Project Flat-Panel CT Reconstruction Fan Beam Reconstruction

WiSe 2017/2018 Andreas Maier, Jennifer Maier, Bastian Bier, Christopher Syben, Alexander Preuhs Pattern Recognition Lab (CS 5)

Topics

Fan Beam Geometry

Parallel Beam to Fan Beam Conversion

Short Scan

Parallel Beam Geometry

- Earliest Acquisition Geometry
- Principle: Rotate & Translate

Parallel Beam Geometry – Sinogram

Parallel Beam Geometry – Historical Remarks

- Acquisition took 5 Minutes
- Reconstruction took 30 Minutes
- Slice resolution was 80 x 80 pixels

First CT Scanner: EMI (1971)

Image: Wikipedia

Fan Beam Geometry

Fan Beam Geometry – Historical Remarks

- Fan beam Scanners became available in 1975 (20s / slice)
- Fast rotations became possible 1987 with slip rings (300ms / slice)

Image: Wikipedia

Fan Beam vs Parallel Beam

Topics

Fan Beam Geometry

Parallel Beam to Fan Beam Conversion

Short Scan

Reconstruction Algorithm for Fan Beam?

- Parallel beam algorithms cannot be applied directly anymore
- We do not have a central slice theorem anymore
- It can be shown that the full circle PSF is equivalent to the parallel beam PSF

Image: Zeng, 2009

Backprojection and Fourier Slice Theorem

Backprojection and Fourier Slice Theorem

Parallel Beam to Fan Beam Conversion

• Idea: Find equal rays in both geometries:

$$\theta = \gamma + \beta$$

$$s = D \sin \gamma$$

Then set

$$p(s, \theta) = g(\gamma, \beta)$$

 This process is called "Rebinning"

Parallel Beam to Fan Beam Conversion - Flat-Panel (1)

$$\tan \gamma = \frac{t}{D_{sd}}$$

Parallel Beam to Fan Beam Conversion - Flat-Panel (2)

Parallel Beam to Fan Beam Conversion - Flat-Panel (3)

Parallel Beam to Fan Beam Conversion - Practical Aspects

- Rebinning is a feasible solution
- Change of coordinate systems requires interpolation which may introduce inaccuracies
- Hence, rebinning may not be the method of choice

 \Rightarrow Derive reconstruction method for fan beam data by conversion of the reconstruction algorithm

Parallel Beam to Fan Beam Conversion - Principle

Equally-spaced and Equiangular Detectors

Image: Zeng, 2009

- Sampling is different in both geometries.
- Hence, different reconstruction formulas are obtained.

FBP for the Equiangular Case (1)

1. We start with a parallel beam backprojection:

$$f(x,y) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} p(s,\theta) h(x\cos\theta + y\sin\theta - s) \mathrm{d}s \mathrm{d}\theta$$

FBP for the Equiangular Case (2)

2. Perform cosine weighting:

$$g_1(\gamma,eta)=g(\gamma,eta)\cos\gamma$$

3. Apply fan beam filter:

$$g_{2}(\gamma,\beta) = g_{1}(\gamma,\beta) * h_{\text{fan}}(\gamma)$$
$$h_{\text{fan}}(\gamma) = \frac{D}{2} \left(\frac{\gamma}{\sin\gamma}\right)^{2} h(\gamma)$$

4. Backproject with distance weight:

$$f(r, \varphi) = \int_0^{2\pi} \frac{1}{D'^2} g_2(\gamma', \beta) \mathrm{d}\beta$$

Example

Figure: Reconstruction from fan-beam data.

FBP for the Equally-spaced Case

- Here we start with a parallel beam backprojection using polar coordinates (r, φ),
 - where $x = r \cos \varphi$, $y = r \sin \varphi$,
 - and $x \cos \theta + y \sin \theta = r \cos(\theta \varphi)$.
- Derive reconstruction algorithm then from

$$f(r,\varphi) = \frac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} p(s,\theta) h(r\cos(\theta-\varphi)-s) \mathrm{d}s \mathrm{d}\theta$$

Parallel Beam to Fan Beam Conversion - Principle

Topics

Fan Beam Geometry

Parallel Beam to Fan Beam Conversion

Short Scan

Full Scan vs Half Scan

3-28

Identical rays:

$$\gamma_1 = -\gamma_2$$

$$\beta_2 = \beta_1 + 2\gamma_1 + \pi$$

Identical rays:

$$\gamma_1 = -\gamma_2$$

$$\beta_2 = \beta_1 + 2\gamma_1 + \pi$$

Upper triangle:

$$\pi + 2\gamma_1 \leq \beta_1 \leq \pi + 2\delta$$

Identical rays:

$$\gamma_1 = -\gamma_2$$

$$\beta_2 = \beta_1 + 2\gamma_1 + \pi$$

Upper triangle:

 $\pi + 2\gamma_1 \leq \beta_1 \leq \pi + 2\delta$

Lower triangle:

 $0 \le \beta_2 \le 2\gamma_2 + 2\delta$

Parker Weighting

Figure: Parker Weights for a short scan trajectory.

FBP for the Equiangular Case and Parker Weight

• Perform Parker weighting with $w_p(t, \beta)$:

$$g_1(\gamma,\beta) = g(\gamma,\beta) w_p(\gamma,\beta)$$

• Perform cosine weighting:

$$g_2(\gamma,\beta) = g_1(\gamma,\beta) \cos \gamma$$

• Apply fan beam filter:

$$g_{3}(\gamma,\beta) = g_{2}(\gamma,\beta) * h_{\text{fan}}(\gamma)$$
$$h_{\text{fan}}(\gamma) = \frac{D}{2} \left(\frac{\gamma}{\sin\gamma}\right)^{2} h(\gamma)$$

• Backproject with distance weight:

$$f(r, arphi) = \int_0^{2\pi} rac{1}{D'^2} g_3(\gamma', eta) \mathrm{d}eta$$

No Redundancy Weights – Example

No Redundancy Weights – Example

Distance (pixels)

Reminder - Rebinning Fan Beam with Flat-Panel Detector

Further Readings

- Gengsheng Lawrence "Larry" Zeng. "Medical Image Reconstruction – A Conceptual Tutorial". Springer 2009
- Ronald N. Bracewell. "The Fourier Transform and Its Applications". McGraw-Hill Publishing Company. 1999
- Dennis Parker. "Optimal short scan convolution reconstruction for fanbeam CT". Medical Physics. 9(2): 254-257. 1982
- Frederic Noo, Michel Defrise, Rolf Clackdoyle, Hiroyuki Kudo.
 "Image reconstruction from fan-beam projections on less than a short scan". Physics in Medicine and Biology 47: 2525-2546.
 2002

Questions?