## Coordinate Systems

Mapping from pixel to world coordinates
A. Maier, J. Maier, B. Bier, A. Preuhs, C. Syben

WS 2017/18
Pattern Recognition Lab (CS 5)
Friedrich-Alexander University Erlangen-Nuremberg


## Pixel coordinates



- Consider an X-ray image of arbitrary size


## Pixel coordinates



- Consider an X-ray image of arbitrary size
- ROIs drawn by Physician A and B


## Pixel coordinates



- Consider an X-ray image of arbitrary size
- ROIs drawn by Physician A and B


## Pixel coordinates



- Pixel coordinates are all different
- Yet, they refer to the exact same point!


## Image properties



- Origin $\mathbf{o} \in \mathbb{R}^{2}$
- Basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$

For the basis vectors it holds:

- $\mathbf{e}_{1}^{\top} \cdot \mathbf{e}_{2}=0$
- $\mathbf{e}_{1}^{\top} \cdot \mathbf{e}_{1}=s_{1}$ is the spacing in $\mathbf{e}_{1}$-direction
- $\mathbf{e}_{2}^{\top} \cdot \mathbf{e}_{2}=s_{2}$ is the spacing in $\mathbf{e}_{2}$-direction


## From image to world coordinates

Map pixel coordinates $\mathbf{p} \in \mathbb{N}^{2}$ to world coordinates $\mathrm{x} \in \mathbb{R}^{2}$

## Image to world

$$
\mathbf{x}=\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{o}\right) \cdot\binom{\mathbf{p}}{1}
$$

Often $\mathbf{e}_{1}=\binom{s_{1}}{0}, \mathbf{e}_{2}=\binom{0}{s_{2}}, \mathbf{o}=\binom{-\left(N_{1}-1.0\right) \frac{s_{1}}{2}}{-\left(N_{2}-1.0\right) \frac{s_{2}}{2}}$,
where $\mathbf{N} \in \mathbb{N}^{2}$ is the image dimension (number of pixels).

## From world to image coordinates

If $\mathbf{e}_{1}=\binom{s_{1}}{0}, \mathbf{e}_{2}=\binom{0}{s_{2}}$ the inversion is easy:

World to image

$$
\mathbf{p}=\left(\begin{array}{cc}
1 / s_{1} & 0 \\
0 & 1 / s_{2}
\end{array}\right) \cdot(\mathbf{x}-\mathbf{o})
$$

## Overview



## Warning Warning Warning Warning Warning

$80 \%$ of the "hard to find mistakes" in the end are due to ignoring the correct handling of the two coordinate systems.
In your own interest, please consider the following advice:

- Do not test with a spacing of 1.0 only
- Use the member functions of the class Grid2D to set the origin and spacing: setOrigin(...) and setSpacing(...)
- Once correctly set, use the member functions of the Grid2D to convert from the two coordinate systems into each other: indexToPhysical(...) and physicalToIndex(...)

