Neural Network Nearest-Neighbour Transformation for Segmentation of Retinal Blood Vessels

Bachelor's Thesis Final Talk

Anne-Marie Strauch Supervisors: Lennart Husvogt, Tino Haderlein, Andreas Maier 28.11.2016 Pattern Recognition Lab (CS 5)

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

Fundus Photography

- non-invasive modality for examining eye
- diagnosis of glaucoma, diabetic retinopathy,...
 - diabetic retinopathy leading cause for acquired blindness
- segmentation supports computer-aided diagnosis

Fundus image and segmentation [DRIVE database]

Some challenges

- lighting variations
- poor contrast
- pathologies

Introduction

N⁴-Fields: Neural Network Nearest Neighbor Fields for Image Transforms

Yaroslav Ganin, Victor Lempitsky Skolkovo Institute of Science and Technology (Skoltech)

- reimplementation of N⁴ Paper
- experiments with varying parameters
- evaluation on DRIVE database

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

N⁴-Fields

N⁴-Fields: Neural Network Nearest Neighbor Fields for Image Transforms

Yaroslav Ganin, Victor Lempitsky Skolkovo Institute of Science and Technology (Skoltech)

- architecture for natural edge detection/thin object segmentation
- neural network and nearest-neighbour search applied sequentially
- process images patch-by-patch

N⁴-Fields

• run patch through convolutional neural network

 \rightarrow receive neural code

 map to closest dictionary entry using nearest-neighbour classifier

 \rightarrow retrieve output patch

• average all output patches to segment image

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

PCA

reconstruction of a patch with a total of 63 eigenvectors

Convolutional Neural Network

#	Layer type	#filters/units	Filter size	Output size
1	convolutional + ReLU +max-pooling	96 -	7x7 2x2	28x28x96 14x14x96
2	convolutional + ReLU + max-pooling	128	5x5 2x2	10x10x128 5x5x128
3	convolutional + ReLU	256	3x3	3x3x256
4	fully connected + ReLU	768	-	768
5	fully connected + ReLU	768	-	768
6	fully connected + linear	16	-	16

ReLU: $\varphi(x) = \max(0, x)$ linear: $\varphi(x) = x$

Convolutional Neural Network

- dropout with 50 %
- update rule Adadelta \rightarrow parameter-wise learning rate
- input patches drawn at random locations with random rotations
- loss function:

$$L = \frac{1}{b \cdot f} \sum_{i=1}^{b} (\text{CNN}(P; W)_i - \text{PCA}(\mathbf{A}(P))_i)^T \cdot (\text{CNN}(P; W)_i - \text{PCA}(\mathbf{A}(P))_i)$$

CNN Training Time

about 80 epochs per model
 → 90 to 120 minutes training

Dictionary

- retrieve neural codes from randomly sampled patches
- set nearest-neighbour classifier

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

Testing

- not patches but whole images
- re-implement fully connected layers as convolutional
- average over all output patches
 - \rightarrow output is soft classification

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

Experiments

- on DRIVE database
- soft classification has to be thresholded
- \rightarrow simple thresholding that maximizes average accuracy

Trials:

- neural code length
- dictionary size
- multi-resolution
- normalized neural codes
- green colour channel only
- ensemble of multiple models

Original N⁴ Settings

- neural code length = 16, dictionary size = 10000
- mean accuracy of 0.9491
- mean F1 score of 0.7844 (N⁴ paper: 0.81)

Dictionary Size

- increase in performance with growing dictionary size
- problem with long runtime for very large dictionaries

Neural Code Length

neural code length	final test error	accuracy
16	11241	0.9491
24	8600	0.9476
32	8159	0.9495
40	7502	0.9489

- test error for CNN decreases but no increase in performance
- 32 works well in other experiments

Multiple Scales

half resolution

- train CNN on all 3 scales
- process input with 3 different resolutions each
- result: normal + 1.8 resolution (accuracy = 0.9506)

normal resolution

1.8 resolution

Normalized Neural Codes

- normalize neural codes in dictionary and from CNN
- accuracy = 0.9459 (unnormalized = 0.9495)
- many false positives, but thin vessels recognized

segmentation

ground truth

Green Colour Channel Only

- mean accuracy green: 0.9511
- mean accuracy all channels: 0.9495

Green Channel Only

Ensemble

• combine output of multiple models

→ green, 15000, 1.8 and norm (accuracy = 0.9521)

- adding more models does not necessarily increase performance
- disadvantage: long runtime, 4 CNNs have to be trained

Experiments – Summary

model	neural code length	dictionary size	accuracy
original	16	10000	0.9491
dictionary size	32	15000	0.9498
neural code length	32	10000	0.9495
normal + 1.8 resolution	32	10000	0.9506
normalized neural codes	32	10000	0.9459
green channel only	32	10000	0.9511
<i>green, 15000, 1.8</i> and <i>norm</i>	32	10000 15000	0.9521

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

Discussion

thicker vessels

green = true positive
red = false negative
blue = false positive

Discussion - Binarization

• trade-off between thin vessels and correct vessel thickness

soft classification

binary segmentation

ground truth

- Introduction
- Approach
 - Training
 - Testing
- Experiments
- Discussion
- Conclusion and Outlook

Conclusion and Outlook

- average accuracy 0.9511 on DRIVE database
- green colour channel only
- runtime 40 seconds, about 100 minutes training
- for optic disc, central vessel reflex and main vessels good performance
- very thin vessels and bifurcations still challenging
- more advanced thresholding technique (hysteresis, adaptive)
- higher resolution images
- reduce runtime
- different internal representation than PCA of patches

Thank you for your attention!

TECHNISCHE FAKULTÄT