Motivating Bi-Orthogonality (alias dual bases)

- A 3D-example
- The standard ON-basis of \mathbb{R}^{3}

$$
\mathcal{E}=\left\{\boldsymbol{e}^{1}=(1,0,0), \boldsymbol{e}^{2}=(0,1,0), \boldsymbol{e}^{3}=(0,0,1)\right\}
$$

- Another basis of \mathbb{R}^{3}

$$
\mathcal{B}=\left\{\boldsymbol{b}^{1}=(1,0,1), \boldsymbol{b}^{2}=(0,-1,1), \boldsymbol{b}^{3}=(1,0,2)\right\}
$$

- In matrix form

$$
B=\left[\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{e}^{j}\right\rangle\right]_{1 \leq i, j \leq 3}=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & -1 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

- The inverse of B

$$
B^{-1}=\left[\begin{array}{rrr}
2 & 0 & -1 \\
-1 & -1 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

- The basis $\mathcal{C}=\left\{\boldsymbol{c}^{1}, \boldsymbol{c}^{2}, \boldsymbol{c}^{3}\right\}$ defined by the rows of

$$
C=\left[\left\langle\boldsymbol{c}^{i} \mid \boldsymbol{e}^{j}\right\rangle\right]_{1 \leq i, j \leq 3}=\left(B^{-1}\right)^{t}=\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

$$
\text { is } \mathcal{C}=\left\{\boldsymbol{c}^{1}=(2,-1,-1), \boldsymbol{c}^{2}=(0,-1,0), \boldsymbol{c}^{3}=(-1,1,1)\right\}
$$

- \mathcal{B} and \mathcal{C} are bi-orthogonal (or dual bases) in the sense that

$$
\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{c}^{j}\right\rangle=\delta_{i, j}
$$

- in particular
$\boldsymbol{c}^{1} \perp$ the plane spanned by \boldsymbol{b}^{2} and \boldsymbol{b}^{3}
$\boldsymbol{c}^{2} \perp$ the plane spanned by \boldsymbol{b}^{1} and \boldsymbol{b}^{3}
$\boldsymbol{c}^{3} \perp$ the plane spanned by \boldsymbol{b}^{1} and \boldsymbol{b}^{2}

Figure: The standard ON-basis \mathcal{E}, the basis \mathcal{B} (red) and the basis \mathcal{C} (blue)

Figure: The plane spanned by $\left\{\boldsymbol{b}^{1}, \boldsymbol{b}^{2}\right\}$ (grey)

Figure: The plane spanned by $\left\{\boldsymbol{b}^{2}, \boldsymbol{b}^{3}\right\}$

Figure: The plane spanned by $\left\{\boldsymbol{b}^{1}, \boldsymbol{b}^{3}\right\}$

- Representing a vector in bases \mathcal{B} and \mathcal{C}

$$
\begin{aligned}
\boldsymbol{v}=(-1,1,1) & =(2,1,-1) \cdot B \\
& =\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{c}^{1}\right\rangle}_{=2} \boldsymbol{b}^{1}+\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{c}^{2}\right\rangle}_{=1} \boldsymbol{b}^{2}+\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{c}^{3}\right\rangle}_{-1} \boldsymbol{b}^{3} \\
& =(2,2,3) \cdot C \\
& =\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{b}^{1}\right\rangle}_{=2} \boldsymbol{c}^{1}+\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{b}^{2}\right\rangle}_{=2} \boldsymbol{c}^{2}+\underbrace{\left\langle\boldsymbol{v} \mid \boldsymbol{b}^{3}\right\rangle}_{=3} \boldsymbol{c}^{3}
\end{aligned}
$$

- Warning: Dual bases need not to be "nice"
- Example

$$
B=\left[\begin{array}{rrr}
1 & -2 & 1 \\
3 & -1 & -1 \\
1 & 0 & 2
\end{array}\right] \quad B^{-1}=\frac{1}{13}\left[\begin{array}{rrr}
-2 & 4 & 3 \\
-7 & 1 & 4 \\
1 & -2 & 5
\end{array}\right]
$$

- Example

$$
\begin{aligned}
B & =\left[\begin{array}{rrrr}
2 & -5 & 5 & 2 \\
5 & 5 & 2 & 4 \\
1 & -4 & 0 & 4 \\
2 & 0 & -5 & -5
\end{array}\right] \\
B^{-1} & =\frac{1}{1513}\left[\begin{array}{rrrr}
140 & 160 & 25 & 204 \\
-106 & 95 & -127 & -68 \\
197 & 9 & -235 & -102 \\
-141 & 55 & 245 & -119
\end{array}\right]
\end{aligned}
$$

- V a finite-dimensional real or complex vector space with inner product $\langle. \mid$.$\rangle and an \mathrm{ON}$ basis $\mathcal{E}=\left(\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right)$, i.e.,

$$
\left\langle\boldsymbol{e}^{i} \mid \boldsymbol{e}^{j}\right\rangle=\delta_{i, j} \quad(1 \leq i, j \leq n)
$$

- Orthogonality: For any vector $\boldsymbol{v} \in V$

$$
\boldsymbol{v}=\sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{e}^{i} \text { with } \varepsilon_{i}=\left\langle v \mid \boldsymbol{e}^{i}\right\rangle
$$

- Now let $\mathcal{B}=\left(\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{n}\right)$ be an arbitrary basis of V, not necessarily orthogonal. The any $\boldsymbol{v} \in V$ can be written as

$$
\boldsymbol{v}=\sum_{i=1}^{n} \beta_{i} \boldsymbol{b}^{i}
$$

But what are the coefficients β_{i} in terms of $\langle. \mid$.$\rangle ?$

- With \mathcal{E} and \mathcal{B} as before, let

$$
\begin{aligned}
\boldsymbol{b}^{i} & =\sum_{j=1}^{n} b_{i, j} \boldsymbol{e}^{j}, \quad \text { where } b_{i, j}=\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{e}^{j}\right\rangle \\
B & =\left[b_{i, j}\right]_{1 \leq i, j \leq n}
\end{aligned}
$$

Then B is an invertible matrix, because \mathcal{B} is a basis

- Now let $\mathcal{C}=\left(\boldsymbol{c}^{1}, \ldots, \boldsymbol{c}^{n}\right)$ be another basis of V with coefficient matrix $C=\left[C_{i, j}\right]_{1 \leq i, j \leq n}$ and $c_{i, j}=\left\langle\boldsymbol{c}^{i} \mid \boldsymbol{e}^{j}\right\rangle$
- \mathcal{B} and \mathcal{C} are said to be a bi-orthogonal pair of bases (or dual bases) if

$$
\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{c}^{j}\right\rangle=\delta_{i, j} \quad(1 \leq i, j \leq n)
$$

- \boldsymbol{Q}_{1} : Does such a dual basis always exist? Is it unique?
- \boldsymbol{Q}_{2} : What is the benefit of this?
- Answer to \boldsymbol{Q}_{2} :

Assume that \mathcal{B} and \mathcal{C} are a bi-orthogonal pair of bases of V. For $\boldsymbol{v} \in V$ write

$$
\boldsymbol{v}=\sum_{i=1}^{n} \beta_{i} \boldsymbol{b}^{i}=\sum_{j=1}^{n} \gamma_{j} \boldsymbol{c}^{j}
$$

Then

$$
\left\langle\boldsymbol{v} \mid \boldsymbol{c}^{j}\right\rangle=\sum_{i=1}^{n} \beta_{i}\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{c}^{j}\right\rangle=\beta_{j}
$$

and

$$
\left\langle\boldsymbol{v} \mid \boldsymbol{b}^{i}\right\rangle=\sum_{j=1}^{n} \gamma_{j}\left\langle\boldsymbol{c}^{j} \mid \boldsymbol{b}^{i}\right\rangle=\gamma_{i}
$$

Hence

$$
\boldsymbol{v}=\sum_{i=1}^{n}\left\langle\boldsymbol{v} \mid \boldsymbol{c}^{i}\right\rangle \boldsymbol{b}^{i}=\sum_{j=1}^{n}\left\langle\boldsymbol{v} \mid \boldsymbol{b}^{j}\right\rangle \boldsymbol{c}^{j}
$$

- Answer to \boldsymbol{Q}_{1} :

Let \mathcal{B} and \mathcal{C} be any bases of V, as above, then for any $1 \leq i, k \leq n$ because of the orthonormality of \mathcal{E} :

$$
\begin{aligned}
\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{c}^{k}\right\rangle & =\left\langle\sum_{j=1}^{n} b_{i, j} \boldsymbol{e}^{j} \mid \sum_{\ell=1}^{n} c_{k, \ell} \boldsymbol{e}^{\ell}\right\rangle \\
& =\sum_{j=1}^{n} \sum_{\ell=1}^{n} b_{i, j} \overline{c_{k, \ell}}\left\langle\boldsymbol{e}^{j} \mid \boldsymbol{e}^{\ell}\right\rangle=\sum_{j=1}^{n} b_{i, j} \overline{c_{k, j}}
\end{aligned}
$$

In matrix terms $\left[\left\langle\boldsymbol{b}^{i} \mid \boldsymbol{c}^{k}\right\rangle\right]_{1 \leq i, k \leq n}=B \cdot C^{\dagger}$
Recall: C^{\dagger} is the conjugate-transpose of C, also called the adjoint of C
Hence \mathcal{B} and \mathcal{C} are dual bases $\leftrightarrow B \cdot C^{\dagger}=I_{n} \leftrightarrow B^{-1}=C^{\dagger}$ which guarantees existence and uniqueness

