf{O} \mu \mathbf{O} \sigma$ = tomos = slice





Basic Principles of Tomography (2)

• Idea: Observe object of interest from multiple sides



Topics

Tomography

Projection

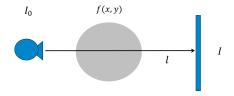
Image Reconstruction

Important Methods

Central Slice Theorem

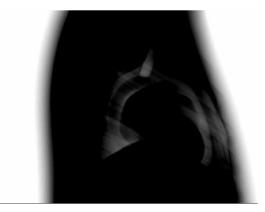
Filtered Backprojection

Projection – Physical Observations



- X-ray Attenuation: $I = I_0 e^{-(\int f(x,y)dI)}$
 - *I*₀: initial X-ray beam intensity
 - f(x, y): absorption coefficient of material at position (x, y). (x, y) lies on beam line l

Projection – Physical Observations (2)

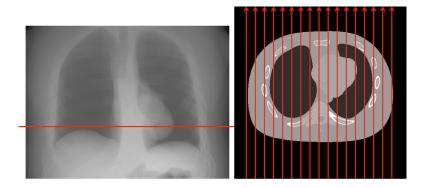


Observed Signal

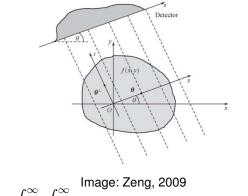
Projection – Physical Observations (4)

Line Integral Data

Projection Formation



Projection – Mathematical Formulation



$$p(s,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$

Topics

Tomography

Projection

Image Reconstruction

Important Methods

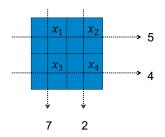
Central Slice Theorem

Filtered Backprojection

WS 2017/18 | FCR | Flat-Panel CT Reconstruction

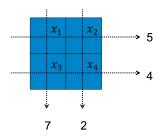
Reconstruction – Simple Example

• Solve the puzzle



Reconstruction – Simple Example

• Solve the puzzle



 $x_1 + x_3 = 7$ $x_2 + x_4 = 2$

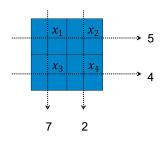
$$\lambda_2 + \lambda_4 - 2$$

$$x_1 + x_2 = 5$$

$$x_3 + x_4 = 4$$

Reconstruction – Simple Example

• Solve the puzzle



 $x_1 + x_3 = 7$ $x_2 + x_4 = 2$

$$x_1 + x_2 = 5$$

$$x_3 + x_4 = 4$$

$$x_1 = 3$$

 $x_2 = 2$

 $x_4 = 0$

Reconstruction – Simple Example (2)

• Projection can be formulated in matrix notation

$$\boldsymbol{P} = \boldsymbol{A}\boldsymbol{X}$$

$$\boldsymbol{P} = \begin{pmatrix} 7\\2\\5\\4 \end{pmatrix}, \qquad \boldsymbol{A} = \begin{pmatrix} 1 & 0 & 1 & 0\\0 & 1 & 0 & 1\\1 & 1 & 0 & 0\\0 & 0 & 1 & 1 \end{pmatrix}, \qquad \boldsymbol{X} = \begin{pmatrix} x_1\\x_2\\x_3\\x_4 \end{pmatrix}$$

Reconstruction – Simple Example (2)

• Solve with matrix inverse?

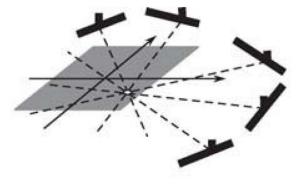
$$A^{-1}P = X$$

• Common problem size:

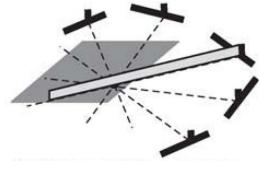
$$oldsymbol{A} \in \mathbb{R}^{512^3 imes 512^2 imes 512}$$

 $512^6 \cdot 4 \; ext{Byte} = 2^{9 \cdot 6} \cdot 2^2 \; ext{B} = 2^6 \cdot 2^{50} \; ext{B}$
 $= 64 \; ext{PB} = 65536 \; ext{TB}$

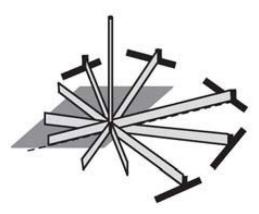
Reconstruction – Example Projection



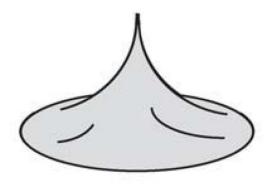
Reconstruction – Example Backprojection



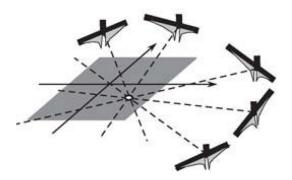
Reconstruction – Example Backprojection (2)



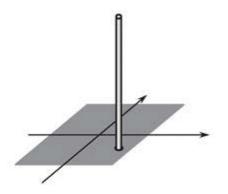
Reconstruction – Example Backprojection (3)



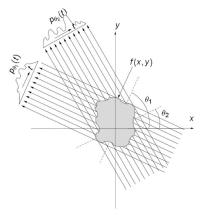
Reconstruction – Example "Negative Wings"



Reconstruction – Example Reconstruction



Parallel Beam Geometry



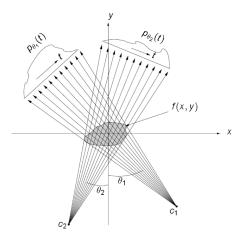
Parallel Beam Geometry

- Acquisition took 5 Minutes
- Reconstruction took 30 Minutes
- Slice resolution was 80 x 80 pixels

First CT Scanner: EMI (1971)

Image: Wikipedia

Fan Beam Geometry



Fan Beam Geometry

- Fan beam Scanners became available in 1975 (20s / slice)
- Fast rotations became possible 1987 with slip rings (300ms / slice)

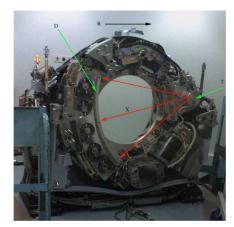
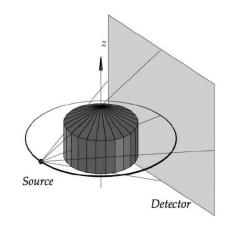


Image: Wikipedia

Cone Beam Geometry



Cone Beam Geometry

Image: Siemens Artis Zeego

- Circular cone-beam data acquisition
- The first multi-axis system offering unmatched flexibility

Topics

Tomography

Projection

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

WS 2017/18 | FCR | Flat-Panel CT Reconstruction

Fourier Transform

• 1D Fourier transform:

$$extsf{P}(\omega) = \int_{-\infty}^{\infty} extsf{p}(s) e^{-2\pi i s \omega} extsf{d}s$$

• 1D inverse Fourier transform:

$$p(s) = \int_{-\infty}^{\infty} P(\omega) e^{2\pi i s \omega} \mathsf{d} \omega$$

Convolution

• Convolution:

$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

• Convolution theorem:

$$q(s) = f(s) * g(s)$$

$$oldsymbol{Q}(\omega) \;\;=\;\; oldsymbol{F}(\omega) \cdot oldsymbol{G}(\omega)$$

Topics

Tomography

Projection

Image Reconstruction

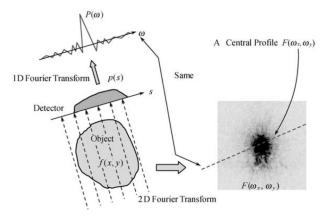
Important Methods

Central Slice Theorem

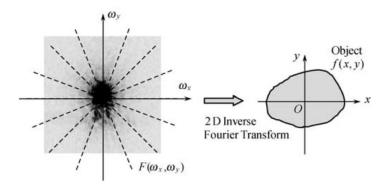
Filtered Backprojection

WS 2017/18 | FCR | Flat-Panel CT Reconstruction

Central Slice Theorem



Idea for Reconstruction



Topics

Tomography

Projection

Image Reconstruction

Important Methods

Central Slice Theorem

Filtered Backprojection

Filtered Backprojection

• Fourier transform in polar coordinates:

$$f(x,y) = \int_0^{2\pi} \int_0^{\infty} F_{\text{polar}}(\omega,\theta) e^{2\pi i \omega (x \cos \theta + y \sin \theta)} \omega d\omega d\theta$$

• Multiplication with $H(\omega) = |\omega|$ in Fourier domain

Convolution with h(s) in image domain

Filtered Backprojection – Practical Algorithm

• Apply Filter on the detector row:

$$q(s, \theta) = h(s) * p(s, \theta)$$

• Backproject
$$q(s, \theta)$$
:

$$f(x,y) = \int_0^{\pi} q(s,\theta)|_{s=x\cos\theta+y\sin\theta} \mathrm{d} heta$$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

$$h(s) = \int_{-rac{1}{2}}^{rac{1}{2}} |\omega| e^{2\pi i \omega s} \mathrm{d}\omega$$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

$$h(s) = \int_{-rac{1}{2}}^{rac{1}{2}} |\omega| e^{2\pi i \omega s} \mathrm{d}\omega$$

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let s = n (integer)

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even} \\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let s = n (integer)

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even}\\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

 Also known as the "Ramachandran-Lakshminarayanan" convolver or "Ram-Lak" convolver

WS 2017/18 | FCR | Flat-Panel CT Reconstruction

Discrete Spatial vs. Continuous Frequency Version

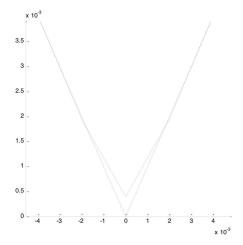
• Continuous frequency representation of the ramp filter:

$$H(\omega) = |\omega|$$

• Discrete spatial form:

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even}\\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

Discrete Spatial vs. Continuous Frequency Version (2)



Example: Homogeneous Cylinder after Filter

