Multiresolution Analysis (MRA)

WTBV

January 10, 2017

Multiresolution (MRA)

- Multiresolution scheme
- Examples
 - Haar-MRA
 - Shannon-MRA
 - Piecewise-linear MRA
- Properties of MRA's (I)
- Orthonormal systems of translates ۲
- Properties of MRA's (II) ۲
- Vanishing noments, smoothness, reconstruction properties

Multiresolutions analysis (MRA)

- was invented in 1988 by Stephane MALLAT in his Ph.D. thesis *Multiresolution and Wavelets* (University of Pennsylvania)
- is an elegant theoretical framework for the study of wavelets and wavelet transforms
- is considered to be <u>the</u> central concept which integrates the many facets of wavelet transforms

Definition

An MRA (*multiresolution analysis*) consists of a family $\{V_j\}_{j \in \mathbb{Z}}$ of subspaces of $\mathcal{L}^2(\mathbb{R})$ satisfying the following properties:

$$\texttt{I} \quad ``nesting'': \ V_j \subseteq V_{j+1} \ (j \in \mathbb{Z})$$

2 "density" :
$$\overline{span}\{V_j\}_{j\in\mathbb{Z}}=\mathcal{L}^2(\mathbb{R})$$

3 "separation":
$$\bigcap \{V_j\}_{j\in\mathbb{Z}} = \{0\}$$

$\begin{array}{l} \bullet \\ f(t) \in V_0 \\ \end{array} \Leftrightarrow \\ (D_{2^j}f)(t) = 2^{j/2}f(2^jt) \in V_j \\ \end{array} \qquad (f \in \mathcal{L}^2(\mathbb{R}), j \in \mathbb{Z})$

Solution is a function in the second se

$$\{ T_k \phi(t) \}_{k \in \mathbb{Z}} = \{ \phi(t-k) \}_{k \in \mathbb{Z}}$$

forms a complete ON-basis of $V_0 = \overline{span} \{ T_k \phi \}_{k \in \mathbb{Z}}$ (ONST)

- ONST-Example:
 - Consider the function $\phi(t) = \operatorname{sin}(t) = \frac{\sin(\pi t)}{\pi t}$
 - Are the integer translates $(T_k\phi)(t) = \phi(t-k)$ $(k \in \mathbb{Z})$ orthogonal to each other?
 - The answer is not obvious from looking at the graphs!
 - How to prove orthogonality?
 - Recipe: Go to the frequency domain! (using PP)

• Recall:
$$\widehat{\phi}(s) = b(s) = \mathbf{1}_{[-1/2, 1/2)}(s)$$
 (the box function)

$$\langle \phi | T_k \phi \rangle = \langle \widehat{\phi} | \widehat{T_k \phi} \rangle = \langle b(s) | e^{-2\pi i k s} b(s) \rangle$$
$$= \int_{-1/2}^{1/2} e^{-2\pi i k s} ds = \delta_{0,k}$$

• Reminder:

$$\phi(t) \text{ satisfies (ONST)} \iff \sum_{n \in \mathbb{Z}} |\widehat{\phi}(s+n)|^2 = \equiv 1$$

Proof: $\langle f \mid T_k f \rangle = \langle \widehat{f} \mid \widehat{T_k f} \rangle = \int_{\mathbb{R}} \widehat{f}(s) \overline{\widehat{f}(s)} e^{2\pi i k s} ds$
$$= \sum_{n \in \mathbb{Z}} \int_n^{n+1} \left| \widehat{f(s)} \right|^2 e^{2\pi i k s} ds$$
$$= \sum_{n \in \mathbb{Z}} \int_0^1 \left| \widehat{f}(s+n) \right|^2 e^{2\pi i k s} ds$$
$$= \int_0^1 \sum_{n \in \mathbb{Z}} \left| \widehat{f}(s+n) \right|^2 e^{2\pi i k s} ds$$

Hence in terms of Fourier series

$$\sum_{k\in\mathbb{Z}}\langle f \mid T_k f \rangle e^{-2\pi i k s} = \sum_{n\in\mathbb{Z}} \left| \widehat{f}(s+n) \right|^2$$

Multiresolution Analysis (MRA)

Consequences

• The vector spaces $(V_j)_{j \in \mathbb{Z}}$ are ordered by inclusion

 $\{0\} \swarrow \cdots \subseteq V_{-2} \subseteq V_{-1} \subseteq V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \nearrow \mathcal{L}^2(\mathbb{R})$

② For each j ∈ Z family of dilated and translated functions { φ_{j,k}(t) }_{k∈Z}, defined by

$$\phi_{j,k}(t) = 2^{j/2}\phi(2^{j}t - k) = (D_{2^{j}} T_{k} \phi)(t),$$

forms a complete ON-Basis (Hilbert basis) of the approximation space

$$V_j = \overline{span} \{ \phi_{j,k} \}_{k \in \mathbb{Z}} \quad (j \in \mathbb{Z})$$

Solution From V₀ ⊆ V₁ it follows that there exists a (unique) ℓ²-sequence h = (h_k)_{k∈Z} of complex numbers s.th.

(S)
$$\phi(t) = \sum_{k \in \mathbb{Z}} h_k \phi_{1,k}(t)$$

This identity is the *scaling identity* of the MRA, the sequence $\mathbf{h} = (h_k)_{k \in \mathbb{Z}}$ is the *scaling filter* of the MRA

WTBV

Remarks

Properties involving V_0 and $\phi(t)$ carry over to all scaling levels by using dilation, e.g.,

$$egin{aligned} V_0
i f(t) &= \sum_{k \in \mathbb{Z}} f_k \cdot (T_k \, \phi)(t) & \Longleftrightarrow \ V_j
i (D_{2^j} f)(t) &= \sum_{k \in \mathbb{Z}} f_k \cdot (D_{2^j} \, T_k \, \phi)(t) \end{aligned}$$

so each V_j is a dilated copy of V_0 ,

• and thus orthonormality is preserved

$$\langle \phi_{j,k} | \phi_{j,\ell} \rangle = 2^j \int_{\mathbb{R}} \phi(2^j t - k) \overline{\phi(2^j t - \ell)} \, dt$$

=
$$\int_{\mathbb{R}} \phi(t - k) \overline{\phi(t - \ell)} \, dt = \langle \phi_{0,k} | \phi_{0,\ell} \rangle = \delta_{k,\ell}$$

• From the scaling identity (S) and orthogonality one gets immediately

$$h_{k} = \langle \phi | \phi_{1,k} \rangle = \sqrt{2} \int_{\mathbb{R}} \phi(t) \,\overline{\phi(2t-k)} \, dt$$

• and for all $j, \ell \in \mathbb{Z}$

$$egin{aligned} \phi_{j,\ell}(t) &= 2^{j/2} \phi(2^j t - \ell) \ &= 2^{j/2} \sum_{k \in \mathbb{Z}} h_k \, \phi_{1,k}(2^j t - \ell) \ &= 2^{(j+1)/2} \sum_{k \in \mathbb{Z}} h_k \, \phi(2^{j+1} - 2\ell - k) \ &= \sum_{k \in \mathbb{Z}} h_k \, \phi_{j+1,2\ell+k}(t) = \sum_{k \in \mathbb{Z}} h_{k-2\ell} \, \phi_{j+1,k}(t) \end{aligned}$$

• so that the scaling coefficients $a_{j,\ell} = \langle f \, | \, \phi_{j,\ell} \, \rangle$ of $f \in \mathcal{L}^2$ satisfy

$$\mathsf{a}_{j,\ell} = \langle \, f \, | \, \phi_{j,\ell} \,
angle = \sum_{k \in \mathbb{Z}} h_{k-2\ell} \, \langle \, f \, | \, \phi_{j+1,k}(t) \,
angle = \sum_{k \in \mathbb{Z}} h_{k-2\ell} \, \mathsf{a}_{j+1,k}$$

• The wavelet function $\psi(t)$ of a MRA is defined in terms of the scaling function $\phi(t)$ as

$$(W)$$
 $\psi(t) = \sum_{k \in \mathbb{Z}} g_k \, \phi_{1,k}(t)$ where $g_k = (-1)^k \, \overline{h_{1-k}}$

• The sequence $oldsymbol{g} = (g_k)_{k \in \mathbb{Z}}$ is the *wavelet filter* belonging to the MRA

- The wavelet functions $\psi_{j,\ell}$ $(j,\ell\in\mathbb{Z}$ are defined as usual
- The wavelet coefficients $d_{j,\ell} = \langle f \, | \, \psi_{j,\ell} \,
 angle$ of $f \in \mathcal{L}^2$ satisfy

$$d_{j,\ell} = \langle f \, | \, \psi_{j,\ell} \,
angle = \sum_{k \in \mathbb{Z}} g_{k-2\ell} \, \langle \, f \, | \, \phi_{j+1,k}(t) \,
angle = \sum_{k \in \mathbb{Z}} g_{k-2\ell} \, a_{j+1,k}$$

• The Discrete Wavelet Transform (DWT) based on the functions $\phi(t)$ and $\psi(t)$ uses these scaling and wavelet identities

$$\mathsf{a}_{j,\ell} = \sum_{k \in \mathbb{Z}} \mathsf{h}_{k-2\ell} \, \mathsf{a}_{j+1,k} \qquad \qquad \mathsf{d}_{j,\ell} = \sum_{k \in \mathbb{Z}} \mathsf{g}_{k-2\ell} \, \mathsf{a}_{j+1,k}$$

Theorem

● For each $j \in \mathbb{Z}$ the family of wavelet functions $\{\psi_{j,k}\}_{k \in \mathbb{Z}}$ with

$$\psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k) = (D_{2^j} T_k \psi)(t)$$

is a complete ON-Basis (Hilbert basis) of the wavelet (detail) space

$$W_j = \overline{span} \{ \psi_{j,k} \}_{k \in \mathbb{Z}}$$

2 For all $j \in \mathbb{Z}$ the space W_j is the orthogonal complement of V_j in V_{j+1} :

$$V_{j+1} = W_j \oplus V_j \qquad W_j \perp V_j$$

③ For every $J \in \mathbb{Z}$ one has the direct product decomposition

$$\mathcal{L}^2(\mathbb{R}) = V_J \oplus \bigoplus_{j \ge J} W_j$$

• The family $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ is a complete ON-basis (Hilbert basis) of $\mathcal{L}^2(\mathbb{R})$

$$\mathcal{L}^2(\mathbb{R}) = igoplus_{j \in \mathbb{Z}} W_j$$

- Remarks
 - **①** Functions in V_j and W_j have resolution level $\geq 2^{-j}$
 - Orthogonal projections on approximation and detail subspaces

$$\begin{array}{ll} \text{approximation} & P_j : \mathcal{L}^2(\mathbb{R}) \to V_j : f \mapsto \sum_{k \in \mathbb{Z}} \langle f \mid \phi_{j,k} \rangle \phi_{j,k} \\ \\ \text{detail} & Q_j : \mathcal{L}^2(\mathbb{R}) \to W_j : f \mapsto \sum_{k \in \mathbb{Z}} \langle f \mid \psi_{j,k} \rangle \psi_{j,k} \end{array}$$

where $Q_j = P_{j+1} - P_j$

Solution For all j > m one has the wavelet decomposition

$$V_{j+1} = V_m \oplus W_m \oplus W_{m+1} \oplus \cdots \oplus W_j$$

So The "density" and "separation" requirements for an MRA translate into

$$\lim_{j \to \infty} P_j f = f \text{ und } \lim_{j \to -\infty} P_j f = 0$$

w.r.t. $\mathcal{L}^2\text{-}\mathsf{convergence}$

Example (1): The HAAR-MRA

• The scaling function is

$$\phi(t) = \mathbf{1}_{[0,1)}(t)$$

• For $j \in \mathbb{Z}$ the approximation space

$$V_j = \overline{span} \{ \phi_{j,k}(t) \}_{k \in \mathbb{Z}} \subseteq \mathcal{L}^2(\mathbb{R})$$

consists of the \mathcal{L}^2 -step functions with step width 2^{-j}

- $\{\phi_{j,k}(t)\}_{k\in\mathbb{Z}}$ is obviously an ON-Basis of V_j
- Density (fact about approximation by step functions):

$$\lim_{j\to\infty}V_j=\mathcal{L}^2(\mathbb{R})$$

• Separation: an \mathcal{L}^2 -function $f \in \bigcap_{j \in \mathbb{Z}} V_j$ which is constant on arbitrarily long intervals must vanish identically on \mathbb{R}

• Scaling filter coefficients

$$h_0 = rac{1}{\sqrt{2}}, \ h_1 = rac{1}{\sqrt{2}}, \ h_k = 0 \ (k
eq 0, 1)$$

Scaling identity

$$\phi(t) = \frac{1}{\sqrt{2}} \left(\phi_{0,0}(t) + \phi_{0,1}(t) \right) = \phi(2t) + \phi(2t-1)$$

Wavelet filter coefficients

$$g_0 = rac{1}{\sqrt{2}}, \ g_1 = -rac{1}{\sqrt{2}}, \ g_k = 0 \ (k
eq 0, 1)$$

• Wavelet identity

$$\begin{split} \psi(t) &= \frac{1}{\sqrt{2}} \left(\phi_{0,0}(t) + \phi_{0,1}(t) \right) = \phi(2t) - \phi(2t-1) \\ &= \mathbf{1}_{[0,1/2)}(t) - \mathbf{1}_{[1/2,1)}(t) \end{split}$$

Fourier transforms

$$\widehat{\phi}(s) = e^{-i\pi s} ext{sinc}(s) \quad \widehat{\psi}(s) = i \cdot e^{-i\pi s} \sin(\pi s/2) \operatorname{sinc}(s/2)$$

• Examples (2)

The *Daubechies, Coiflet,* and many other orthogonal filters of similar type define MRAs with filters of finite length and scaling/wavelet functions with compact support

- The filters are (of course!) those constructed from orthogonality and low/highpass conditions
- The scaling functions $\phi(t)$ and the wavelet functions $\psi(t)$ are those functions determined by the cascade algorithm
- The ONST-property follows because the cascade algorithm preserves orthogonality
- *Density* and *Separation* do not come automatically, but have to be verified separately

Examples

Example (3): The SHANNON-MRA

• SHANNON's sampling theorem motivates to consider

$$V_0=\set{f\in\mathcal{L}^2(\mathbb{R})};\ \widehat{f}(s)=0 ext{ for } |s|>1/2$$

the space of 1-band-limited functions, and

$$V_j = \set{f \in \mathcal{L}^2(\mathbb{R}); \widehat{f}(s) = 0 ext{ for } |s| > 2^{j-1}}$$

the space of 2^{j} -band-limited functions

• The scaling function is

$$\phi(t) = \operatorname{sinc}(t) = rac{\sin(\pi t)}{\pi t}$$

• The FT of the scaling function is the box function

$$\widehat{\phi}(s) = \mathbf{1}_{[-1/2,1/2)}(s)$$

- The family { T_kφ(t) }_{k∈ℤ} ⊆ V₀ is an ONST in V₀ (remember the previous example)
- SHANNON's sampling theorem says precisely this:

$$V_0 = \overline{span} \{ T_k \phi(t) \}_{k \in \mathbb{Z}}$$

• The Shannon wavelet function is

$$\psi(t) = \frac{\sin(2\pi t) - \cos(\pi t)}{\pi(t - 1/2)} = \frac{\sin(\pi(t - 1/2))}{\pi(t - 1/2)} \left(1 - 2\sin(\pi t)\right)$$

with its FT

$$\widehat{\psi}(t) = -e^{-i\pi s} \left(\mathbf{1}_{[-1,-1/2)}(s) + \mathbf{1}_{[1/2,1)}(s)
ight)$$

- Note:
 - $\phi(t)$ and $\psi(t)$ are infinitely differentiable functions with infinite support
 - $\widehat{\phi}(t)$ and $\widehat{\psi}(t)$ discontinuous functions with compact support
 - The scaling and wavelet filters have infinite length (with quite simple coefficients)
- The situation is precisely the converse to that of the HAAR-MRA

Figure: Shannon Scaling function and Shannon wavelet function

Example (4): The piecewise-linear MRA

• Continuous alternative to the HAAR-MRA:

 V_0 contains the continuous \mathcal{L}^2 -functions which are (affine-)linear on any interval $I_{0,k} = [k, k+1)$, ($k \in \mathbb{Z}$),i.e.,

 $V_0=ig\{\,f\in\mathcal{L}^2(\mathbb{R})\,;\,f ext{ continuous on }\mathbb{R} ext{ and linear on all }I_{0,k}\;(k\in\mathbb{Z})\,ig\}$

• so that for any $j\in\mathbb{Z}$

 $V_j = \left\{ \, f \in \mathcal{L}^2(\mathbb{R}) \, ; \, f \, \, ext{continuous on } \mathbb{R} \, \, ext{and linear on all } I_{j,k} \, \left(k \in \mathbb{Z}
ight)
ight\}$

A piecewise-continuous function f(t) defined by the values

- The spaces $(V_j)_{j\in\mathbb{Z}}$ are obviously *nested*
- Density: one has to show that any continuous function with compact support can be approximated uniformly as $j \to \infty$ by V_i -functions
- Separation: any L²-function f ∈ ∩_{j∈Z} V_j must be linear in arbitrarily long intervals. This happens only for f ≡ 0
- Scaling is part of the definition

Examples

- What is a scaling function $\phi(t) \in V_0$ for this MRA?
 - The "obvious" candidate is the "hat" function

$$\phi(t)=\left(1-|t|
ight)\mathbf{1}_{\left[-1,1
ight)}(t)$$

• It satisfies the scaling equation

$$\phi(t) = \frac{1}{2}\phi(2t-1) + \phi(2t) + \frac{1}{2}\phi(2t+1)$$

 The integer translates T_kφ(t) (k ∈ Z) of the hat function can be used to generate V₀

The piecewise-linear function f(t) represented as

 $2\phi(t+3)+3\phi(t+2)+\phi(t+1)+\phi(t)-2\phi(t-1)+3\phi(t-2)+4\phi(t-3)+2\phi(t-4)$

The example illustrates the simple fact:

Lemma

If f is continuous function on \mathbb{R} and linear on all intervalls $I_{0,k}$, then for all $t \in \mathbb{R}$:

$$f(t) = \sum_{k \in \mathbb{Z}} f(k) (T_k \phi)(t) = \sum_{k \in \mathbb{Z}} f(k) \phi(t-k)$$

 This is an assertion about pointwise convergence. (This convergence is trivial because for any t ∈ ℝ at most two summands are ≠ 0) • BUT unfortunately the $T_k \phi(t)$ are not always orthogonal :

$$\langle T_k \phi | T_\ell \phi \rangle = \begin{cases} 2/3 & \text{if } k = \ell \\ 1/6 & \text{if } |k - \ell| = 1 \\ 0 & \text{otherwise} \end{cases}$$

- **Q**: Can one find another function $\widetilde{\phi}(t) \in V_0$ such that its integer translates are an ONST and generate V_0 ?
- The procedure outlined below is exemplary and can be used in other situations as well

- (still about the scaling function)
 - Lemma

If f is continuous on \mathbb{R} and linear on all intervalls $I_{0,k}$, then

$$f(t) = \sum_{k \in \mathbb{Z}} f(k) (T_k \phi)(t)$$

also holds in the sense of $\mathcal{L}^2\text{-}\mathsf{convergence}$

• This follows from

$$\begin{split} \frac{1}{6} \left(|f(n)|^2 + |f(n+1)|^2 \right) &\leq \int_n^{n+1} |f(t)|^2 \, dt \\ &\leq \frac{1}{2} \left(|f(n)|^2 + |f(n+1)|^2 \right) \end{split}$$

for any function which is linear in the interval [n, n+1)

• Lemma: $V_0 = \overline{span} \{ T_k \phi \}_{k \in \mathbb{Z}}$

- (still about the scaling function)
 - A suitable scaling function $\widetilde{\phi}(t)$ for the piecewise-linear MRA can be found using Fourier transforms
 - Remember the chacterization of ONST

$$\{ T_k \phi \}_{k \in \mathbb{Z}}$$
 is an ONST $\iff \sum_{n \in \mathbb{Z}} \left| \widehat{\phi}(s+n) \right|^2 \equiv 1$

• The translates of $\phi(t)$ visibly do not form an ONST, and this can be quantified by

$$\sum_{n\in\mathbb{Z}} \left| \widehat{\phi}(s+n) \right|^2 = \frac{1}{6} e^{-2\pi i s} + \frac{2}{3} + \frac{1}{6} e^{2\pi i s} = \frac{1+2\cos^2(\pi s)}{3},$$

and hence

$$\frac{1}{3} \leq \sum_{n \in \mathbb{Z}} \left| \widehat{\phi}(s+n) \right|^2 \leq 1$$

- (still about the scaling function)
 - If $\hat{\phi}(s)$ is the FT of $\phi(t)$, define $\tilde{\phi}(t)$ through its Fourier transform by setting

$$\widehat{\widetilde{\phi}}(s) = rac{\sqrt{3}}{\sqrt{1+2\cos^2 \pi s}} \, \widehat{\phi}(s),$$

• Then, by construction,

$$\sum_{n\in\mathbb{Z}}\left|\widehat{\widetilde{\phi}}(s+n)\right|^2\equiv 1$$

Hence $\{T_k \tilde{\phi}\}_{k \in \mathbb{Z}}$ is an ONST and is an ON-basis of V_0 (see a later theorem for justifying this)

• The modification of the FT given above leads to the desired conclusion But unfortunately neither $\tilde{\phi}(t)$ nor $\tilde{\psi}(t)$ have a simple analytic form

The family of integer translates of $\widetilde{\phi}(t)$ is an ONST for V_0 of this MRA

- General setup:
 - An MRA given by nested approximation spaces (V_j)_{j∈ℤ} and a scaling function φ(t), satisfying the MRA requirements
 - $\boldsymbol{h} = (h_k)_{k \in \mathbb{Z}}$, the scaling filter of the MRA and its Fourier series

$$m_0(s) = \frac{1}{\sqrt{2}} \sum_{k \in \mathbb{Z}} h_k e^{-2\pi i s}$$

• $g = (g_k)_{k \in \mathbb{Z}}$, where $g_k = (-1)^k \overline{h_{1-k}}$, the wavelet filter of the MRA and its Fourier series

$$m_1(s) = \frac{1}{\sqrt{2}} \sum_{k \in \mathbb{Z}} g_k e^{-2\pi i s}$$

• $\psi(t) = \sum_{k \in \mathbb{Z}} g_k \phi_{1,k}(t)$ the wavelet function of the MRA

• The following assertions are either already known or follow from the definitions and known facts by straighforward (occasionally somewhat tedious) calculations. See the Lecture Notes for details.

• Properties of
$$oldsymbol{h}=(h_k)_{k\in\mathbb{Z}}$$

- 1. $\sum_{k} h_{k-2\ell} \overline{h_k} = \delta_{\ell,0}$ 1. $|m_0(s)|^2 + |m_0(s + \frac{1}{2})|^2 = 1$ 1. $\sum_{k} |h_k|^2 = 1$ 1. $\text{case } \ell = 0 \text{ in } (1)$ 1. $\sum_{k} h_k = \sqrt{2}$ 1. $m_0(0) = 1$

• Properties of the $oldsymbol{g}=(g_k)_{k\in\mathbb{Z}}$	
	$ m_1(s) ^2 + m_1(s+\frac{1}{2}) ^2 = 1$
• $\sum_{k} \left g_{k} \right ^{2} = 1$	case $\ell=0$ in (1)
$\bigcirc \sum_k g_k = 0$	$m_1(0)=0$
3 $\sum_{k} g_{2k} = -\sum_{k} g_{2k+1} = 1/\sqrt{2}$	$m_1(rac{1}{2})=1$

• Properties relating $\boldsymbol{h} = (h_k)_{k \in \mathbb{Z}}$ and $\boldsymbol{g} = (g_k)_{k \in \mathbb{Z}}$

Consequences

- Sor each j ∈ Z the family {\u03c6\u03c6_{j,k}}_{k∈Z} is an orthonormal family of L²-functions
- ② For each *j* ∈ ℤ the families $\{\psi_{j,k}\}_{k \in ℤ}$ and $\{\phi_{j,k}\}_{k \in ℤ}$ are orthogonal to each other, i.e., $W_j \perp V_j$
- $\textbf{One has } V_1 = V_0 \oplus W_0, \text{ and generally } V_{j+1} = V_j \oplus W_j$

• For
$$j
eq j'$$
 one has $W_j \perp W_j$

• Thus $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ is an orthonormal family of \mathcal{L}^2 -functions

• Charcterization of the elements of the subspace V_0

Theorem

If $\{T_k\phi\}_{k\in\mathbb{Z}}$ is an ONST and V_0 the \mathcal{L}^2 -subspace generated by this family

$$f \in V_0 \quad \Longleftrightarrow \quad egin{cases} ext{the exists an } \ell^2 ext{-sequence } (c_n)_{n \in \mathbb{Z}} ext{ with} \ \widehat{f}(s) = \widehat{\phi}(s) \cdot \sum_{n \in \mathbb{Z}} c_n e^{-2\pi i n s} \end{cases}$$

In words:

the elements of V_0 are precisely those \mathcal{L}^2 -functions f, whose FT \hat{f} is a product of $\hat{\phi}$ and a period-1 Fourier series

• For the proof (not difficult, using BESSEL's inequality and PARSEVAL-PLANCHEREL) see the Lecture Notes

- The following Theorem shows how the construction leading to an MRA for the pieceswise-linear functions can be made in a general context. (For the proof see the Lecture Notes)
- Theorem
 - If $\phi(t) \in \mathcal{L}^2(\mathbb{R})$ is a function with compact support
 - and if there exist constants A, B s.th.

$$0 < A \leq \sum_{n \in \mathbb{Z}} \left| \widehat{\phi}(s+n) \right|^2 \leq B,$$

then there exists a function $\widetilde{\phi}(t)\in\mathcal{L}^2(\mathbb{R})$, such that

- the family $\{T_k \widetilde{\phi}\}_{k \in \mathbb{Z}}$ is an ONST
- and it generates the same space V_0 as the family $\{T_k\phi\}_{k\in\mathbb{Z}}$

- General MRA-setup (as before) with
 - scaling function $\phi(t)$, scaling filter $(h_k)_{k\in\mathbb{Z}}$, Fourier series $m_0(s)$
 - wavelet function $\psi(t)$, wavelet filter $(g_k)_{k\in\mathbb{Z}}$, Fourier series $m_1(s)$
- Properties

2 for all
$$n \in \mathbb{Z}, n \neq 0$$
: $\widehat{\phi}(n) = 0$

3
$$\sum_{n\in\mathbb{Z}}\phi(t+n)\equiv 1$$

$${f 0} \ \widehat{\psi}(0) = \int_{\mathbb{R}} \psi(t) \, dt = 0$$

• The proofs are somewhat technical. See the Lecture Notes

Recall properties of the FT w.r.t. smoothness an vanishing at infinity

- Theorem
 - If $f(t)\in \mathcal{L}^1(\mathbb{R})$ and $t\cdot f(t)\in \mathcal{L}^1(\mathbb{R})$, then $\widehat{f}(s)\in \mathcal{C}^1(\mathbb{R})$ and

$$\widehat{t\cdot f}(s) = -\frac{1}{2\pi i}\frac{d}{ds}\widehat{f}(s)$$

• More generally for $N \ge 1$

If $f(t) \in \mathcal{L}^1(\mathbb{R})$ and $t^N f(t) \in \mathcal{L}^1(\mathbb{R})$ then $\widehat{f}(s) \in \mathcal{C}^N(\mathbb{R})$ and

$$(\widehat{t^j f(t)})(s) = \left(-\frac{1}{2\pi i}\frac{d}{ds}\right)^j \widehat{f}(s) \quad (0 \le j \le N)$$

"and conversely"

Note: "t^N f(t) ∈ L¹(ℝ)" means: f(t) vanishes rapidly as t → ±∞, typically f(t) ∈ O(t^{-N-1-ε}) for some ε > 0;
 "f(s) ∈ C^N(ℝ)" means that f(t) has N continuous derivatives

• For function f(t) and $k \ge 0$ the k-th moment is defined as

$$\int_{\mathbb{R}} t^k f(t) \, dt$$

• Note: if $t^k f(t) \in \mathcal{L}^1(\mathbb{R})$, then

$$\int_{\mathbb{R}} t^k f(t) \, dt = 0 \quad \Longleftrightarrow \quad \widehat{f}^{(k)}(0) = 0$$

Theorem

- If $\psi \in \mathcal{L}^2(\mathbb{R})$ and if $\{\psi_{j,k}\}$ is an orthonormal family in $\mathcal{L}^2(\mathbb{R})$, then: • If $\psi, \widehat{\psi} \in \mathcal{L}^1(\mathbb{R})$, then $\int_{\mathbb{R}} \psi = 0$
 - More generally: if $t^N\psi(t), s^{N+1}\widehat{\psi}(s)\in \mathcal{L}^1(\mathbb{R})$, then

$$\int_{\mathbb{R}}t^{m}\,\psi(t)\,dt=\widehat{\psi}^{(m)}(0)=0~~(0\leq m\leq N)$$

Remarks

• If a function f(t) satisfies

$$\widehat{f}^{(k)}(0) = \int_{\mathbb{R}} t^k f(t) dt = 0 \quad (0 \le k < N),$$

then f is said to have N vanishing moments

- The previous Theorem relates smoothness and vanishing at infinity of a wavelet function $\psi(t)$ with the phenomenon of vanishing moments
- The FT of the wavelet equation

$$\widehat{\psi}(s) = m_1(s/2) \cdot \widehat{\phi}(s/2)$$

can be differentiated repeatedly, giving

$$m_0^{(k)}(1/2) = 0 \quad (0 \le k < N)$$

as a statement equivalent to

 $\psi(t)$ has *N* vanishing moments

• Taking the FT of the scaling identity

$$\widehat{\phi}(s) = m_0(s/2) \cdot \widehat{\phi}(s/2)$$

and differentiating it repeatedly gives

$$\widehat{\phi}^{(k)}(m) = 0 \quad \begin{cases} 0 \leq k < N \\ m \in \mathbb{Z} \setminus \{0\} \end{cases}$$

The consequences of a wavelet function $\psi(t)$ having N vanishing moments can be made precise:

Theorem

If $\psi \in L^2(\mathbb{R})$ has compact support and N vanishing moments, then for each $f \in C^N(\mathbb{R})$ with $f^{(N)}$ bounded there exists a constant C = C(N, f) s.th.

$$|\langle f | \psi_{j,k} \rangle| \leq C \cdot 2^{-jN} \cdot 2^{-j/2} \quad (j,k \in \mathbb{Z})$$

- This quantitative statement should be read qualitatively as: Wavelet coefficients belonging to regions where f is smooth tend to be very small over many levels of resolution!
- The proof is by using a Taylor expansion of f(t) in the region where $\psi_{j,k}$ is nonzero see the Lecture Notes

 D_4 as an example

• The wavelet function $\psi(t)$ of the Daubechies D_4 filter has N = 2 vanishing moments

One has

$$\int_{\mathbb{R}}\psi(t)\,dt=0,\qquad \int_{\mathbb{R}}t\,\psi(t)\,dt=0,\qquad \int_{\mathbb{R}}t^2\,\psi(t)\,dt=-rac{1}{8}\sqrt{rac{3}{2\pi}}.$$

• For $f \in \mathcal{C}^2(\mathbb{R})$, by taking the support of $\psi(t)$ into account,

$$\langle f | \psi_{j,k} \rangle = \int_{\mathbb{R}} f(t) 2^{j/2} \psi(2^{j}t - k) dt = \int_{0}^{32^{-j}} f(t + 2^{-j}k) 2^{j/2} \psi(2^{j}t) dt$$

• Expanding f(t) at $t + 2^{-j}k$ in a Taylor series gives

$$\langle f | \psi_{j,k}
angle pprox -rac{1}{16} \sqrt{rac{3}{2\pi}} 2^{-5j/2} f''(2^{-j}k),$$

with equality (instead of \approx) if f is a constant, linear or quadratic polynomial

• In particular: all wavelet coefficients $\langle\,f\,|\,\psi_{j,k}\,\rangle$ vanish for regions where f is linear

WTBV

Wrapping things up:

Theorem

If $\phi(t)$ resp. $\psi(t)$ are scaling resp. wavelet functions of an MRA, $h = (h_n)_{n \in \mathbb{Z}}$ the scaling filter and $m_0(s)$ its Fourier series, then the following statements are equivalent:

1 ψ has *N* vanishing moments:

$$\int_{\mathbb{R}} t^k \psi(t) dt = 0 \quad (0 \le k < N)$$

2 The filter $h = (h_n)$ satisfies N low-pass conditions

$$m_0^{(k)}(1/2) = 0 \quad (0 \le k < N)$$

③ The Fourier series $m_0(s)$ of $\mathbf{h} = (h_n)$ can be factored:

$$m_0(s) = (rac{1+e^{-2\pi i s}}{2})^N L(s)$$

where L(s) is a period-1 trigonometric polynomial The QMF $\mathbf{h} = (h_n)$ satisfies the N moment conditions $\sum (-1)^n h_n n^k = 0 \quad (0 \le k < N)$

 $n \in \mathbb{Z}$

Multiresolution Analysis (MRA)