Orthogonal Filters and Reconstruction Daubechies and Coiflet filters

Volker Strehl

November 25, 2015
(1) Orthogonal filters and reconstruction

- Generalities
- Orthogonality
- Finite-length signals
(2) Daubechies filters
- The Daubechies filter D_{4}
- The Daubechies filter D_{6}
- The Daubechies filters $D_{2 M}$
- Daubechies polynomials
- Once again D_{4} and D_{6}
- D_{4}
- D_{6}
(3) Coiflet filters
- Non-causal filters
- Coiflet filters
- Coiflet filters C_{6} and C_{12}
- C_{6} using the Daubechies polynomial
- C_{6} the direct way
- C_{12} the direct way

FIR filters

- $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{L}\right)$: real causal FIR filter of length $L+1$ (where $h_{0} \neq 0 \neq h_{L}$)
- polynomial representation (z-transform)

$$
h(z)=h_{0}+h_{1} z+h_{2} z^{2}+\cdots+h_{L} z^{L}
$$

- Fourier series representation (frequency response)

$$
H(\omega)=h_{0}+h_{1} e^{i \omega}+h_{2} e^{2 i \omega} \cdots+h_{L} e^{L i \omega}=h\left(e^{i \omega}\right)
$$

Signals

- signal $\boldsymbol{a}=(a[n])_{n \in \mathbb{Z}}$
- power series representation (z-transform)

$$
a(z)=\sum_{n \in \mathbb{Z}} a[n] z^{n}
$$

- Fourier series representation (frequency representation)

$$
A(\omega)=\sum_{n \in \mathbb{Z}} a[n] e^{i n \omega}=a\left(e^{i \omega}\right)
$$

Filtering via convolution

- filtering of a signal, $\boldsymbol{a}=(a[n])_{n \in \mathbb{Z}}$ via convolution with \boldsymbol{h}

$$
\mathcal{T}_{\boldsymbol{h}}: \boldsymbol{a}=(a[n])_{n \in \mathbb{Z}} \longmapsto \boldsymbol{h} \star \boldsymbol{a}=\left(\sum_{k=0}^{L} h_{k} a[n-k]\right)_{n \in \mathbb{Z}}
$$

- convolution theorem

$$
\mathcal{T}_{\boldsymbol{h}}: a(z) \mapsto h(z) \cdot a(z)
$$

- equivalently

$$
\mathcal{T}_{\boldsymbol{h}}: A(\omega) \mapsto H(\omega) \cdot A(\omega)
$$

Filtering as matrix multiplication

$$
\left[\begin{array}{c}
\vdots \\
a[-2] \\
a[-1] \\
a[0] \\
a[1] \\
a[2] \\
\vdots
\end{array}\right] \longmapsto\left[\begin{array}{ccccccccc}
\ddots & \ddots & \ldots & \ddots & \ddots & & & & \\
& h_{L} & h_{L-1} & \ldots & h_{1} & h_{0} & & & \\
& & h_{L} & h_{L-1} & \ldots & h_{1} & h_{0} & & \\
& & & h_{L} & h_{L-1} & \ldots & h_{1} & h_{0} & \\
& & & & \ddots & \ddots & \ldots & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
a[-2] \\
a[-1] \\
a[0] \\
a[1] \\
a[2] \\
\vdots
\end{array}\right]
$$

Filtering by \boldsymbol{h} followed by downsampling \downarrow_{2}

- transformation matrix

Filtering and downsampling

- operating on signals

$$
H: \boldsymbol{a}=(a[n])_{n \in \mathbb{Z}} \longmapsto\left(\sum_{k=0}^{L} h_{k} a[2 n-k]\right)_{n \in \mathbb{Z}}=\left(\sum_{k=0}^{L} h_{2 n-k} a[k]\right)_{n \in \mathbb{Z}}
$$

- operating on power series

$$
H: a(z) \longmapsto \frac{1}{2}[h(z) \cdot a(z)+h(-z) \cdot a(-z)]_{z^{2} \leftarrow z}
$$

- operation on Fourier series

$$
H: A(\omega) \longmapsto \frac{1}{2}\left[H\left(\frac{\omega}{2}\right) \cdot A\left(\frac{\omega}{2}\right)+H\left(\frac{\omega}{2}+\pi\right) \cdot A\left(\frac{\omega}{2}+\pi\right)\right]
$$

Adjoint operation H^{\dagger}

- the adjoint operation H^{\dagger} is realized by the transposed matrix

$$
H^{t}=\left[\begin{array}{cccc}
\ddots & & & \\
\ddots & h_{L} & & \\
\ddots & h_{L-1} & & \\
& h_{L-2} & h_{L} & \\
& \vdots & h_{L-1} & \\
& h_{0} & \vdots & \\
& & h_{1} & \ddots \\
& & h_{0} & \ddots
\end{array}\right]
$$

Adjoint operation

- operation on signals

$$
H^{\dagger}: \boldsymbol{a}=(a[n])_{n \in \mathbb{Z}} \longmapsto\left(\sum_{n \leq 2 k \leq L+n} h_{2 k-n} a[k]\right)_{n \in \mathbb{Z}}
$$

- operation on power series

$$
H^{\dagger}: a(z) \longmapsto h\left(\frac{1}{z}\right) \cdot a\left(z^{2}\right)
$$

- operation on Fourier series

$$
H^{\dagger}: A(\omega) \longmapsto H(-\omega) \cdot A(2 \omega)=\overline{H(\omega)} \cdot A(2 \omega)
$$

- In signal/filter terminology
- first upsampling \uparrow_{2},
- then filtering by $\overleftarrow{\boldsymbol{h}}=\left(h_{-k}\right)_{k \in \mathbb{Z}}$
- $\overleftarrow{\boldsymbol{h}}$ is not a causal filter: non-zero coefficients in positions $-L, \ldots, 0$

Orthogonality (1)

- $\boldsymbol{h}=\left(h_{0}, \ldots, h_{L}\right)$ a finite, causal, real filter
- filter length $L+1$ must be even
- H : matrix representing filtering by \boldsymbol{h} followed by downsampling
- the rows of H are orthogonal, i.e., $H \cdot H^{\mathrm{t}}=I$,
i.e., the following $\frac{L+1}{2}$ conditions are satisfied

$$
\left(\mathcal{O}_{m}\right) \quad \sum_{k=2 m}^{L} h_{k} h_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<L / 2)
$$

Orthogonality (2)

- explanation:
any two rows of the matrix H have non-zero coefficients in common in $L+1-2 m$ positions for $m \in\{0,1,2, \ldots,(L+1) / 2\}$
- For $m=(L+1) / 2$ the rows are automatically orthogonal, i.e., for $m \geq(L+1) / 2$ condition $\left(\mathcal{O}_{m}\right)$ is satisfied in a trivial way
- For $1 \leq m<(L+1) / 2$ condition $\left(\mathcal{O}_{m}\right)$ expresses orthogonality for rows having $L+1-2 m$ non-zero filter positions in common
- In case $m=0$ one has condition

$$
h_{0}^{2}+h_{1}^{2}+\cdots+h_{L}^{2}=1
$$

i.e., the row vectors of H_{N} are normalized, i.e., have ℓ^{2}-Length 1

Overlapping and orthogonality

- Condition $\left(\mathcal{O}_{0}\right)$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline h_{L} & h_{L-1} & h_{L-2} & \ldots & h_{1} & h_{0} \\
\hline h_{L} & h_{L-1} & h_{L-2} & \ldots & h_{1} & h_{0} \\
\hline
\end{array}
$$

- Condition $\left(\mathcal{O}_{1}\right)$

h_{L}	h_{L-1}	h_{L-2}	h_{L-3}	\ldots	\ldots	h_{1}	h_{0}		
		h_{L}	h_{L-1}	h_{L-2}	\ldots	h_{3}	h_{2}	h_{1}	h_{0}

- Condition $\left(\mathrm{O}_{2}\right)$

h_{L}	h_{L-1}	h_{L-2}	h_{L-3}	h_{L-4}	h_{L-5}	\ldots	h_{1}	h_{0}				
				h_{L}	h_{L-1}	\ldots	h_{5}	h_{4}	h_{3}	h_{2}	h_{1}	h_{0}

- Condition $\left(\mathcal{O}_{\frac{L-1}{2}}\right)$

h_{L}	h_{L-1}	\cdots	h_{1}	h_{0}			
			h_{L}	h_{L-1}	\ldots	h_{1}	h_{0}

Alternative description of orthogonality

- Filtering of the signal given by $h(1 / z)$ using H
- in terms of power series

$$
h(z) \cdot h\left(\frac{1}{z}\right)+h(-z) \cdot h\left(-\frac{1}{z}\right)=2
$$

- in terms of Fourier series

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=H(\omega) \cdot \overline{H(\omega)}+H(\omega+\pi) \cdot \overline{H(\omega+\pi)}=2
$$

Summary

For any filter $\boldsymbol{h}=\left(h_{0}, \ldots, h_{L}\right)$ the following statements are equivalent:
(1) Orthogonality of the rows of H

$$
H \cdot H^{t}=I
$$

(2) Orthogonality conditions

$$
\left(\mathcal{O}_{m}\right) \quad \sum_{k=2 m}^{L} h_{k} h_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<L / 2)
$$

(3) in terms of power series

$$
h(z) \cdot h(1 / z)+h(-z) \cdot h(-1 / z)=2
$$

(9) in terms of Fourier series

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=2
$$

Dual filter (1)

- $\boldsymbol{g}=\left(g_{0}, \ldots, g_{L}\right)$ another filter of the same kind with $g(z)$ polynomial representation (z-transform) $G(\omega)$ Fourier series representation
- Filtering with \boldsymbol{g} followed by downsampling \downarrow_{2} represented by the matrix

$$
G=\left[\begin{array}{ccccccccc}
\ddots & \ddots & \ldots & \ddots & \ddots & & & & \\
& g_{L} & g_{L-1} & g_{L-2} & \cdots & g_{0} & & & \\
& & & g_{L} & g_{L-1} & \cdots & g_{1} & g_{0} & \\
& & & & \ddots & \ddots & \cdots & \ddots & \ddots
\end{array}\right]
$$

Dual filter (2)

- Operation on signals is given by
- matrix multiplication

$$
G:(a[n])_{n \in \mathbb{Z}} \longmapsto\left(\sum_{k=0}^{L} g_{k} a[2 n-k]\right)_{n \in \mathbb{Z}}=\left(\sum_{k=0}^{L} g_{2 n-k} a[k]\right)_{n \in \mathbb{Z}}
$$

- in terms of power series

$$
G: a(z) \longmapsto \frac{1}{2}[g(z) \cdot a(z)+g(-z) \cdot a(-z)]_{z^{2} \leftarrow z}
$$

- in terms of Fourier series

$$
G: A(\omega) \longmapsto \frac{1}{2}\left[G\left(\frac{\omega}{2}\right) \cdot A\left(\frac{\omega}{2}\right)+G\left(\frac{\omega}{2}+\pi\right) \cdot A\left(\frac{\omega}{2}+\pi\right)\right]
$$

Dual filter (3)

Equivalent statements:

- Orthogonality of the rows of G

$$
G \cdot G^{t}=I
$$

- Orthogonality conditions

$$
\left(\mathcal{O}_{m}^{\prime}\right) \quad \sum_{k=2 m}^{L} g_{k} g_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<L / 2)
$$

- in terms of power series

$$
g(z) \cdot g(1 / z)+g(-z) \cdot g(-1 / z)=2
$$

- in terms of Fourier series

$$
|G(\omega)|^{2}+|G(\omega+\pi)|^{2}=2
$$

Orthogonality of G and H

- Orthogonality of the rows of the matrices

$$
H \cdot G^{t}=0 \quad \text { equivalently } \quad G \cdot H^{t}=0
$$

- Orthogonality conditions

$$
\left(\mathcal{O}_{m}^{\prime \prime}\right) \quad \sum_{k=2 m}^{L} h_{k} g_{k-2 m}=0 \quad(0 \leq m<L / 2)
$$

- in terms of power series

$$
h(z) \cdot g(1 / z)+h(-z) \cdot g(-1 / z)=0
$$

- in terms of Fourier series

$$
H(\omega) \cdot \overline{G(\omega)}+H(\omega+\pi) \cdot \overline{G(\omega+\pi)}=0
$$

Reconstruction (1)

- \boldsymbol{h} and \boldsymbol{g} filters as described
- H and G, and H^{\dagger} and G^{\dagger} corresponding transformation matrices
- Reconstruction condition for the filter pair $(\boldsymbol{g}, \boldsymbol{h})$, is

$$
H^{t} \cdot H+G^{t} \cdot G=I,
$$

- in terms of power series

$$
\begin{array}{r}
h(z) \cdot h\left(\frac{1}{z}\right)+g(z) \cdot g\left(\frac{1}{z}\right)=2 \\
h(z) \cdot h\left(-\frac{1}{z}\right)+g(z) \cdot g\left(-\frac{1}{z}\right)=0
\end{array}
$$

- in terms of Fourier series

$$
\begin{aligned}
|H(\omega)|^{2}+|G(\omega)|^{2} & =2 \\
H(\omega) \cdot \overline{H(\omega+\pi)}+G(\omega) \cdot \overline{G(\omega+\pi)} & =0
\end{aligned}
$$

Reconstruction (2)

Justification

- Composition $\mathrm{H}^{\dagger} \circ \mathrm{H}$ gives

$$
H^{\dagger} \circ H: a(z) \longmapsto \frac{1}{2}(a(z) \cdot h(z)+a(-z) \cdot h(-z)) \cdot h\left(\frac{1}{z}\right)
$$

- Composition $G^{\dagger} \circ G$ gives

$$
G^{\dagger} \circ G: a(z) \longmapsto \frac{1}{2}(a(z) \cdot g(z)+a(-z) \cdot g(-z)) \cdot g\left(\frac{1}{z}\right)
$$

- Putting these together gives

$$
\begin{aligned}
H^{\dagger} \circ H+G^{\dagger} \circ G: a(z) \longmapsto & \frac{1}{2}\left(h(z) \cdot h\left(\frac{1}{z}\right)+g(z) \cdot g\left(\frac{1}{z}\right)\right) \cdot a(z) \\
& +\frac{1}{2}\left(h(-z) \cdot h\left(\frac{1}{z}\right)+g(-z) \cdot g\left(\frac{1}{z}\right)\right) \cdot a(-z)
\end{aligned}
$$

- The coefficient of $a(z)$ must be 1 , the coefficient of $a(-z)$ must vanish

Reconstruction (3)

- Looking at filter coefficients,reconstruction is expressed by

$$
\sum_{k \in \mathbb{Z}} h_{m-2 k} \cdot h_{n-2 k}+\sum_{k \in \mathbb{Z}} g_{m-2 k} \cdot g_{n-2 k}=\delta_{m, n}
$$

Reconstruction (4)

- Theorem:
- $\boldsymbol{h}=\left(h_{0}, \ldots, h_{L}\right)$ orthogonal filter of even length $L+1$, i.e., $H \cdot H^{t}=I$
- $\boldsymbol{g}=\left(g_{0}, \ldots, g_{L}\right)$ dual filter defined by

$$
g_{k}=(-1)^{k} h_{L-k} \quad(0 \leq k \leq L)
$$

Then the following holds:
(1) \boldsymbol{g} is an orthogonal filter, i.e.,

$$
G \cdot G^{t}=I
$$

(2) filters \boldsymbol{g} and \boldsymbol{h} are orthogonal, i.e.,

$$
H \cdot G^{t}=0=G \cdot H^{t}
$$

(3) the condition for reconstruction is satisfied, i.e.,

$$
H^{t} \cdot H+G^{t} \cdot G=I
$$

Reconstruction (5)

About the proof:

- The definition of the filter \boldsymbol{g} can be written as

$$
\begin{aligned}
g(z) & =\sum_{k=0}^{L} g_{k} z^{k}=\sum_{k=0}^{L} h_{k-L}(-z)^{k} \\
& =\sum_{k=0}^{L} h_{k}(-z)^{L-k}=(-z)^{L} \sum_{k=0}^{L} h_{k}\left(-\frac{1}{z}\right)^{k} \\
& =(-z)^{L} h\left(-\frac{1}{z}\right)
\end{aligned}
$$

- Orthogonality of \mathbf{g} :

$$
\begin{aligned}
& g(z) \cdot g\left(\frac{1}{z}\right)+g(-z) \cdot g\left(-\frac{1}{z}\right) \\
& =(-z)^{L} h\left(-\frac{1}{z}\right) \cdot\left(-\frac{1}{z}\right)^{L} h(-z)+z^{L} h\left(\frac{1}{z}\right) \cdot\left(\frac{1}{z}\right)^{L} h(z) \\
& \\
& =h\left(-\frac{1}{z}\right) \cdot h(-z)+h\left(\frac{1}{z}\right) \cdot h(z)=2
\end{aligned}
$$

- Orthogonality of \boldsymbol{g} und \boldsymbol{h} :

$$
\begin{aligned}
h(z) \cdot g\left(\frac{1}{z}\right)+ & h(-z) \cdot g\left(-\frac{1}{z}\right) \\
= & h(z) \cdot\left(-\frac{1}{z}\right)^{L} h(-z)+h(-z) \cdot\left(\frac{1}{z}\right)^{L} h(z) \\
& =\left(\frac{1}{z}\right)^{L}\left[(-1)^{L} h(z) \cdot h(-z)+h(-z) \cdot h(z)\right]=0
\end{aligned}
$$

(since L is odd)

Reconstruction (6)

- Reconstruction condition:

$$
\begin{aligned}
& \begin{aligned}
h(z) \cdot h\left(\frac{1}{z}\right) & +g(z) \cdot g\left(\frac{1}{z}\right) \\
= & h(z) \cdot h\left(\frac{1}{z}\right)+(-z)^{L} h\left(-\frac{1}{z}\right) \cdot\left(-\frac{1}{z}\right)^{L} h(-z) \\
& =h(z) \cdot h\left(\frac{1}{z}\right)+h\left(-\frac{1}{z}\right) \cdot h(-z)=2
\end{aligned} \\
& \begin{aligned}
h(z) \cdot h\left(-\frac{1}{z}\right) & +g(z) \cdot g\left(-\frac{1}{z}\right) \\
= & h(z) \cdot h\left(-\frac{1}{z}\right)+(-z)^{L} h\left(-\frac{1}{z}\right) \cdot\left(\frac{1}{z}\right)^{L} h(z) \\
& =h(z) \cdot h\left(-\frac{1}{z}\right)+(-1)^{L} h\left(-\frac{1}{z}\right) \cdot h(z)=0,
\end{aligned}
\end{aligned}
$$

(since L is odd)

Reconstruction (5)

- From the reconstruction condition on gets the filter bank setup:
- Analysis
a signal \boldsymbol{a} is decomposed via filtering with \boldsymbol{h} and \boldsymbol{g} into two signals $\boldsymbol{b}=H \cdot \boldsymbol{a}$ and $\boldsymbol{c}=G \cdot \boldsymbol{a}$
- Synthesis
from these signals \boldsymbol{b} and \boldsymbol{c} the signal \boldsymbol{a} can be reconstructed

$$
\boldsymbol{a} \longmapsto(\boldsymbol{b}, \boldsymbol{c})=(H \cdot \boldsymbol{a}, G \cdot \boldsymbol{a}) \longmapsto\left\{\begin{array}{l}
H^{t} \cdot \boldsymbol{b}+G^{t} \cdot \boldsymbol{c}= \\
\left(H^{t} \cdot H+G^{t} \cdot G\right) \cdot \boldsymbol{a}=\boldsymbol{a}
\end{array}\right.
$$

Finite-length signals (1)

Filtering with $\boldsymbol{h}=\left(h_{0}, \ldots, I_{L}\right)$ followed by downsampling \downarrow_{2} of signals of finite (even) length N is given by matrix multiplication with an
$(N / 2) \times N$ matrix H_{N} of cyclic structure ("overshooting" rows will be cyclically wrapped)

$$
\begin{aligned}
& H_{N}= \\
& {\left[\begin{array}{cccccccccccc}
h_{L} & h_{L-1} & h_{L-2} & \ldots & \ldots & h_{1} & h_{0} & & & & & \\
& & h_{L} & h_{L-1} & \ldots & \ldots & \ldots & h_{1} & h_{0} & & & \\
& & & \ddots & \ddots & & & & \ddots & \ddots & & \\
& & & & h_{L} & h_{L-1} & \ldots & \ldots & \ldots & \ldots & h_{1} & h_{0} \\
h_{1} & h_{0} & & & & & h_{L} & h_{L-1} & \ldots & \ldots & h_{3} & h_{2} \\
h_{3} & h_{2} & h_{1} & h_{0} & & & & & h_{L} & \ldots & h_{5} & h_{4} \\
\vdots & \vdots & \ddots & \ddots & \ddots & & & & & \ddots & \vdots & \vdots \\
h_{L-2} & h_{L-3} & \cdots & \ldots & h_{1} & h_{0} & & & & & h_{L} & h_{L-1}
\end{array}\right]}
\end{aligned}
$$

Finite-length signals (2)

- cyclic wrapping allows to relate properties of the infinite matrix H to properties of H_{N} :
- If H is an orthogonal matrix, then so is H_{N} (the converse holds provided $N \geq 2 L$)
- All previously introduced ways of expressing orthogonality and reconstruction in terms of polynomials, power series amd Fourier series are thus available

Finite-length signals (3)

- Multiplication with matrices $H_{N}, H_{N}^{\mathrm{t}}$ (similarly G_{N} and $\left.G_{N}^{\mathrm{t}}\right)$ written out explicitly:
- Multiplication of a column vector $\boldsymbol{v}=\left(v_{k}\right)_{0 \leq k<N}$ with matrix H_{N} (from the left):

$$
H_{N} \cdot \boldsymbol{v}=\boldsymbol{w}=\left(w_{j}\right)_{0 \leq j<N / 2} \text { where } w_{j}=\sum_{k=0}^{L} h_{k} v_{2 j+L-k \bmod N}
$$

- adjoint transformation: multiplication of a column vector $\boldsymbol{w}=\left(w_{j}\right)_{0 \leq j<N / 2}$ with the transposed matrix H_{N}^{t} (from the left):

$$
H_{N}^{\mathrm{t}} \cdot \boldsymbol{w}=\boldsymbol{v}=\left(v_{j}\right)_{0 \leq j<N} \text { where }\left\{\begin{array}{l}
v_{2 j}=\sum_{k=0}^{(L-1) / 2} h_{2 k+1} w_{k+j-\frac{L-1}{2} \bmod N} \\
v_{2 j+1}=\sum_{k=0}^{(L-1) / 2} h_{2 k} w_{k+j-\frac{L-1}{2} \bmod N}
\end{array}\right.
$$

Finite-length signals (4)

- Analysis

If $\boldsymbol{h}, \boldsymbol{g}$ are orthogonal filter of the same (even) length $L+1$ which are orthogonal to each other, then for vectors of even length $N \geq L+1$ one has the orthogonal transform

$$
\boldsymbol{a} \longmapsto\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right]=\left[\begin{array}{l}
H_{N} \cdot \boldsymbol{a} \\
G_{N} \cdot \boldsymbol{a}
\end{array}\right]=\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right] \cdot \boldsymbol{a} .
$$

- Synthesis

If the reconstruction condition is satisfied, one can recover \boldsymbol{a} from \boldsymbol{b} und c

$$
\begin{aligned}
{\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right] } & \longmapsto\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right]^{\mathrm{t}}\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right]=\left[\begin{array}{ll}
H_{N}^{\mathrm{t}} & G_{N}^{\mathrm{t}}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{c}
\end{array}\right] \\
& =H_{N}^{\mathrm{t}} \cdot \boldsymbol{b}+G_{N}^{\mathrm{t}} \cdot \boldsymbol{c}=\left(H_{N}^{\mathrm{t}} \cdot H_{N}+G_{N}^{\mathrm{t}} \cdot G_{N}\right) \cdot \boldsymbol{a}=\boldsymbol{a} .
\end{aligned}
$$

Daubechies filters

- In 1988 Ingrid Daubechies ${ }^{1}$ invented a procedure for constructing orthogonal filter pairs $(\boldsymbol{h}, \boldsymbol{g})$ of the same (even) length having highand low-pass properties
- These filters enjoy interesting (and desirable!):
- the scaling and wavelet functions ϕ und ψ associated to them have compact support, i.e., they vanish outside a finite interval
- by increasing the filter length one obtains increasingly smooth (higher differentiability) wavelet functions

[^0]
Construction of the D_{4} filter pair (1)

- Goal: constructing a filter pair $(\boldsymbol{h}, \boldsymbol{g})$ of filters of length 4 s.th.
- $\boldsymbol{h}=\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$ acts as a low-pass filter
- $\boldsymbol{g}=\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ acts as a high-pass filter
- The corresponding Fourier series are

$$
\begin{aligned}
& H(\omega)=h_{0}+h_{1} e^{i \omega}+h_{2} e^{2 i \omega}+h_{3} e^{3 i \omega} \\
& G(\omega)=g_{0}+g_{1} e^{i \omega}+g_{2} e^{2 i \omega}+g_{3} e^{3 i \omega}
\end{aligned}
$$

Construction of the D_{4} filter pair (2)

- The transformation matrices for signals of length N are

$$
\begin{aligned}
& H_{N}=\left[\begin{array}{llllllllll}
h_{3} & h_{2} & h_{1} & h_{0} & & & & & & \\
& & h_{3} & h_{2} & h_{1} & h_{0} & & & & \\
& & & & \ddots & \ddots & \ddots & & & \\
& & & & & & h_{3} & h_{2} & h_{1} & h_{0} \\
h_{1} & h_{0} & & & & & & & h_{3} & h_{2}
\end{array}\right] \\
& G_{N}=\left[\begin{array}{llllllllll}
g_{3} & g_{2} & g_{1} & g_{0} & & & & & & \\
& & g_{3} & g_{2} & g_{1} & g_{0} & & & & \\
& & & & \ddots & \ddots & \ddots & & & \\
& & & & & & g_{3} & g_{2} & g_{1} & g_{0} \\
g_{1} & g_{0} & & & & & & & g_{3} & g_{2}
\end{array}\right]
\end{aligned}
$$

Construction of the D_{4} filter pair (3)

- W_{N} : the transformation matrix for signals of length N of the corresponding wavelet transform contains the low-pass filter \boldsymbol{h} and the high-pass filter \boldsymbol{g} :

$$
W_{N}=\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right]
$$

- The adjoint (= transposed) matrix of W_{N} is

$$
W_{N}^{\mathrm{t}}=\left[\begin{array}{ll}
H_{N}^{\mathrm{t}} & G_{N}^{\mathrm{t}}
\end{array}\right]
$$

Construction of the D_{4} filter pair (4)

- The first important condition is
- The transformation matrix W_{N} shall be orthogonal, i.e.,

$$
W_{N} \cdot W_{N}^{t}=I_{N}
$$

- Written out:

$$
\begin{aligned}
W_{N} \cdot W_{N}^{\mathrm{t}} & =\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right] \cdot\left[\begin{array}{ll}
H_{N}^{\mathrm{t}} & G_{N}^{\mathrm{t}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
H_{N} \cdot H_{N}^{\mathrm{t}} & H_{N} \cdot G_{N}^{\mathrm{t}} \\
G_{N} \cdot H_{N}^{\mathrm{t}} & G_{N} \cdot G_{N}^{\mathrm{t}}
\end{array}\right]=\left[\begin{array}{ll}
I_{N / 2} & 0_{N / 2} \\
0_{N / 2} & I_{N / 2}
\end{array}\right]
\end{aligned}
$$

Construction of the D_{4} filter pair (5)

- There are three types of orthogonality conditions to be satisfied:

1. $H_{N} \cdot H_{N}^{\mathrm{t}}=I_{N / 2}$ (orthogonality of the rows of H_{N})

$$
\begin{aligned}
h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2} & =1 \\
h_{0} h_{2}+h_{1} h_{3} & =0
\end{aligned}
$$

2. $G_{N} \cdot G_{N}^{\mathrm{t}}=I_{N / 2}$ (orthogonality of the rows of G_{N})

$$
\begin{array}{r}
g_{0}^{2}+g_{1}^{2}+g_{2}^{2}+g_{3}^{2}=1 \\
g_{0} g_{2}+g_{1} g_{3}=0
\end{array}
$$

3. $H_{N} \cdot G_{N}^{\mathrm{t}}=0_{N / 2}$ (orthogonality of the rows of G_{N} and H_{N})

$$
\begin{aligned}
h_{0} g_{0}+h_{1} g_{1}+h_{2} g_{2}+h_{3} g_{3} & =0 \\
h_{0} g_{2}+h_{1} g_{3} & =0 \\
h_{2} g_{0}+h_{3} g_{1} & =0
\end{aligned}
$$

Construction of the D_{4} filter pair (6)

- Type 3 is easily satisfied if one puts

$$
g_{j}=(-1)^{j} h_{3-j}(0 \leq j \leq 3)
$$

- With this choice conditions 1. and 2. become equivalent, so that it remains to satisfy condition 1
- Specifying the low-pass condition for \boldsymbol{h} and the high-pass condition for \boldsymbol{g} is done by:
- \boldsymbol{h} is a low-pass filter: $H(\pi)=0$
- \boldsymbol{g} is a high-pass filter: $G(0)=0$
- Both conditions are equivalent in view of the imposed relation between g_{j} and h_{j} :

$$
\begin{aligned}
& H(\pi)=h_{0}-h_{1}+h_{2}-h_{3}=0 \Leftrightarrow \\
& \quad G(0)=g_{0}+g_{1}+g_{2}+g_{3}=h_{3}-h_{2}+h_{1}-h_{0}=0
\end{aligned}
$$

Construction of the D_{4} filter pair (7)

- It remains to determine $\boldsymbol{h}=\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$ such that
$\left(\mathcal{O}_{0}\right)$
$\left(\mathcal{O}_{1}\right)$

$$
\left(\mathcal{T}_{0}\right)
$$

$$
\begin{aligned}
h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2} & =1 \\
h_{0} h_{2}+h_{1} h_{3} & =0 \\
h_{0}-h_{1}+h_{2}-h_{3} & =0
\end{aligned}
$$

- A consequence of these three conditions is

$$
H(0)=G(\pi)=h_{0}+h_{1}+h_{2}+h_{3}= \pm \sqrt{2}
$$

- So one is left with three conditions for the four coefficients $h_{0}, h_{1}, h_{2}, h_{3}$ to be determined.
One expects a one-parameter solution set

Construction of the D_{4} filter pair (8)

- It follows from $\left(\mathcal{O}_{1}\right)$ that

$$
\left(h_{2}, h_{3}\right)=c \cdot\left(-h_{1}, h_{0}\right)
$$

for some $c \in \mathbb{R}, c \neq 0$

- From $\left(\mathcal{O}_{0}\right)$

$$
h_{0}^{2}+h_{1}^{2}=\frac{1}{1+c^{2}}, \quad \text { and thus } \quad h_{1}=\frac{1-c}{1+c} \cdot h_{0}
$$

- Furthermore

$$
h_{0}^{2}=\frac{(1+c)^{2}}{2\left(1+c^{2}\right)^{2}}
$$

- From the two possibilities given by

$$
h_{0}= \pm \frac{1+c}{\sqrt{2}\left(1+c^{2}\right)}
$$

one choses the one with the positive sign

Construction of the D_{4} filter pair (9)

- Thus one arrives at the solution

$$
\begin{aligned}
h_{0} & =\frac{1+c}{\sqrt{2}\left(1+c^{2}\right)} \\
h_{1} & =\frac{1-c}{\sqrt{2}\left(1+c^{2}\right)} \\
h_{2} & =\frac{-c(1-c)}{\sqrt{2}\left(1+c^{2}\right)} \\
h_{3} & =\frac{c(1+c)}{\sqrt{2}\left(1+c^{2}\right)} .
\end{aligned}
$$

Construction of the D_{4} filter pair (10)

- In order to fix the value of the parameter c a second low-pass condition is introduced:

$$
H^{\prime}(\pi)=0
$$

- For the filter coefficients this means

$$
\left(\mathcal{T}_{1}\right) \quad h_{1}-2 h_{2}+3 h_{3}=0
$$

- which can be written as

$$
(1+2 c) h_{1}+3 c_{0}=0
$$

and from

$$
h_{1}=\frac{1-c}{1+c} \cdot h_{0}
$$

this finally leads to

$$
\frac{1-c}{1+c}=-\frac{3 c}{1+2 c}
$$

Construction of the D_{4} filter pair (11)

- One gets

$$
c^{2}+4 c+1=0
$$

- from which one takes the solution $c=-2+\sqrt{3}$, so that

$$
h_{0}= \pm \frac{1+\sqrt{3}}{4 \sqrt{2}}
$$

- Taking the positive sign one finally obtains

$$
\begin{array}{ll}
h_{0}=\frac{1}{4 \sqrt{2}}(1+\sqrt{3}) & g_{0}=\frac{1}{4 \sqrt{2}}(1-\sqrt{3}) \\
h_{1}=\frac{1}{4 \sqrt{2}}(3+\sqrt{3}) & g_{1}=\frac{-1}{4 \sqrt{2}}(3-\sqrt{3}) \\
h_{2}=\frac{1}{4 \sqrt{2}}(3-\sqrt{3}) & g_{2}=\frac{1}{4 \sqrt{2}}(3+\sqrt{3}) \\
h_{3}=\frac{1}{4 \sqrt{2}}(1-\sqrt{3}) & g_{3}=\frac{-1}{4 \sqrt{2}}(1+\sqrt{3})
\end{array}
$$

This is the D_{4} filter pair

Construction of the D_{6} filter pair (1)

- The construction of a filter pair $(\boldsymbol{h}, \boldsymbol{g})$ with $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{5}\right)$ and $\boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{5}\right)$ proceeds along the same lines
- The filters to be determined are required to be related by

$$
g_{j}=(-1)^{j} h_{5-j} \quad(0 \leq j \leq 5)
$$

\Rightarrow many orthogonality conditions are automatically satisfied

- Three orthogonality conditions remain to be satisfied:

$\left(\mathcal{O}_{0}\right)$	$h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}+h_{4}^{2}+h_{5}^{2}=1$
$\left(\mathcal{O}_{1}\right)$	$h_{0} h_{2}+h_{1} h_{3}+h_{2} h_{4}+h_{3} h_{5}=0$
$\left(\mathcal{O}_{2}\right)$	$h_{0} h_{4}+h_{1} h_{5}=0$

- The low-pass properties of \boldsymbol{h} are specified as follows:

$\left(\mathcal{T}_{0}\right)$	$H(\pi)=0$	\Leftrightarrow	$h_{0}-h_{1}+h_{2}-h_{3}+h_{4}-h_{5}=0$
$\left(\mathcal{T}_{1}\right)$	$H^{\prime}(\pi)=0$	\Leftrightarrow	$h_{1}+2 h_{2}-3 h_{3}+4 h_{4}-5 h_{5}=0$
$\left(\mathcal{T}_{2}\right)$	$H^{\prime \prime}(\pi)=0$	\Leftrightarrow	$h_{1}+4 h_{2}-9 h_{3}+16 h_{4}-25 h_{5}=0$

Construction of the D_{6} filter pair (2)

- A real solution of these 6 conditions $\left(\mathcal{O}_{0}\right),\left(\mathcal{O}_{1}\right),\left(\mathcal{O}_{2}\right),\left(\mathcal{T}_{0}\right),\left(\mathcal{T}_{1}\right),\left(\mathcal{T}_{2}\right)$ for h_{0}, \ldots, h_{5} is given by

$$
\begin{array}{ll}
h_{0}=\frac{\sqrt{2}}{32}(1+\sqrt{10}+\sqrt{5+2 \sqrt{10}}) & \approx 0.332671 \\
h_{1}=\frac{\sqrt{2}}{32}(5+\sqrt{10}+3 \sqrt{5+2 \sqrt{10}}) & \approx 0.806892 \\
h_{2}=\frac{\sqrt{2}}{32}(10-2 \sqrt{10}+2 \sqrt{5+2 \sqrt{10}}) & \approx 0.459878 \\
h_{3}=\frac{\sqrt{2}}{32}(10-2 \sqrt{10}-2 \sqrt{5+2 \sqrt{10}}) & \approx-0.135011 \\
h_{4}=\frac{\sqrt{2}}{32}(5+\sqrt{10}-3 \sqrt{5+2 \sqrt{10}}) & \approx-0.085441 \\
h_{5}=\frac{\sqrt{2}}{32}(1+\sqrt{10}-\sqrt{5+2 \sqrt{10}}) & \approx 0.035226
\end{array}
$$

These are the coefficients of the low-pass filter of the D_{6} filter pair

Construction of the $D_{2 M}$ filter pair (1)

- Now let $L=2 M-1$. The construction should yield filter pairs $(\boldsymbol{h}, \boldsymbol{g})$ with $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{L}\right), \quad \boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{L}\right)$, where

$$
g_{j}=(-1)^{j} h_{L-j} \quad(0 \leq j \leq L)
$$

- The relevant M orthogonality conditions are:

$$
\left(\mathcal{O}_{m}\right) \quad \sum_{k=2 m}^{L} h_{k} h_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<M)
$$

- For the Fourier series $H(\omega)=\sum_{k=0}^{L} h_{k} e^{i k \omega}$ this amounts to

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=2
$$

Construction of the $D_{2 M}$ filter pair (2)

- Furthermore, there are M low-pass conditions, which are specified using the derivatives of the Fourier series $H(\omega)$ at $\omega=\pi$:

$$
\left(\mathcal{T}_{m}\right) \quad H^{(m)}(\pi)=0 \quad(0 \leq m<M)
$$

- For the filter coefficients these are the moment conditions

$$
\left(T_{m}\right) \quad \sum_{k=0}^{L}(-1)^{k} k^{m} h_{k}=0 \quad(0 \leq m<M)
$$

- In total one has $2 M=L+1$ conditions for the $L+1$ coefficients $h_{0}, h_{1}, \ldots, h_{L}$, of which
- M are linear (low-pass) and
- M are non-linear (quadratic, orthogonality)
- One always has

$$
H(0)=\sum_{k=0}^{L} h_{k}= \pm \sqrt{2}
$$

Construction of the $D_{2 M}$ filter pair (3)

- The low-pass conditions can be viewed algebraically by considering the polynomial (" z-transform")

$$
h(z)=\sum_{k=0}^{L} h_{k} z^{k}, \text { so that } H(\omega)=h\left(e^{i \omega}\right)
$$

- The low-pass conditions are then equivalent to
- For $z=-1$ the polynomial $h(z)$ has a root of multiplicity $>M$
- Another equivalent statement is
- $h(z)=(z+1)^{M} \cdot q(z)$ for some polynomial $q(z)$ of degree $M-1$

Construction of the $D_{2 M}$ filter pair (4)

Theorem (Daubechies)

- The system consisting of
- the M orthogonality conditions $\left(\mathcal{O}_{m}\right)_{0 \leq m<M}$ and the
- the M low-pass conditions $\left(\mathcal{T}_{M}\right)_{0 \leq m<M}$
for filters of length $2 M$ has $2^{\lfloor(2 M+1) / 4\rfloor}$ real solutions
- There is exactly one (!) solution for which $\left|z_{k}\right|>1$ holds for all roots of the corresponding polynomial $q(z)$
- This solution specifies the Daubechies low-pass filter \boldsymbol{h} von $D_{2 M}$

Construction of the $D_{2 M}$ filter pair (5)

- The Daubechies low-pass filter D_{2} with $\boldsymbol{h}=\left(h_{0}, h_{1}\right)$ is determined via the conditions

$$
h_{0}^{2}+h_{1}^{2}=1, \quad h_{0}-h_{1}=0
$$

- Consequently

$$
\boldsymbol{h}=(1 / \sqrt{2}, 1 / \sqrt{2}), \quad \boldsymbol{g}=(1 / \sqrt{2},-1 / \sqrt{2})
$$

- This is nothing but the HAAR-filter pair!

Construction of the $D_{2 M}$ filter pair (6)

- Actually, constructing DaUbechies filters is not a simple task!
- Let $L=2 M-1$. One wants a filter $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{L}\right)$ for which the orthogonality condition

$$
h(z) \cdot h\left(\frac{1}{z}\right)+h(-z) \cdot h\left(-\frac{1}{z}\right)=2
$$

is satisfied

- On the complex unit circle one has $\bar{z}=1 / z$. Since the filter coefficients should be real, one may write

$$
|h(z)|^{2}+|h(-z)|^{2}=2 \text { for }|z|=1
$$

- The low-pass conditions require that

$$
h(z)=(1+z)^{M} \cdot q(z)
$$

for some real polynomial $q(z)$ of degree $M-1$

Construction of the $D_{2 M}$ filter pair (7)

Some cosmetic modifications:

- Instead of $h(z)$ consider the polynomial $h(z) / \sqrt{2}$, so that the " 2 " on the right-hand side of the orthogonality condition can be replaced by a " 1 "
- The modified polynomial shall be written as

$$
\widetilde{h}(z)=\frac{1}{\sqrt{2}} h(z)=\left(\frac{1+z}{2}\right)^{M} \cdot q_{M-1}(z)
$$

- which does not change the roots of the involved polynomials
- The subscript $M-1$ of the polynomial on the right indicates its degree, which will be practiced in what follows

Construction of the $D_{2 M}$ filter pair (8)

- For z on the complex unit circle, i.e., $z=e^{i \phi}$ one has

$$
\begin{aligned}
& \left|\frac{1+z}{2}\right|^{2}=\frac{1+\cos \phi}{2}=1-\sin ^{2} \frac{\phi}{2}, \\
& \left|\frac{1-z}{2}\right|^{2}=\frac{1-\cos \phi}{2}=\sin ^{2} \frac{\phi}{2} .
\end{aligned}
$$

- The equation

$$
|\widetilde{h}(z)|^{2}+|\widetilde{h}(-z)|^{2}=1
$$

for $|z|=1$ can be written as

$$
\left(1-\sin ^{2} \frac{\phi}{2}\right)^{M} \cdot\left|q_{M-1}\left(e^{i \phi}\right)\right|^{2}+\left(\sin ^{2} \frac{\phi}{2}\right)^{M} \cdot\left|q_{M-1}\left(-e^{i \phi}\right)\right|^{2}=1
$$

Construction of the $D_{2 M}$ filter pair (9)

- Since $q_{M-1}(z)$ should be a polynomial with real coefficients,
- $\left|q_{M-1}\left(e^{i \phi}\right)\right|^{2}$ can be written as a polynomial in $\cos \phi$,
- and also as a polynomial (of degree $M-1$) in $1-\sin ^{2} \frac{\phi}{2}$,
- and as a polynomial $p_{M-1}(y)$ in $y=\sin ^{2} \frac{\phi}{2}$
- Between the new variable $y=\sin ^{2} \frac{\phi}{2}$ and the original variable $z=e^{i \phi}$ one has the relation

$$
y=\frac{1}{2}-\frac{1}{4}\left(z+\frac{1}{z}\right)
$$

Construction of the $D_{2 M}$ filter pair (10)

- From

$$
\left|q_{M-1}\left(e^{i \phi}\right)\right|^{2}=p_{M-1}(y)
$$

- one has

$$
\left|q_{M-1}\left(-e^{i \phi}\right)\right|^{2}=p_{M-1}(1-y)
$$

- To summarize: one is looking for a polynomial $p_{M-1}(y)$ with the two properties:
$-(1-y)^{M} \cdot p_{M-1}(y)+y^{M} \cdot p_{M-1}(1-y)=1$,
- $p_{M-1}(y) \geq 0$ for $0 \leq y \leq 1$

Construction of the $D_{2 M}$ filter pair (11)

- The Daubechies polynomials $P_{M}(y)$ are defined as

$$
P_{M}(y)=\sum_{m=0}^{M}\binom{M+m}{m} y^{m}
$$

- The first few of these polynomials are

$$
\begin{aligned}
& P_{0}(y)=1 \\
& P_{1}(y)=1+2 y \\
& P_{2}(y)=1+3 y+6 y^{2} \\
& P_{3}(y)=1+4 y+10 y^{2}+20 y^{3}
\end{aligned}
$$

Construction of the $D_{2 M}$ filter pair (12)

- These polynomials can be written as

$$
P_{M}(y)=\sum_{k=0}^{M}\binom{2 M+1}{k} y^{k}(1-y)^{M-k}
$$

(see Lecture Notes)

- Claim: The Daubechies polynomials satisfy

$$
(1-y)^{M+1} \cdot P_{M}(y)+y^{M+1} \cdot P_{M}(1-y)=1
$$

- Obviously $P_{M}(y) \geq 0$ for $0 \leq y \leq 1$

Construction of the $D_{2 M}$ filter pair (13)

Proof of the claim:

- Use the binomial formula to obtain

$$
\begin{aligned}
& (1-y)^{M+1} \cdot P_{M}(y)+y^{M+1} \cdot P_{M}(1-y) \\
= & \sum_{k=0}^{M}\binom{2 M+1}{k} y^{k}(1-y)^{2 M+1-k}+\sum_{k=0}^{M}\binom{2 M+1}{k}(1-y)^{k} y^{2 M+1-k} \\
= & \sum_{k=0}^{2 M-1}\binom{2 M+1}{k} y^{k}(1-y)^{2 M+1-k}=(y+(1-y))^{2 M+1}=1
\end{aligned}
$$

Construction of the $D_{2 M}$ filter pair (14)

- Now let

$$
\widehat{P}_{2 M-1}(z)=(1-y)^{M} \cdot P_{M-1}(y)=\sum_{m=-2 M+1}^{2 M-1} a_{m} z^{m}
$$

- The relation between y and z is

$$
y=\frac{1}{2}-\frac{1}{4}\left(z+\frac{1}{z}\right)
$$

- For $\widehat{P}_{2 M-1}(z)$ one has
(1) For $z \in \mathbb{C}_{\neq 0}$:

$$
\widehat{P}_{2 M-1}(z)+\widehat{P}_{2 M-1}(-z)=1
$$

(2) For $z \in \mathbb{C}_{\neq 0}$:

$$
\widehat{P}_{2 M-1}(z)=\widehat{P}_{2 M-1}(1 / z)
$$

(3) For $z \in \mathbb{C}$ with $|z|=1: \widehat{P}_{2 M-1}(z) \geq 0$

Construction of the $D_{2 M}$ filter pair (15)

- $\widehat{P}_{2 M-1}(z)$ is a "Laurent polynomial", in which monomials with negative exponents may appear
- This can be turned into a polynomial by putting

$$
\mathbf{P}_{4 M-2}(z)=z^{2 M-1} \cdot \widehat{P}_{2 M-1}(z)
$$

- $\mathbf{P}_{4 M-2}(z)$ has $z=-1$ as root of multiplicity $2 M$ and one has $\mathbf{P}_{4 M-2}(1)=1$
- If $z_{0} \in \mathbb{C}_{\neq 0}$ is a root of $\mathbb{P}_{4 M-2}(z)$, then so are $\overline{z_{0}}, 1 / z_{0}$ and $1 / \overline{z_{0}}$, and they are of the same order

Construction of the $D_{2 M}$ filter pair (16)

- If $z_{0} \neq 0$ real, then for $|z|=1$:

$$
\left|\left(z-z_{0}\right)\left(z-z_{0}^{-1}\right)\right|=\frac{1}{\left|z_{0}\right|}\left|z-z_{0}\right|^{2}
$$

- If $z_{0} \neq 0$ is not real, then for $|z|=1$:

$$
\left|\left(z-z_{0}\right)\left(z-{\overline{z_{0}}}^{-1}\right)\left(z-\overline{z_{0}}\right)\left(z-z_{0}^{-1}\right)\right|=\frac{1}{\left|z_{0}\right|^{2}}\left|z-z_{0}\right|^{2}\left|z-\overline{z_{0}}\right|^{2}
$$

Construction of the $D_{2 M}$ filter pair (17)

This leads to the desired result:

- There exists a real polynomial $\mathbf{Q}_{M-1}(z)$ s.th.

$$
\mathbf{P}_{2 M-1}(z)=\left|\frac{1+z}{2}\right|^{2 M} \cdot\left|\mathbf{Q}_{M-1}(z)\right|^{2}
$$

- This needs to be shown only for $|z|=1$, it then follows for all complex z
- For $|z|=1$ the assertion follows from the previous theorem by grouping together corresponding roots

Once again D_{4}

- We have

$$
P_{2}(y)=1+3 y+6 y^{2}
$$

- Substitution gives

$$
\mathbf{P}_{6}(z)=-\frac{1}{32}\left(-z^{6}+9 z^{4}+16 z^{3}+9 z^{2}-1\right)
$$

- This can be factored into

$$
-\frac{1}{32}\left(z^{2}-4 z+1\right)(z+1)^{4}
$$

and this exhibits $z=-1$ as a root of multiplicity 4

- The quadratic factor has (real) roots $z=2 \pm \sqrt{3}$
- Setting $\alpha=2-\sqrt{3}$ one obtains

$$
\begin{aligned}
& h(z)=\frac{1}{4} \frac{(z+1)^{2}(z-2+\sqrt{3})}{1 / 2 \sqrt{6}-1 / 2 \sqrt{2}} \\
& \quad \approx 0.48296291 z^{3}+0.83651630 z^{2}+0.2241438 z-0.12940952
\end{aligned}
$$

Once again $D_{6}(1)$

- We have

$$
P_{3}(y)=1+4 y+10 y^{2}+20 y^{3}
$$

- Substitution gives

$$
\mathbf{P}_{10}(z)=\frac{1}{512}\left(3 z^{10}-25 z^{8}+150 z^{6}+256 z^{5}+150 z^{4}-25 z^{2}+3\right)
$$

- This can be factored into

$$
\frac{1}{512}\left(3 z^{4}-18 z^{3}+38 z^{2}-18 z+3\right)(z+1)^{6}
$$

and this exhibits $z=-1$ as a root of multiplicity 6

Once again $D_{6}(2)$

- The factor of degree 4 has roots

$$
\begin{aligned}
\alpha & =0.2872513780+0.1528923339 i, \\
\alpha^{-1} & =2.712748622-1.443886783 i, \\
\bar{\alpha} & =0.2872513780-0.1528923339 i, \\
\bar{\alpha}^{-1} & =2.712748622+1.443886783 i
\end{aligned}
$$

- This gives

$$
\begin{aligned}
h(z)= & \frac{\sqrt{3}}{16|\alpha|} \cdot(z+1)^{3} \cdot(z-\alpha) \cdot(z-\bar{\alpha}) \\
\approx & 0.3326705530 z^{5}+0.8068915095 z^{4}+0.4598775023 z^{3} \\
& -0.1350110200 z^{2}-0.08544127389 z+0.03522629187
\end{aligned}
$$

Non-causal filters (1)

- Consider more generally finite filters $\boldsymbol{h}=\left(h_{\ell}, h_{\ell+1}, \ldots, h_{L}\right)$ with $\ell<L$ and $\ell \leq 0 \leq L$, so that the filter has length $L-\ell+1$
- Because of 2-downsampling the filter length must be even, $L-\ell+1=2 M$ say, so that $\ell \not \equiv L \bmod 2$
- One says that ℓ is the start index and L als den stop index of the filter
- Orthogonality and low-pass properties of filters are expressed using

$$
h(z)=\sum_{k=\ell}^{L} h_{k} z^{k} \quad \text { resp. } \quad H(\omega)=\sum_{k=\ell}^{L} h_{k} e^{i \omega}=h\left(e^{i \omega}\right) .
$$

Non-causal filters (2)

- The orthogonality conditions are again written as

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=2,
$$

- which is equivalent to

$$
\sum_{k=\ell+2 m}^{L} h_{k} h_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<M)
$$

Non-causal filters (3)

- If $\boldsymbol{g}=\left(g_{\ell}, \ldots, g_{L}\right)$ is another such filter with Fourier series $G(\omega)$, then the orthogonality of \boldsymbol{g} and \boldsymbol{h} is written as

$$
H(\omega) \cdot \overline{G(\omega)}+H(\omega+\pi) \cdot \overline{G(\omega+\pi)}=0
$$

- or equivalently

$$
\sum_{k=\ell+2 m}^{L} h_{k} g_{k-2 m}=0 \quad(0 \leq m<M)
$$

Non-causal filters (4)

- If \boldsymbol{h} is an orthogonal filter, then \boldsymbol{g} can be defined by

$$
G(\omega)=e^{i(n \omega+b)} \overline{H(\omega+\pi)}
$$

and this filter is automatically orthogonal

$$
|G(\omega)|^{2}+|G(\omega+\pi)|^{2}=2
$$

- If n is any odd integer (and b any real number), then the reconstruction condition

$$
H(\omega) \cdot \overline{G(\omega)}+H(\omega+\pi) \cdot \overline{G(\omega+\pi)}=0
$$

is also satisfied

Non-causal filters (5)

- Looking at filter coefficients, this means

$$
g_{k}=-e^{i b}(-1)^{k} h_{n-k}
$$

- Usually one takes $b=\pi$, so that this simplifies to

$$
g_{k}=(-1)^{k} h_{n-k}
$$

- In order to guarantee that \boldsymbol{g} has start index ℓ and stop index L one has to take $n=L+\ell$

Coiflet filters (1)

- An obvious idea for constructing a low-pass filter $\boldsymbol{h}=\left(h_{\ell}, \ldots, h_{L}\right)$ is, apart from requiring orthogonality conditions

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=2
$$

and low-pass conditions at $\omega=\pi$, viz.,

$$
H^{(m)}(\pi)=0 \quad(m=0,1,2, \ldots)
$$

is to require low-pass conditions which specify the Fourier series $H(\omega)$ at $\omega=0$

Coiflet filters (2)

- The condition

$$
H(0)=\sqrt{2}
$$

is already satisfied

- In addition one may request for

$$
H^{(m)}(0)=0 \quad(m=1,2, \ldots)
$$

which determine the behavior of $H(\omega)$ in the vicinity of $\omega=0$, so that the values of the function are close to $\sqrt{2}=H(0)$

- This is the idea behind Coiflet filters, suggested by R. Coifman and realized by I. Daubechies (see the second one of the articles cited above)

Coiflet filters (3)

- The construction for these filters starts with the Daubechies polynomials

$$
P_{K}(y)=\sum_{k=0}^{K}\binom{K+k}{k} y^{k}
$$

- with their characteristic property

$$
(*) \quad(1-y)^{K} \cdot P_{K-1}(y)+y^{K} \cdot P_{K-1}(1-y)=1
$$

Coiflet filters (4)

- One makes an Ansatz for the Fourier series as

$$
(* *) \quad H(\omega)=\left.\sqrt{2}(1-y)^{K} \cdot\left[P_{K-1}(y)+y^{K} \cdot A\left(e^{i \omega}\right)\right]\right|_{y \leftarrow \sin ^{2}(\omega / 2)}
$$

where $A(z)=\sum_{k=0}^{2 K-1} a_{k} z^{k}$ is to be a polynomial of degree $<2 K$

- From property $(*)$ one can write

$$
\begin{aligned}
& (* * *) \quad H(\omega)= \\
& \sqrt{2}+\left.\sqrt{2} y^{K} \cdot\left[-P_{K-1}(1-y)+(1-y)^{K} \cdot A\left(e^{i \omega}\right)\right]\right|_{y \leftarrow \sin ^{2}(\omega / 2)}
\end{aligned}
$$

Coiflet filters (5)

- Looking at

$$
\left.(1-y)^{K}\right|_{y \leftarrow \sin ^{2}(\omega / 2)}=\cos ^{2 K}(\omega / 2)=\left[\frac{1}{2} e^{-i \omega / 2}\left(1+e^{i \omega}\right)\right]^{2 K},
$$

one realizes from $(* *)$ that $H(\omega)$ has a root of multiplicity $2 K$ for $\omega=\pi$:

$$
H^{(m)}(\pi)=0(0 \leq m<2 K)
$$

Coiflet filters (6)

- Looking at

$$
\left.y^{M}\right|_{y \leftarrow \sin ^{2}(\omega / 2)}=\sin ^{2 M}(\omega / 2)=\left[\frac{i}{2} e^{-i \omega / 2}\left(1-e^{i \omega}\right)\right]^{2 M},
$$

one realizes from $(* * *)$, that $H(\omega)-\sqrt{2}$ has a root of multiplicity $2 K$ for $\omega=0$:

$$
H(0)=\sqrt{2} \quad \text { and } H^{(m)}(0)=0(1 \leq m<2 K)
$$

Coiflet filters (7)

- The previous assertions holds for any polynomial $A(z)$. The essential step is contained in the following claim (difficult, thus cited without proof) :
- The $2 K$ coefficients $a_{0}, a_{1}, \ldots, a_{2 K-1}$ of $A(z)$ can be chosen so that the orthogonality condition

$$
|H(\omega)|^{2}+|H(\omega+\pi)|^{2}=2
$$

is satisfied

Coiflet filters (8)

- Now it must be clarified
- how long the associated filter $\boldsymbol{h}=\left(h_{\ell}, \ldots, h_{L}\right)$ is
- and what its start index ℓ and its stop index L are
- Write the right hand side of $(* *)$ as a polynomial in $z=e^{i \omega}$. Reminder:

$$
\begin{aligned}
& y=\sin ^{2}(\omega / 2)=\frac{1}{4}\left(2-z-\frac{1}{z}\right) \\
& 1-y=\cos ^{2}(\omega / 2)=\frac{1}{4}\left(2+z+\frac{1}{z}\right)
\end{aligned}
$$

Coiflet filters (9)

- Substituting in $(* *)$ gives
- $(1-y)^{K}$ has terms z^{k} for $-K \leq k \leq K$;
- $P_{K-1}(1-y)$ has terms z^{k} for $-K+1 \leq k \leq K-1$;
- y^{K} has terms z^{k} for $-K \leq k \leq K$;
- $A\left(e^{i \omega}\right)$ has terms z^{k} for $0 \leq k \leq 2 K-1$
- The filter $H(\omega)$ specified by $(* *)$ with parameter K
- has start index $\ell=-2 K$
- and stop index $L=4 K-1$,
- so that its length is $2 M=6 K$
- This $\boldsymbol{h}=\left(h_{-2 K}, \ldots, h_{4 K-1}\right)$ defines the Coiflet filter $C_{6 K}$

Coiflet filters (10)

- For computing $C_{6 K}$ the following are relevant:
- Orthogonality conditions

$$
\sum_{k=-2 K+2 m}^{4 K-1} h_{k} h_{k-2 m}=\delta_{m, 0} \quad(0 \leq m<3 K)
$$

- Low-pass conditions

$$
\begin{array}{lll}
H^{(m)}(0)=0 & (1 \leq m<2 K) & H(0)=\sqrt{2} \\
H^{(m)}(\pi)=0 & (0 \leq m<2 K) &
\end{array}
$$

- The orthogonal high-pass filter $G(\omega)$ which complements the low-pass filter $H(\omega)$ can be defined by

$$
G(\omega)=e^{i n+b} \cdot \overline{H(\omega+\pi)}
$$

Coiflet-Filter $C_{6}(1)$

- In case $K=1$ the polynomial $A(z)$ has degree $2 K-1=1$. The ansatz for $H(\omega)$ resp. $h(z)$ then is

$$
\begin{aligned}
h(z)= & \left(\frac{1}{2}+\frac{1}{4} z+\frac{1}{4} z^{-1}\right)\left(1+\left(\frac{1}{2}-\frac{1}{4} z-\frac{1}{4} z^{-1}\right)\left(a_{0}+a_{1} z\right)\right) \\
= & \left(-\frac{1}{16} a_{0} z^{-2}+\left(-\frac{1}{16} a_{1}+\frac{1}{4}\right) z^{-1}+\frac{1}{8} a_{0}+\frac{1}{2}\right. \\
& \left.+\left(\frac{1}{8} a_{1}+\frac{1}{4}\right) z-\frac{1}{16} a_{0} z^{2}-\frac{1}{16} a_{1} z^{3}\right)
\end{aligned}
$$

- Thus $\boldsymbol{h}=\left(h_{-2}, \ldots, h_{3}\right)$ with the coefficients a_{0}, a_{1} to be determined is given by

$$
\sqrt{2} \cdot\left[-\frac{1}{16} a_{0},\left(-\frac{1}{16} a_{1}+\frac{1}{4}\right),\left(\frac{1}{8} a_{0}+\frac{1}{2}\right),\left(\frac{1}{8} a_{1}+\frac{1}{4}\right),-\frac{1}{16} a_{0},-\frac{1}{16} a_{1}\right]
$$

Coiflet filter C_{6} (2)

- The orthogonality condition $\sum_{k} h_{k}^{2}=1$ gives

$$
3 a_{0}^{2}+3 a_{1}^{2}+4 a_{1}+48+16 a_{0}=64
$$

- The orthogonality condition $\sum_{k} h_{k} h_{k+2}=0$ gives

$$
-a_{0}^{2}-4 a_{0}-a_{1}^{2}+4=0
$$

- The orthogonality condition $\sum_{k} h_{k} h_{k+4}=0$ gives

$$
a_{0}^{2}+a_{1}^{2}-4 a_{1}=0
$$

- The solution of these three equations is

$$
a_{0}=1-\alpha, a_{1}=\alpha=\sqrt{1-6 z+2 z^{2}}
$$

Coiflet-Filter C_{6} (3)

- This leads to

$$
h=\sqrt{2} \cdot\left[-\frac{1-\alpha}{16},-\frac{\alpha}{16}+\frac{1}{4}, \frac{5}{8}-\frac{\alpha}{8}, \frac{\alpha}{8}+\frac{1}{4},-\frac{1-\alpha}{16},-\frac{\alpha}{16}\right]
$$

- and floating-point approximations of the filter coefficients are

h_{-2}	-0.0727326195
h_{-1}	0.3378976624
h_{0}	0.8525720199
h_{1}	0.3848648468
h_{2}	-0.0727326195
h_{3}	-0.0156557281

Coiflet filter C_{6} (4)

- Since start and stop indices of the filter are known ($\ell=-2$ and $L=3$), one many make an ansatz for $\boldsymbol{h}=\left(h_{-2}, \ldots, h_{3}\right)$ with undetermined coefficients and try to solve
- the three orthogonality conditions

$$
\sum_{k} h_{k}^{2}=1 \quad \sum_{k} h_{k} h_{k+2}=0 \quad \sum_{k} h_{k} h_{k+4}=0
$$

- and the four low-pass conditions

$$
H(0)=\sqrt{2} \quad H(\pi)=0 \quad H^{\prime}(0)=0 \quad H^{\prime}(\pi)=0
$$

directly

Coiflet filter C_{6} (5)

- The following are the relevant equations:

$$
\begin{aligned}
h_{-2}^{2}+h_{-1}^{2}+h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2} & =1 \\
h_{-2} h_{0}+h_{-1} h_{1}+h_{0} h_{2}+h_{1} h_{3} & =0 \\
h_{-2} h_{2}+h_{-1} h_{3} & =0 \\
h_{-2}+h_{-1}+h_{0}+h_{1}+h_{2}+h_{3} & =\sqrt{2} \\
h_{-2}-h_{-1}+h_{0}-h_{1}+h_{2}-h_{3} & =0 \\
-2 h_{-2}-h_{-1}+h_{1}+2 h_{2}+3 h_{3} & =0 \\
2 h_{-2}-h_{-1}+h_{1}-2 h_{2}+3 h_{3} & =0
\end{aligned}
$$

Coiflet filter C_{6} (6)

- This gives two solutions:

$$
\left[\begin{array}{ccc}
h_{-2} & \frac{1}{32} \sqrt{2}+\frac{1}{32} \sqrt{14} & \frac{1}{32} \sqrt{2}-\frac{1}{32} \sqrt{14} \\
h_{-1} & \frac{5}{32} \sqrt{2}-\frac{1}{32} \sqrt{14} & \frac{5}{32} \sqrt{2}+\frac{1}{32} \sqrt{14} \\
h_{0} & \frac{7}{16} \sqrt{2}-\frac{1}{16} \sqrt{14} & \frac{7}{16} \sqrt{2}+\frac{1}{16} \sqrt{14} \\
h_{1} & \frac{7}{16} \sqrt{2}+\frac{1}{16} \sqrt{14} & \frac{7}{16} \sqrt{2}-\frac{1}{16} \sqrt{14} \\
h_{2} & \frac{1}{32} \sqrt{2}+\frac{1}{32} \sqrt{14} & \frac{1}{32} \sqrt{2}-\frac{1}{32} \sqrt{14} \\
h_{3} & -\frac{3}{32} \sqrt{2}-\frac{1}{32} \sqrt{14} & -\frac{3}{32} \sqrt{2}+\frac{1}{32} \sqrt{14}
\end{array}\right]
$$

Coiflet-Filter $C_{6}(7)$

- and the floating-point approximation is

h_{-2}	0.1611209671	-0.07273261949
h_{-1}	0.1040440758	0.3378976624
h_{0}	0.3848648467	0.8525720201
h_{1}	0.8525720201	0.3848648467
h_{2}	0.1611209671	-0.07273261949
h_{3}	-0.2495093147	-0.0156557281

Coiflet filter C_{12} (1)

- In the case $K=2$ one looks for a filter with start index $\ell=-4$ and stop index $L=7$
- Proceeding as in the previous section leads to the following system of equations for the filter coefficients h_{-4}, \ldots, h_{7} :

Coiflet filter C_{12} (2)

The orthogonality conditions

$$
\begin{array}{r}
h_{-4}^{2}+h_{-3}^{2}+h_{-2}^{2}+h_{-1}^{2}+h_{0}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}+h_{4}^{2}+h_{5}^{2}+h_{6}^{2}+h_{7}^{2}=1 \\
h_{-4} h_{-2}+h_{-3} h_{-1}+h_{-2} h_{0}+h_{-1} h_{1}+h_{0} h_{2}+h_{1} h_{3}+h_{2} h_{4}+h_{3} h_{5}+h_{4} h_{6}+h_{5} h_{7}=0 \\
h_{-4} h_{0}+h_{-3} h_{1}+h_{-2} h_{2}+h_{-1} h_{3}+h_{0} h_{4}+h_{1} h_{5}+h_{2} h_{6}+h_{3} h_{7}=0 \\
h_{-4} h_{2}+h_{-3} h_{3}+h_{-2} h_{4}+h_{-1} h_{5}+h_{0} h_{6}+h_{1} h_{7}=0 \\
h_{-4} h_{4}+h_{-3} h_{5}+h_{-2} h_{6}+h_{-1} h_{7}=0 \\
h_{-4} h_{6}+h_{-3} h_{7}=0
\end{array}
$$

Coiflet filter C_{12} (3)

The low-pass conditions

$$
\begin{array}{r}
h_{-4}+h_{-3}+h_{-2}+h_{-1}+h_{0}+h_{1}+h_{2}+h_{3}+h_{4}+h_{5}+h_{6}+h_{7}=\sqrt{2} \\
h_{-4}-h_{-3}+h_{-2}-h_{-1}+h_{0}-h_{1}+h_{2}-h_{3}+h_{4}-h_{5}+h_{6}-h_{7}=0 \\
4 h_{-4}+3 h_{-3}+2 h_{-2}+h_{-1}-h_{1}-2 h_{2}-3 h_{3}-4 h_{4}-5 h_{5}-6 h_{6}-7 h_{7}=0 \\
4 h_{-4}-3 h_{-3}+2 h_{-2}-h_{-1}+h_{1}-2 h_{2}+3 h_{3}-4 h_{4}+5 h_{5}-6 h_{6}+7 h_{7}=0 \\
-16 h_{-4}-9 h_{-3}-4 h_{-2}-h_{-1}-h_{1}-4 h_{2}-9 h_{3}-16 h_{4}-25 h_{5}-36 h_{6}-49 h_{7}=0 \\
-16 h_{-4}+9 h_{-3}-4 h_{-2}+h_{-1}+h_{1}-4 h_{2}+9 h_{3}-16 h_{4}+25 h_{5}-36 h_{6}+49 h_{7}=0 \\
-64 h_{-4}-27 h_{-3}-8 h_{-2}-h_{-1}+h_{1}+8 h_{2}+27 h_{3}+64 h_{4}+125 h_{5}+216 h_{6}+343 h_{7}=0 \\
-64 h_{-4}+27 h_{-3}-8 h_{-2}+h_{-1}-h_{1}+8 h_{2}-27 h_{3}+64 h_{4}-125 h_{5}+216 h_{6}-343 h_{7}=0
\end{array}
$$

Coiflet filter C_{12} (4)

The 8 low-pass conditions are linear, so one first uses these in order to eliminate 8 out of 12 variables:

$$
\begin{aligned}
h_{-4} & =4 h_{6}+h_{4} \\
h_{-3} & =h_{5}+4 h_{7}-1 / 32 \sqrt{2} \\
h_{-2} & =-15 h_{6}-4 h_{4} \\
h_{-1} & =-4 h_{5}-15 h_{7}+\frac{9}{32} \sqrt{2} \\
h_{0} & =20 h_{6}+6 h_{4}+1 / 2 \sqrt{2} \\
h_{1} & =6 h_{5}+20 h_{7}+\frac{9}{32} \sqrt{2} \\
h_{2} & =-10 h_{6}-4 h_{4} \\
h_{3} & =-4 h_{5}-10 h_{7}-1 / 32 \sqrt{2}
\end{aligned}
$$

Coiflet filter C_{12} (5)

It remains to solve the following non-linear system of equations:

$$
\begin{array}{r}
\frac{21 \sqrt{2}}{16} h_{5}+\frac{51 \sqrt{2}}{16} h_{7}+20 \sqrt{2} h_{6}+6 \sqrt{2} h_{4}+448 h_{5} h_{7}+448 h_{4} h_{6}+742 h_{7}^{2}+70 h_{4}^{2}+70 h_{5}^{2}+742 h_{6}^{2}=\frac{23}{128} \\
-\frac{3 \sqrt{2}}{8} h_{5}-\frac{7 \sqrt{2}}{16} h_{7}-\frac{25 \sqrt{2}}{2} h_{6}-4 \sqrt{2} h_{4}-350 h_{5} h_{7}-350 h_{4} h_{6}-560 h_{7}^{2}-56 h_{4}^{2}-56 h_{5}^{2}-560 h_{6}^{2}=\frac{63}{512} \\
-\frac{5 \sqrt{2}}{8} h_{5}-\frac{15 \sqrt{2}}{8} h_{7}+2 \sqrt{2} h_{6}+\sqrt{2} h_{4}+160 h_{5} h_{7}+160 h_{4} h_{6}+220 h_{7}^{2}+28 h_{4}^{2}+28 h_{5}^{2}+220 h_{6}^{2}=\frac{9}{256} \\
-20 h_{6}^{2}-35 h_{4} h_{6}-8 h_{4}^{2}-8 h_{5}^{2}-35 h_{5} h_{7}+\frac{3 \sqrt{2}}{8} h_{5}-20 h_{7}^{2}+\frac{15 \sqrt{2}}{32} h_{7}+\frac{\sqrt{2}}{2} h_{6}=\frac{1}{512} \\
h_{4}^{2}+h_{5}^{2}-\frac{\sqrt{2}}{32} h_{5}-15 h_{6}^{2}-15 h_{7}^{2}+\frac{9 \sqrt{2}}{32} h_{7}=0 \\
4 h_{6}^{2}+h_{4} h_{6}+h_{5} h_{7}+4 h_{7}^{2}-\frac{\sqrt{2}}{32} h_{7}=0
\end{array}
$$

Coiflet-Filter C_{12} (6)

The solution turns out to be

$$
\begin{aligned}
& h_{4}=-\frac{1}{1024} \frac{1430 \alpha^{3}+5064 \sqrt{2} \alpha^{2}+10441 \alpha+2590 \sqrt{2}}{338 \alpha^{2}+962 \sqrt{2} \alpha+1369} \\
& h_{5}=\frac{1}{2048} \frac{1615 \sqrt{2} \alpha+4081+65 \alpha^{2}}{26 \alpha+37 \sqrt{2}} \\
& h_{6}=\frac{1}{1024} \alpha \\
& h_{7}=-\frac{1}{2048} \frac{179 \sqrt{2} \alpha+405+21 \alpha^{2}}{26 \alpha+37 \sqrt{2}}
\end{aligned}
$$

where α is a solution of the degree 4 polynomial equation

$$
25 Z^{4}-1082 \sqrt{2} Z^{3}-32180 Z^{2}-77370 \sqrt{2} Z-102375=0
$$

so that one expects 4 distinct solutions

Coiflet-Filter $C_{12}(7)$

Here are the solutions in floating-point approximation:
$\left[\begin{array}{rrrr}-0.00135879906 & -0.02881077935 & 0.01638733604 & -0.0216835830 \\ -0.01461155251 & 0.00954232518 & -0.04146493789 & -0.04759942451 \\ -0.0074103835 & 0.1131648994 & -0.06737255304 & 0.163253958 \\ 0.2806116518 & 0.1765268828 & 0.3861100713 & 0.3765105895 \\ 0.7503363057 & 0.5425549768 & 0.8127236327 & 0.2709267760 \\ 0.5704650013 & 0.7452653006 & 0.4170051772 & 0.5167479708 \\ -0.0716382822 & 0.1027738095 & -0.07648859743 & 0.5458520919 \\ -0.1553572228 & -0.2967882834 & -0.05943441354 & -0.2397210372 \\ 0.05002351996 & -0.02049790739 & 0.02368017155 & -0.3277620898 \\ 0.02480433052 & 0.07883524141 & 0.005611433291 & 0.1360266602 \\ -0.01284557976 & -0.002078217989 & -0.001823208878 & 0.07651962671 \\ 0.001194572696 & -0.006274685605 & -0.0007205493428 & -0.03485797772\end{array}\right]$

The third column of this matrix is what is usually taken as the Coiflet filter of length 12

[^0]: ${ }^{1}$ I. Daubechies, Orthonormal bases for compactly supported wavelets, Comm. Pure. Appl. Math. 41:909-996, 1988. Orthonormal bases for compactly supported wavlets II, SIAM J. Math. Anal. 24(23):499-519. Ten Lectures on Wavelets, SIAM, 1992.

