Multiresolution Analysis (MRA)

WTBV

January 10, 2017

(1) Multiresolution (MRA)

- Multiresolution scheme
- Examples
- Haar-MRA
- Shannon-MRA
- Piecewise-linear MRA
- Properties of MRA's (I)
- Orthonormal systems of translates
- Properties of MRA's (II)
- Vanishing noments, smoothness, reconstruction properties

Multiresolutions analysis (MRA)

- was invented in 1988 by Stephane Mallat in his Ph.D. thesis Multiresolution and Wavelets (University of Pennsylvania)
- is an elegant theoretical framework for the study of wavelets and wavelet transforms
- is considered to be the central concept which integrates the many facets of wavelet transforms
- Definition

An MRA (multiresolution analysis) consists of a family $\left\{V_{j}\right\}_{j \in \mathbb{Z}}$ of subspaces of $\mathcal{L}^{2}(\mathbb{R})$ satisfying the following properties:
(1) "nesting": $V_{j} \subseteq V_{j+1}(j \in \mathbb{Z})$
(2) "density" : $\overline{\operatorname{span}}\left\{V_{j}\right\}_{j \in \mathbb{Z}}=\mathcal{L}^{2}(\mathbb{R})$
(3) "separation": $\bigcap\left\{V_{j}\right\}_{j \in \mathbb{Z}}=\{0\}$
(1) "scaling":
$f(t) \in V_{0} \Leftrightarrow\left(D_{2^{j}} f\right)(t)=2^{j / 2} f\left(2^{j} t\right) \in V_{j} \quad\left(f \in \mathcal{L}^{2}(\mathbb{R}), j \in \mathbb{Z}\right)$
(6) "scaling function":

There exists a function $\phi \in V_{0}$ s.th. the family of its integer translates

$$
\left\{T_{k} \phi(t)\right\}_{k \in \mathbb{Z}}=\{\phi(t-k)\}_{k \in \mathbb{Z}}
$$

forms a complete ON-basis of $V_{0}=\overline{\operatorname{span}}\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}}$

- ONST-Example:
- Consider the function $\phi(t)=\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$
- Are the integer translates $\left(T_{k} \phi\right)(t)=\phi(t-k) \quad(k \in \mathbb{Z})$ orthogonal to each other?
- The answer is not obvious from looking at the graphs!
- How to prove orthogonality?
- Recipe: Go to the frequency domain! (using PP)
- Recall: $\widehat{\phi}(s)=b(s)=\mathbf{1}_{[-1 / 2,1 / 2)}(s) \quad$ (the box function)

$$
\begin{aligned}
\left\langle\phi \mid T_{k} \phi\right\rangle=\left\langle\widehat{\phi} \mid \widehat{T_{k} \phi}\right\rangle & =\left\langle b(s) \mid e^{-2 \pi i k s} b(s)\right\rangle \\
& =\int_{-1 / 2}^{1 / 2} e^{-2 \pi i k s} d s=\delta_{0, k}
\end{aligned}
$$

- Reminder:

$$
\begin{aligned}
\phi(t) \text { satisfies }(\mathrm{ONST}) & \Longleftrightarrow \sum_{n \in \mathbb{Z}}|\widehat{\phi}(s+n)|^{2}=\equiv 1 \\
\text { Proof : }\left\langle f \mid T_{k} f\right\rangle=\left\langle\widehat{f} \mid \widehat{T_{k} f}\right\rangle & =\int_{\mathbb{R}} \widehat{f}(s) \widehat{\widehat{f}(s)} e^{2 \pi i k s} d s \\
& =\sum_{n \in \mathbb{Z}} \int_{n}^{n+1}|\widehat{f(s)}|^{2} e^{2 \pi i k s} d s \\
& =\sum_{n \in \mathbb{Z}} \int_{0}^{1}|\widehat{f}(s+n)|^{2} e^{2 \pi i k s} d s \\
& =\int_{0}^{1} \sum_{n \in \mathbb{Z}}|\widehat{f}(s+n)|^{2} e^{2 \pi i k s} d s
\end{aligned}
$$

Hence in terms of Fourier series

$$
\sum_{k \in \mathbb{Z}}\left\langle f \mid T_{k} f\right\rangle e^{-2 \pi i k s}=\sum_{n \in \mathbb{Z}}|\widehat{f}(s+n)|^{2}
$$

- Consequences
(1) The vector spaces $\left(V_{j}\right)_{j \in \mathbb{Z}}$ are ordered by inclusion

$$
\{0\} \swarrow \cdots \subseteq V_{-2} \subseteq V_{-1} \subseteq V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq \cdots \nearrow \mathcal{L}^{2}(\mathbb{R})
$$

(2) For each $j \in \mathbb{Z}$ family of dilated and translated functions $\left\{\phi_{j, k}(t)\right\}_{k \in \mathbb{Z}}$, defined by

$$
\phi_{j, k}(t)=2^{j / 2} \phi\left(2^{j} t-k\right)=\left(D_{2 j} T_{k} \phi\right)(t),
$$

forms a complete ON-Basis (Hilbert basis) of the approximation space

$$
V_{j}=\overline{\operatorname{span}}\left\{\phi_{j, k}\right\}_{k \in \mathbb{Z}} \quad(j \in \mathbb{Z})
$$

(3) From $V_{0} \subseteq V_{1}$ it follows that there exists a (unique) ℓ^{2}-sequence $\boldsymbol{h}=\left(h_{k}\right)_{k \in \mathbb{Z}}$ of complex numbers s.th.
(S) $\quad \phi(t)=\sum_{k \in \mathbb{Z}} h_{k} \phi_{1, k}(t)$

This identity is the scaling identity of the MRA, the sequence $\boldsymbol{h}=\left(h_{k}\right)_{k \in \mathbb{Z}}$ is the scaling filter of the MRA

- Remarks

Properties involving V_{0} and $\phi(t)$ carry over to all scaling levels by using dilation, e.g.,

$$
\begin{aligned}
V_{0} \ni f(t)=\sum_{k \in \mathbb{Z}} f_{k} \cdot\left(T_{k} \phi\right)(t) & \Longleftrightarrow \\
& V_{j} \ni\left(D_{2^{j}} f\right)(t)=\sum_{k \in \mathbb{Z}} f_{k} \cdot\left(D_{2^{j}} T_{k} \phi\right)(t)
\end{aligned}
$$

so each V_{j} is a dilated copy of V_{0},

- and thus orthonormality is preserved

$$
\begin{aligned}
\left\langle\phi_{j, k} \mid \phi_{j, \ell}\right\rangle=2^{j} & \int_{\mathbb{R}} \phi\left(2^{j} t-k\right) \overline{\phi\left(2^{j} t-\ell\right)} d t \\
& =\int_{\mathbb{R}} \phi(t-k) \overline{\phi(t-\ell)} d t=\left\langle\phi_{0, k} \mid \phi_{0, \ell}\right\rangle=\delta_{k, \ell}
\end{aligned}
$$

- From the scaling identity (S) and orthogonality one gets immediately

$$
h_{k}=\left\langle\phi \mid \phi_{1, k}\right\rangle=\sqrt{2} \int_{\mathbb{R}} \phi(t) \overline{\phi(2 t-k)} d t
$$

- and for all $j, \ell \in \mathbb{Z}$

$$
\begin{aligned}
\phi_{j, \ell}(t) & =2^{j / 2} \phi\left(2^{j} t-\ell\right) \\
& =2^{j / 2} \sum_{k \in \mathbb{Z}} h_{k} \phi_{1, k}\left(2^{j} t-\ell\right) \\
& =2^{(j+1) / 2} \sum_{k \in \mathbb{Z}} h_{k} \phi\left(2^{j+1}-2 \ell-k\right) \\
& =\sum_{k \in \mathbb{Z}} h_{k} \phi_{j+1,2 \ell+k}(t)=\sum_{k \in \mathbb{Z}} h_{k-2 \ell} \phi_{j+1, k}(t)
\end{aligned}
$$

- so that the scaling coefficients $a_{j, \ell}=\left\langle f \mid \phi_{j, \ell}\right\rangle$ of $f \in \mathcal{L}^{2}$ satisfy

$$
a_{j, \ell}=\left\langle f \mid \phi_{j, \ell}\right\rangle=\sum_{k \in \mathbb{Z}} h_{k-2 \ell}\left\langle f \mid \phi_{j+1, k}(t)\right\rangle=\sum_{k \in \mathbb{Z}} h_{k-2 \ell} a_{j+1, k}
$$

- The wavelet function $\psi(t)$ of a MRA is defined in terms of the scaling function $\phi(t)$ as

$$
(W) \quad \psi(t)=\sum_{k \in \mathbb{Z}} g_{k} \phi_{1, k}(t) \text { where } g_{k}=(-1)^{k} \overline{h_{1-k}}
$$

- The sequence $\boldsymbol{g}=\left(g_{k}\right)_{k \in \mathbb{Z}}$ is the wavelet filter belonging to the MRA
- The wavelet functions $\psi_{j, \ell}(j, \ell \in \mathbb{Z}$ are defined as usual
- The wavelet coefficients $d_{j, \ell}=\left\langle f \mid \psi_{j, \ell}\right\rangle$ of $f \in \mathcal{L}^{2}$ satisfy

$$
d_{j, \ell}=\left\langle f \mid \psi_{j, \ell}\right\rangle=\sum_{k \in \mathbb{Z}} g_{k-2 \ell}\left\langle f \mid \phi_{j+1, k}(t)\right\rangle=\sum_{k \in \mathbb{Z}} g_{k-2 \ell} a_{j+1, k}
$$

- The Discrete Wavelet Transform (DWT) based on the functions $\phi(t)$ and $\psi(t)$ uses these scaling and wavelet identities

$$
a_{j, \ell}=\sum_{k \in \mathbb{Z}} h_{k-2 \ell} a_{j+1, k} \quad \quad d_{j, \ell}=\sum_{k \in \mathbb{Z}} g_{k-2 \ell} a_{j+1, k}
$$

- Theorem
(1) For each $j \in \mathbb{Z}$ the family of wavelet functions $\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}$ with

$$
\psi_{j, k}(t)=2^{j / 2} \psi\left(2^{j} t-k\right)=\left(D_{2^{j}} T_{k} \psi\right)(t)
$$

is a complete ON-Basis (Hilbert basis) of the wavelet (detail) space

$$
W_{j}=\overline{\operatorname{span}}\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}
$$

(2) For all $j \in \mathbb{Z}$ the space W_{j} is the orthogonal complement of V_{j} in V_{j+1} :

$$
V_{j+1}=W_{j} \oplus V_{j} \quad W_{j} \perp V_{j}
$$

(3) For every $J \in \mathbb{Z}$ one has the direct product decomposition

$$
\mathcal{L}^{2}(\mathbb{R})=V_{J} \oplus \bigoplus_{j \geq J} W_{j}
$$

(9) The family $\left\{\psi_{j, k}\right\}_{j, k \in \mathbb{Z}}$ is a complete ON-basis (Hilbert basis) of $\mathcal{L}^{2}(\mathbb{R})$

$$
\mathcal{L}^{2}(\mathbb{R})=\bigoplus_{j \in \mathbb{Z}} w_{j}
$$

- Remarks
(1) Functions in V_{j} and W_{j} have resolution level $\geq 2^{-j}$
(2) Orthogonal projections on approximation and detail subspaces

$$
\begin{aligned}
\text { approximation } & P_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow V_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \phi_{j, k}\right\rangle \phi_{j, k} \\
\text { detail } & Q_{j}: \mathcal{L}^{2}(\mathbb{R}) \rightarrow W_{j}: f \mapsto \sum_{k \in \mathbb{Z}}\left\langle f \mid \psi_{j, k}\right\rangle \psi_{j, k}
\end{aligned}
$$

where $Q_{j}=P_{j+1}-P_{j}$
(3) For all $j>m$ one has the wavelet decomposition

$$
V_{j+1}=V_{m} \oplus W_{m} \oplus W_{m+1} \oplus \cdots \oplus W_{j}
$$

(9) The "density" and "separation" requirements for an MRA translate into

$$
\lim _{j \rightarrow \infty} P_{j} f=f \text { und } \lim _{j \rightarrow-\infty} P_{j} f=0
$$

w.r.t. \mathcal{L}^{2}-convergence

Example (1): The HaAR-MRA

- The scaling function is

$$
\phi(t)=\mathbf{1}_{[0,1)}(t)
$$

- For $j \in \mathbb{Z}$ the approximation space

$$
V_{j}=\overline{\operatorname{span}}\left\{\phi_{j, k}(t)\right\}_{k \in \mathbb{Z}} \subseteq \mathcal{L}^{2}(\mathbb{R})
$$

consists of the \mathcal{L}^{2}-step functions with step width 2^{-j}

- $\left\{\phi_{j, k}(t)\right\}_{k \in \mathbb{Z}}$ is obviously an ON-Basis of V_{j}
- Density (fact about approximation by step functions):

$$
\lim _{j \rightarrow \infty} V_{j}=\mathcal{L}^{2}(\mathbb{R})
$$

- Separation: an \mathcal{L}^{2}-function $f \in \bigcap_{j \in \mathbb{Z}} V_{j}$ which is constant on arbitrarily long intervals must vanish identically on \mathbb{R}
- Scaling filter coefficients

$$
h_{0}=\frac{1}{\sqrt{2}}, h_{1}=\frac{1}{\sqrt{2}}, h_{k}=0(k \neq 0,1)
$$

- Scaling identity

$$
\phi(t)=\frac{1}{\sqrt{2}}\left(\phi_{0,0}(t)+\phi_{0,1}(t)\right)=\phi(2 t)+\phi(2 t-1)
$$

- Wavelet filter coefficients

$$
g_{0}=\frac{1}{\sqrt{2}}, g_{1}=-\frac{1}{\sqrt{2}}, g_{k}=0(k \neq 0,1)
$$

- Wavelet identity

$$
\begin{aligned}
\psi(t) & =\frac{1}{\sqrt{2}}\left(\phi_{0,0}(t)+\phi_{0,1}(t)\right)=\phi(2 t)-\phi(2 t-1) \\
& =\mathbf{1}_{[0,1 / 2)}(t)-\mathbf{1}_{[1 / 2,1)}(t)
\end{aligned}
$$

- Fourier transforms

$$
\widehat{\phi}(s)=e^{-i \pi s} \operatorname{sinc}(s) \quad \widehat{\psi}(s)=i \cdot e^{-i \pi s} \sin (\pi s / 2) \operatorname{sinc}(s / 2)
$$

- Examples (2)

The Daubechies, Coiflet, and many other orthogonal filters of similar type define MRAs with filters of finite length and scaling/wavelet functions with compact support

- The filters are (of course!) those constructed from orthogonality and low/highpass conditions
- The scaling functions $\phi(t)$ and the wavelet functions $\psi(t)$ are those functions determined by the cascade algorithm
- The ONST-property follows because the cascade algorithm preserves orthogonality
- Density and Separation do not come automatically, but have to be verified separately

Example (3): The Shannon-MRA

- Shannon's sampling theorem motivates to consider

$$
V_{0}=\left\{f \in \mathcal{L}^{2}(\mathbb{R}) ; \widehat{f}(s)=0 \text { for }|s|>1 / 2\right\}
$$

the space of 1 -band-limited functions, and

$$
V_{j}=\left\{f \in \mathcal{L}^{2}(\mathbb{R}) ; \widehat{f}(s)=0 \text { for }|s|>2^{j-1}\right\}
$$

the space of 2^{j}-band-limited functions

- The scaling function is

$$
\phi(t)=\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}
$$

- The FT of the scaling function is the box function

$$
\widehat{\phi}(s)=\mathbf{1}_{[-1 / 2,1 / 2)}(s)
$$

- The family $\left\{T_{k} \phi(t)\right\}_{k \in \mathbb{Z}} \subseteq V_{0}$ is an ONST in V_{0} (remember the previous example)
- Shannon's sampling theorem says precisely this:

$$
V_{0}=\overline{\operatorname{span}}\left\{T_{k} \phi(t)\right\}_{k \in \mathbb{Z}}
$$

- The Shannon wavelet function is

$$
\psi(t)=\frac{\sin (2 \pi t)-\cos (\pi t)}{\pi(t-1 / 2)}=\frac{\sin (\pi(t-1 / 2))}{\pi(t-1 / 2)}(1-2 \sin (\pi t))
$$

- with its FT

$$
\widehat{\psi}(t)=-e^{-i \pi s}\left(\mathbf{1}_{[-1,-1 / 2)}(s)+\mathbf{1}_{[1 / 2,1)}(s)\right)
$$

- Note:
- $\phi(t)$ and $\psi(t)$ are infinitely differentiable functions with infinite support
- $\widehat{\phi}(t)$ and $\widehat{\psi}(t)$ discontinuous functions with compact support
- The scaling and wavelet filters have infinite length (with quite simple coefficients)
- The situation is precisely the converse to that of the HAAR-MRA

Figure: Shannon Scaling function and Shannon wavelet function

Example (4): The piecewise-linear MRA

- Continuous alternative to the HAAR-MRA:
V_{0} contains the continuous \mathcal{L}^{2}-functions which are (affine-)linear on any interval $I_{0, k}=[k, k+1),(k \in \mathbb{Z})$,i.e.,
$V_{0}=\left\{f \in \mathcal{L}^{2}(\mathbb{R}) ; f\right.$ continuous on \mathbb{R} and linear on all $\left.I_{0, k}(k \in \mathbb{Z})\right\}$
- so that for any $j \in \mathbb{Z}$
$V_{j}=\left\{f \in \mathcal{L}^{2}(\mathbb{R}) ; f\right.$ continuous on \mathbb{R} and linear on all $\left.I_{j, k}(k \in \mathbb{Z})\right\}$

A piecewise-continuous function $f(t)$ defined by the values

k	-4	-3	-3	-1	0	1	2	3	4	5
$f(k)$	0	2	3	1	1	-2	3	4	2	0

- The spaces $\left(V_{j}\right)_{j \in \mathbb{Z}}$ are obviously nested
- Density: one has to show that any continuous function with compact support can be approximated uniformly as $j \rightarrow \infty$ by V_{j}-functions
- Separation: any \mathcal{L}^{2}-function $f \in \bigcap_{j \in \mathbb{Z}} V_{j}$ must be linear in arbitrarily long intervals.
This happens only for $f \equiv 0$
- Scaling is part of the definition
- What is a scaling function $\phi(t) \in V_{0}$ for this MRA?
- The "obvious" candidate is the "hat" function

$$
\phi(t)=(1-|t|) \mathbf{1}_{[-1,1)}(t)
$$

- It satisfies the scaling equation

$$
\phi(t)=\frac{1}{2} \phi(2 t-1)+\phi(2 t)+\frac{1}{2} \phi(2 t+1)
$$

- The integer translates $T_{k} \phi(t)(k \in \mathbb{Z})$ of the hat function can be used to generate V_{0}

The piecewise-linear function $f(t)$ represented as
$2 \phi(t+3)+3 \phi(t+2)+\phi(t+1)+\phi(t)-2 \phi(t-1)+3 \phi(t-2)+4 \phi(t-3)+2 \phi(t-4)$

The example illustrates the simple fact:

- Lemma

If f is continuous function on \mathbb{R} and linear on all intervalls $I_{0, k}$, then for all $t \in \mathbb{R}$:

$$
f(t)=\sum_{k \in \mathbb{Z}} f(k)\left(T_{k} \phi\right)(t)=\sum_{k \in \mathbb{Z}} f(k) \phi(t-k)
$$

- This is an assertion about pointwise convergence.
(This convergence is trivial because for any $t \in \mathbb{R}$ at most two summands are $\neq 0$)
- BUT unfortunately the $T_{k} \phi(t)$ are not always orthogonal :

$$
\left\langle T_{k} \phi \mid T_{\ell} \phi\right\rangle= \begin{cases}2 / 3 & \text { if } k=\ell \\ 1 / 6 & \text { if }|k-\ell|=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Q: Can one find another function $\widetilde{\phi}(t) \in V_{0}$ such that its integer translates are an ONST and generate V_{0} ?
- The procedure outlined below is exemplary and can be used in other situations as well
- (still about the scaling function)
- Lemma

If f is continuous on \mathbb{R} and linear on all intervalls $I_{0, k}$, then

$$
f(t)=\sum_{k \in \mathbb{Z}} f(k)\left(T_{k} \phi\right)(t)
$$

also holds in the sense of \mathcal{L}^{2}-convergence

- This follows from

$$
\begin{array}{rl}
\frac{1}{6}\left(|f(n)|^{2}+|f(n+1)|^{2}\right) \leq \int_{n}^{n+1}|f(t)|^{2} & d t \\
& \leq \frac{1}{2}\left(|f(n)|^{2}+|f(n+1)|^{2}\right)
\end{array}
$$

for any function which is linear in the interval $[n, n+1)$

- Lemma: $V_{0}=\overline{\operatorname{span}}\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}}$
- (still about the scaling function)
- A suitable scaling function $\widetilde{\phi}(t)$ for the piecewise-linear MRA can be found using Fourier transforms
- Remember the chacterization of ONST

$$
\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}} \text { is an ONST } \Longleftrightarrow \sum_{n \in \mathbb{Z}}|\widehat{\phi}(s+n)|^{2} \equiv 1
$$

- The translates of $\phi(t)$ visibly do not form an ONST, and this can be quantified by

$$
\sum_{n \in \mathbb{Z}}|\widehat{\phi}(s+n)|^{2}=\frac{1}{6} e^{-2 \pi i s}+\frac{2}{3}++\frac{1}{6} e^{2 \pi i s}=\frac{1+2 \cos ^{2}(\pi s)}{3}
$$

and hence

$$
\frac{1}{3} \leq \sum_{n \in \mathbb{Z}}|\widehat{\phi}(s+n)|^{2} \leq 1
$$

- (still about the scaling function)
- If $\widehat{\phi}(s)$ is the FT of $\phi(t)$, define $\widetilde{\phi}(t)$ through its Fourier transform by setting

$$
\widehat{\widetilde{\phi}}(s)=\frac{\sqrt{3}}{\sqrt{1+2 \cos ^{2} \pi s}} \widehat{\phi}(s)
$$

- Then, by construction,

$$
\sum_{n \in \mathbb{Z}}|\widehat{\widetilde{\phi}}(s+n)|^{2} \equiv 1
$$

Hence $\left\{T_{k} \widetilde{\phi}\right\}_{k \in \mathbb{Z}}$ is an ONST and is an ON-basis of V_{0} (see a later theorem for justifying this)

- The modification of the FT given above leads to the desired conclusion But unfortunately neither $\widetilde{\phi}(t)$ nor $\widetilde{\psi}(t)$ have a simple analytic form
- The scaling function $\widetilde{\phi}(t)$ for the piecewise-linear MRA

The family of integer translates of $\widetilde{\phi}(t)$ is an ONST for V_{0} of this MRA

- General setup:
- An MRA given by nested approximation spaces $\left(V_{j}\right)_{j \in \mathbb{Z}}$ and a scaling function $\phi(t)$, satisfying the MRA requirements
- $\boldsymbol{h}=\left(h_{k}\right)_{k \in \mathbb{Z}}$, the scaling filter of the MRA and its Fourier series

$$
m_{0}(s)=\frac{1}{\sqrt{2}} \sum_{k \in \mathbb{Z}} h_{k} e^{-2 \pi i s}
$$

- $\boldsymbol{g}=\left(g_{k}\right)_{k \in \mathbb{Z}}$, where $g_{k}=(-1)^{k} \overline{h_{1-k}}$, the wavelet filter of the MRA and its Fourier series

$$
m_{1}(s)=\frac{1}{\sqrt{2}} \sum_{k \in \mathbb{Z}} g_{k} e^{-2 \pi i s}
$$

- $\psi(t)=\sum_{k \in \mathbb{Z}} g_{k} \phi_{1, k}(t)$ the wavelet function of the MRA
- The following assertions are either already known or follow from the definitions and known facts by straighforward (occasionally somewhat tedious) calculations. See the Lecture Notes for details.
- Properties of $\boldsymbol{h}=\left(h_{k}\right)_{k \in \mathbb{Z}}$
(1) $\sum_{k} h_{k-2 \ell} \overline{h_{k}}=\delta_{\ell, 0}$
(2) $\sum_{k}\left|h_{k}\right|^{2}=1$

$$
\begin{array}{r}
\left|m_{0}(s)\right|^{2}+\left|m_{0}\left(s+\frac{1}{2}\right)\right|^{2}=1 \\
\text { case } \ell=0 \text { in (1) }
\end{array}
$$

(3) $\sum_{k} h_{k}=\sqrt{2}$

$$
m_{0}(0)=1
$$

(9) $\sum_{k} h_{2 k}=\sum_{k} h_{2 k+1}=1 / \sqrt{2}$ $m_{0}\left(\frac{1}{2}\right)=0$

- Properties of the $\boldsymbol{g}=\left(g_{k}\right)_{k \in \mathbb{Z}}$
(6) $\sum_{k} g_{k-2 \ell} \overline{g_{k}}=\delta_{\ell, 0}$
(c) $\sum_{k}\left|g_{k}\right|^{2}=1$

$$
\begin{array}{r}
\left|m_{1}(s)\right|^{2}+\left|m_{1}\left(s+\frac{1}{2}\right)\right|^{2}=1 \\
\text { case } \ell=0 \text { in }(1) \\
m_{1}(0)=0 \\
m_{1}\left(\frac{1}{2}\right)=1
\end{array}
$$

(3) $\sum_{k} g_{k}=0$
(3) $\sum_{k} g_{2 k}=-\sum_{k} g_{2 k+1}=1 / \sqrt{2}$

- Properties relating $\boldsymbol{h}=\left(h_{k}\right)_{k \in \mathbb{Z}}$ and $\boldsymbol{g}=\left(g_{k}\right)_{k \in \mathbb{Z}}$
(9) $\sum_{k} g_{k-2 \ell} \overline{h_{k}}=0 \quad m_{0}(s) \overline{m_{1}(s)}+m_{0}\left(s+\frac{1}{2}\right) \overline{m_{1}\left(s+\frac{1}{2}\right)}=0$
(10) $\sum_{k}\left(h_{m-2 k} \overline{h_{n-2 k}}+g_{m-2 k} \overline{g_{n-2 k}}\right)=\delta_{m, n}$

$$
m_{0}(s) \overline{m_{0}\left(s+\frac{1}{2}\right)}+m_{1}(s+1) \overline{m_{1}\left(s+\frac{1}{2}\right)}=0
$$

- Consequences
(1) For each $j \in \mathbb{Z}$ the family $\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}$ is an orthonormal family of \mathcal{L}^{2}-functions
(2) For each $j \in \mathbb{Z}$ the families $\left\{\psi_{j, k}\right\}_{k \in \mathbb{Z}}$ and $\left\{\phi_{j, k}\right\}_{k \in \mathbb{Z}}$ are orthogonal to each other, i.e., $W_{j} \perp V_{j}$
(3) One has $V_{1}=V_{0} \oplus W_{0}$, and generally $V_{j+1}=V_{j} \oplus W_{j}$
(4) For $j \neq j^{\prime}$ one has $W_{j} \perp W_{j^{\prime}}$
(5) Thus $\left\{\psi_{j, k}\right\}_{j, k \in \mathbb{Z}}$ is an orthonormal family of \mathcal{L}^{2}-functions
- Charcterization of the elements of the subspace V_{0}
- Theorem

If $\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}}$ is an ONST and V_{0} the \mathcal{L}^{2}-subspace generated by this family

$$
f \in V_{0} \Longleftrightarrow\left\{\begin{array}{l}
\text { the exists an } \ell^{2} \text {-sequence }\left(c_{n}\right)_{n \in \mathbb{Z}} \text { with } \\
\widehat{f}(s)=\widehat{\phi}(s) \cdot \sum_{n \in \mathbb{Z}} c_{n} e^{-2 \pi i n s}
\end{array}\right.
$$

In words:
the elements of V_{0} are precisely those \mathcal{L}^{2}-functions f, whose $\mathrm{FT} \widehat{f}$ is a product of $\widehat{\phi}$ and a period-1 Fourier series

- For the proof (not difficult, using Bessel's inequality and Parseval-Plancherel) see the Lecture Notes
- The following Theorem shows how the construction leading to an MRA for the pieceswise-linear functions can be made in a general context. (For the proof see the Lecture Notes)
- Theorem
- If $\phi(t) \in \mathcal{L}^{2}(\mathbb{R})$ is a function with compact support
- and if there exist constants A, B s.th.

$$
0<A \leq \sum_{n \in \mathbb{Z}}|\widehat{\phi}(s+n)|^{2} \leq B
$$

then there exists a function $\widetilde{\phi}(t) \in \mathcal{L}^{2}(\mathbb{R})$, such that

- the family $\left\{T_{k} \tilde{\phi}\right\}_{k \in \mathbb{Z}}$ is an ONST
- and it generates the same space V_{0} as the family $\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}}$
- General MRA-setup (as before) with
- scaling function $\phi(t)$, scaling filter $\left(h_{k}\right)_{k \in \mathbb{Z}}$, Fourier series $m_{0}(s)$
- wavelet function $\psi(t)$, wavelet filter $\left(g_{k}\right)_{k \in \mathbb{Z}}$, Fourier series $m_{1}(s)$
- Properties
(1) $|\widehat{\phi}(0)|=\left|\int_{\mathbb{R}} \phi(t) d t\right|=1$
(2) for all $n \in \mathbb{Z}, n \neq 0: \quad \widehat{\phi}(n)=0$
(3) $\sum_{n \in \mathbb{Z}} \phi(t+n) \equiv 1$
(9) $\widehat{\psi}(0)=\int_{\mathbb{R}} \psi(t) d t=0$
- The proofs are somewhat technical. See the Lecture Notes

Recall properties of the FT w.r.t. smoothness an vanishing at infinity

- Theorem
- If $f(t) \in \mathcal{L}^{1}(\mathbb{R})$ and $t \cdot f(t) \in \mathcal{L}^{1}(\mathbb{R})$, then $\widehat{f}(s) \in \mathcal{C}^{1}(\mathbb{R})$ and

$$
\widehat{t \cdot f}(s)=-\frac{1}{2 \pi i} \frac{d}{d s} \widehat{f}(s)
$$

- More generally for $N \geq 1$

$$
\text { If } f(t) \in \mathcal{L}^{1}(\mathbb{R}) \text { and } t^{N} f(t) \in \mathcal{L}^{1}(\mathbb{R}) \text { then } \widehat{f}(s) \in \mathcal{C}^{N}(\mathbb{R}) \text { and }
$$

$$
\left(\widehat{t^{j} f(t)}\right)(s)=\left(-\frac{1}{2 \pi i} \frac{d}{d s}\right)^{j} \widehat{f}(s) \quad(0 \leq j \leq N)
$$

"and conversely"

- Note: " $t^{N} f(t) \in \mathcal{L}^{1}(\mathbb{R})^{\prime}$ means: $f(t)$ vanishes rapidly as $t \rightarrow \pm \infty$, typically $f(t) \in \mathcal{O}\left(t^{-N-1-\varepsilon}\right)$ for some $\varepsilon>0$;
" $\widehat{f}(s) \in \mathcal{C}^{N}(\mathbb{R})$ " means that $\widehat{f}(t)$ has N continuous derivatives
- For function $f(t)$ and $k \geq 0$ the k-th moment is defined as

$$
\int_{\mathbb{R}} t^{k} f(t) d t
$$

- Note: if $t^{k} f(t) \in \mathcal{L}^{1}(\mathbb{R})$, then

$$
\int_{\mathbb{R}} t^{k} f(t) d t=0 \quad \Longleftrightarrow \quad \widehat{f}^{(k)}(0)=0
$$

- Theorem

If $\psi \in \mathcal{L}^{2}(\mathbb{R})$ and if $\left\{\psi_{j, k}\right\}$ is an orthonormal family in $\mathcal{L}^{2}(\mathbb{R})$, then:

- If $\psi, \widehat{\psi} \in \mathcal{L}^{1}(\mathbb{R})$, then $\int_{\mathbb{R}} \psi=0$
- More generally: if $t^{N} \psi(t), s^{N+1} \widehat{\psi}(s) \in \mathcal{L}^{1}(\mathbb{R})$, then

$$
\int_{\mathbb{R}} t^{m} \psi(t) d t=\widehat{\psi}^{(m)}(0)=0 \quad(0 \leq m \leq N)
$$

- Remarks
- If a function $f(t)$ satisfies

$$
\widehat{f}^{(k)}(0)=\int_{\mathbb{R}} t^{k} f(t) d t=0 \quad(0 \leq k<N),
$$

then f is said to have N vanishing moments

- The previous Theorem relates smoothness and vanishing at infinity of a wavelet function $\psi(t)$ with the phenomenon of vanishing moments
- The FT of the wavelet equation

$$
\widehat{\psi}(s)=m_{1}(s / 2) \cdot \widehat{\phi}(s / 2)
$$

can be differentiated repeatedly, giving

$$
m_{0}^{(k)}(1 / 2)=0 \quad(0 \leq k<N)
$$

as a statement equivalent to
$\psi(t)$ has N vanishing moments

- Taking the FT of the scaling identity

$$
\widehat{\phi}(s)=m_{0}(s / 2) \cdot \widehat{\phi}(s / 2)
$$

and differentiating it repeatedly gives

$$
\widehat{\phi}^{(k)}(m)=0 \quad\left\{\begin{array}{l}
0 \leq k<N \\
m \in \mathbb{Z} \backslash\{0\}
\end{array}\right.
$$

The consequences of a wavelet function $\psi(t)$ having N vanishing moments can be made precise:

- Theorem

If $\psi \in L^{2}(\mathbb{R})$ has compact support and N vanishing moments, then for each $f \in \mathcal{C}^{N}(\mathbb{R})$ with $f^{(N)}$ bounded there exists a constant $C=C(N, f)$ s.th.

$$
\left|\left\langle f \mid \psi_{j, k}\right\rangle\right| \leq C \cdot 2^{-j N} \cdot 2^{-j / 2} \quad(j, k \in \mathbb{Z})
$$

- This quantitative statement should be read qualitatively as: Wavelet coefficients belonging to regions where f is smooth tend to be very small over many levels of resolution!
- The proof is by using a Taylor expansion of $f(t)$ in the region where $\psi_{j, k}$ is nonzero - see the Lecture Notes
D_{4} as an example
- The wavelet function $\psi(t)$ of the Daubechies D_{4} filter has $N=2$ vanishing moments
- One has

$$
\int_{\mathbb{R}} \psi(t) d t=0, \quad \int_{\mathbb{R}} t \psi(t) d t=0, \quad \int_{\mathbb{R}} t^{2} \psi(t) d t=-\frac{1}{8} \sqrt{\frac{3}{2 \pi}} .
$$

- For $f \in \mathcal{C}^{2}(\mathbb{R})$, by taking the support of $\psi(t)$ into account,

$$
\left\langle f \mid \psi_{j, k}\right\rangle=\int_{\mathbb{R}} f(t) 2^{j / 2} \psi\left(2^{j} t-k\right) d t=\int_{0}^{32^{-j}} f\left(t+2^{-j} k\right) 2^{j / 2} \psi\left(2^{j} t\right) d t
$$

- Expanding $f(t)$ at $t+2^{-j} k$ in a Taylor series gives

$$
\left\langle f \mid \psi_{j, k}\right\rangle \approx-\frac{1}{16} \sqrt{\frac{3}{2 \pi}} 2^{-5 j / 2} f^{\prime \prime}\left(2^{-j} k\right)
$$

with equality (instead of \approx) if f is a constant, linear or quadratic polynomial

- In particular: all wavelet coefficients $\left\langle f \mid \psi_{j, k}\right\rangle$ vanish for regions where f is linear

Wrapping things up:

- Theorem

If $\phi(t)$ resp. $\psi(t)$ are scaling resp. wavelet functions of an MRA, $\boldsymbol{h}=\left(h_{n}\right)_{n \in \mathbb{Z}}$ the scaling filter and $m_{0}(s)$ its Fourier series, then the following statements are equivalent:
(1) ψ has N vanishing moments:

$$
\int_{\mathbb{R}} t^{k} \psi(t) d t=0 \quad(0 \leq k<N)
$$

(2) The filter $\boldsymbol{h}=\left(h_{n}\right)$ satisfies N low-pass conditions

$$
m_{0}^{(k)}(1 / 2)=0 \quad(0 \leq k<N)
$$

(3) The Fourier series $m_{0}(s)$ of $\boldsymbol{h}=\left(h_{n}\right)$ can be factored:

$$
m_{0}(s)=\left(\frac{1+e^{-2 \pi i s}}{2}\right)^{N} L(s)
$$

where $L(s)$ is a period- 1 trigonometric polynomial
(9) The QMF $\boldsymbol{h}=\left(h_{n}\right)$ satisfies the N moment conditions

$$
\sum_{n \in \mathbb{Z}}(-1)^{n} h_{n} n^{k}=0 \quad(0 \leq k<N)
$$

