Coordinate Systems

Mapping from pixel to world coordinates

A. Maier, J. Maier, B. Bier, A. Preuhs, C. Syben
WS 2017/18
Pattern Recognition Lab (CS 5)
Friedrich-Alexander University Erlangen-Nuremberg

Pixel coordinates

• Consider an X-ray image of arbitrary size

Pixel coordinates

- Consider an X-ray image of arbitrary size
- ROIs drawn by Physician A and B

Pixel coordinates (900,600) (600,50)

- Consider an X-ray image of arbitrary size
- ROIs drawn by Physician A and B

- Pixel coordinates are all different
- Yet, they refer to the exact same point!

Image properties

- Origin $\mathbf{o} \in \mathbb{R}^2$
- Basis vectors $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$

For the basis vectors it holds:

•
$$\mathbf{e}_1^\top \cdot \mathbf{e}_2 = 0$$

- $\mathbf{e}_1^\top \cdot \mathbf{e}_1 = s_1$ is the spacing in \mathbf{e}_1 -direction
- $\mathbf{e}_2^\top \cdot \mathbf{e}_2 = s_2$ is the spacing in \mathbf{e}_2 -direction

From image to world coordinates

Map pixel coordinates $\mathbf{p} \in \mathbb{N}^2$ to world coordinates $\mathbf{x} \in \mathbb{R}^2$

Image to world
$$\mathbf{x} = (\mathbf{e_1} \ , \ \mathbf{e_2} \ , \ \mathbf{o}) \cdot \begin{pmatrix} \mathbf{p} \\ 1 \end{pmatrix}$$

Often
$$\mathbf{e}_1 = \begin{pmatrix} s_1 \\ 0 \end{pmatrix}$$
, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ s_2 \end{pmatrix}$, $\mathbf{o} = \begin{pmatrix} -(N_1 - 1.0)\frac{s_1}{2} \\ -(N_2 - 1.0)\frac{s_2}{2} \end{pmatrix}$,

where $\mathbf{N} \in \mathbb{N}^2$ is the image dimension (number of pixels).

From world to image coordinates

If
$$\mathbf{e}_1 = \begin{pmatrix} s_1 \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ s_2 \end{pmatrix}$$
 the inversion is easy:

World to image

$$\mathbf{p} = \begin{pmatrix} 1/s_1 & 0\\ 0 & 1/s_2 \end{pmatrix} \cdot (\mathbf{x} - \mathbf{o})$$

Overview

Warning Warning Warning Warning

80% of the "hard to find mistakes" in the end are due to ignoring the correct handling of the two coordinate systems.

In your own interest, please consider the following advice:

- Do not test with a spacing of 1.0 only
- Use the member functions of the class Grid2D to set the origin and spacing: **setOrigin**(...) and **setSpacing**(...)
- Once correctly set, use the member functions of the Grid2D to convert from the two coordinate systems into each other: indexToPhysical(...) and physicalToIndex(...)