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Outline

key aspects of the Fourier transform

Fundamental idea: functions/signals have a life both in time/space
and in frequency domain — and both aspects are equivalent

Motivation: Fourier transform can be obtained from Fourier series by
a limiting process

Basic properties of FT

Translation and Dilation basic wavelet operations
Derivation smoothness properties of wavelets
Convolution filtering properties of wavelets

Advanced properties of FT

Time/frequency localization, duality and uncertainty
Poisson’s formula and sampling

Fourier transform theory is

important immense number of applications
not easy making ideas rigorous requires lot of work
beautiful leads into a new universe
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Outline

Some highlights

Trying to make Fourier’s ideas precise spawned lots of new
mathematics (convergence concepts, set theory, distributions,...)
The Cooley-Tukey 1965 paper on FFT is the most frequently cited
article in all of mathematics
First US patent for a mathematical algorithm for a variant of FFT
About 3/4 of all Nobel prices in physics were awarded for work done
with Fourier analysis
Other notable Nobel prices:
Crick/Watson/Wilkins (1962): DNA structure by diffraction
Cormack/Hounsfield (1979): computed tomography
Hauptman/Karle (1985): structure of molecules by X-ray diffraction
Lauterbur/Mansfield (2003): MRI
Other fields: PDE, Quantum Mechanics, Signals and Systems, Fourier
Optics, ...
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Fourier Series

A function f : R→ C is p-periodic, if f (t + p) = f (t) for all t ∈ R.

Equivalently:
f (t) is defined in any real interval [a, b) of length b − a = p and is
extended periodically

Simple 1-periodic funktions are the harmonics

sin(2πkt) (k ≥ 1), cos(2πkt) (k ≥ 0), ωk(t) = e2πikt (k ∈ Z)

Superposition principle: linear combinations of 1-periodic functions
are again 1-periodic functions

Fourier’s Idea (1807): “Any” 1-periodic function f (t) can be
represented as a superposition (Fourier series) of harmonics, i.e., there
are sequences (ak)k≥0, (bk)k≥1, (ck)k∈Z ∈ C s.th.

f (t)“=”
a0

2
+
∑

k>0

ak cos(2πkt) + bk sin(2πkt)

“=”
∑

k∈Z
ck e

2πikt
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Fourier Series

L2([0, 1)) : Hilbert space of square-integrable (in the sense of
Lebesgue) functions f : [0, 1)→ C with inner product

〈 f | g 〉 =

∫ 1

0
f (t) g(t) dt <∞

and norm

‖f ‖2 = 〈 f | f 〉 =

∫ 1

0
|f (t)|2 dt <∞

The families {
ωk(t) = e2πikt

}
k∈Z

and
{sin(2πkt)}k≥1 ∪ {cos(2πkt)}k≥0

are orthonormal families (even Hilbert bases) of L2([0, 1)):

〈ωk |ω` 〉 =

∫ 1

0
e2πi(k−`)t dt = δk,`

Similarly for the family of harmonics sin-cos
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Fourier Series

Fourier coefficients (Analysis)

ck = f̂ [k] = 〈 f |ωk 〉 =

∫ 1

0
f (t) e−2πikt dt (k ∈ Z)

Fourier series (Synthesis)

f (t) =
∑

k∈Z
〈 f |ωk 〉ωk(t) =

∑

k∈Z
f̂ [k] e2πikt

For f ∈ L2([0, 1)) one has

SN(t) =
N∑

k=−N
f̂ [k] e2πikt →N→∞ f (t)

in the sense of L2-convergence (optimal L2-approximation)

Stronger assertions about convergence are possible, but more difficult
to obtain
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Fourier Series

Important aspects

The Fourier coefficients of f (t) depend on the
behavior of f (t) over the whole interval [0, 1)

The basis functions ωk(t) = e2πikt are

perfectly localized w.r.t. frequency
not at all localized w.r.t.time/space

The family
{
ωk(t) = e2πikt

}
k∈Z is a complete basis

(Hilbert basis) in L2([0, 1))
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Fourier Series

Hilbert space of sequences (“discrete signals with finite energy‘)

complex bi-infinite sequences

x = (. . . , x [−1], x [0], x [1], x [2], . . .) = (x [k])k∈Z with x [k] ∈ C (k ∈ Z)

the relevant vector space is `2

`2 =

{
x = (x [k])k∈Z ;

∑

k∈Z
|x [k]|2 <∞

}

with inner product 〈 x | y 〉 =
∑

k∈Z x [k] · y [k]
and norm ‖x‖2 =

∑
k∈Z |x [k]|2
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Fourier Series

Parseval-Plancherel property: The mapping

f (t) 7−→
(
f̂ [k]

)
k∈Z

is a linear mapping L2([0, 1)) 7−→ `2

is an isometry, which means

〈 f | g 〉L2 =

∫ 1

0

f (t) g(t) dt =
∑

k∈Z
f̂ [k] ĝ [k] = 〈 f̂ | ĝ 〉`2

is surjective (the Riesz-Fischer theorem)

Conclusion: L2([0, 1)) and `2 are isomorphic as Hilbert spaces
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Fourier Series

Everything carries over routinely from [0, 1) to arbitrary finite
intervals [a, b) and p-periodic functions with p = b − a

L2([a, b)) has a basis of functions
{
ωk(t/p) = e2πikt/p

}
k∈Z

and similarly for sin-cos

the inner product in L2([a, b)) is

〈 f | g 〉 =
1

p

∫ b

a
f (t) g(t) dt

Fourier coefficients (Analysis)

f̂ [k] = 〈 f |ωk(t/p) 〉 =
1

p

∫ b

a
f (t) e−2πikt/p dt

Fourier series (Synthesis)

f (t) =
∑

k∈Z
f̂ [k] e2πikt/p
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Gibbs-Wilbraham Phenomenon

The Gibbs-Wilbraham phenomenon

describes the convergence of the approximations sN(t) at a
jump discontinuity of the function f (t)

typical example: f (t) as extension of χ[−1/2,1/2)(t) to a 2-periodic
function

Fourier coefficients

f̂ [k] =
1

2

∫ 1

−1

χ[−1/2,1/2)(t)
e−πikt√

2
dt =





1/2 k = 0

0 k 6= 0 and even
(−1)(k−1)/2

πk k odd

Fourier series

1

2
+

2

π
cos(πt)− 2

3π
cos(3πt) +

2

5π
cos(5πt)∓ · · ·
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Gibbs-Wilbraham Phenomenon

Approximation

SN(t) =
1

2
+

2

π

N∑

n=1

(−1)n−1 cos((2n − 1)πt)

2n − 1

graphical display

Figure: S5 (left), S50,S100,S200 (right)

Notabene: the “overshooting” of the approximation does NOT
disappear as N →∞!
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From Fourier Series to the Fourier Transform

Consider a function f (t) which vanishes outside a finite interval
[−L0, L0), and for L ≥ L0 consider

fL(t) =

{
f (t) for |t| ≤ L0

0 for L0 ≤ |t| ≤ L

as a 2L-periodic function

Fourier coefficients (analysis)

f̂L[k] =
1

2L

∫ L

−L
fL(t) e−2πikt/2L dt

Synthesis formula

fL(t) =
∑

k∈Z
f̂L[k] e2πikt/2L
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From Fourier Series to the Fourier Transform

Now define for all s ∈ R and L ≥ L0

f̂ (s) =

∫ L

−L
fL(t) e−2πi s t dt

This definition is independent of L !

Then for all s ∈ R of the form s = k
2L with k ∈ Z it is true that

f̂ (s) = 2L · f̂L[k]

For L ≥ L0 one has

gL :
k

2L
7−→ 2L · f̂L[k] (= f̂ (

k

2L
)) (k ∈ Z)

as a discrete function

Conclusion: For L→∞ the graphs of the discrete functions gL
“converge” to the graph of a function s 7−→ f̂ (s) defined on R
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From Fourier Series to the Fourier Transform

Furthermore

fL(t) =
∑

k∈Z
f̂L[k] e2πikt/2L =

∑

k∈Z

1

2L
f̂ (

k

2L
) e2πi (k/2L) t

The right-hand side is the Riemann sum for the integral
∫

R
f̂ (s) e2πist ds

Thus for L→∞ on expects a synthesis formula

f (t) := f∞(t) =

∫

R
f̂ (s) e2πist ds

together with an analysis formula

f̂ (s) =

∫

R
f (t) e−2πist dt
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From Fourier Series to the Fourier Transform

Example: A 1-periodic function and it Fourier transform

f (t) = cos(2πt) |t| ≤ 1/2 f̂ (s) =
s sinπs

π − πs2
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From Fourier Series to the Fourier Transform

Schematic display of the transition Fourier series → Fourier transform
for f (t) = cos(2πt) with |t| ≤ 1/2 and L = 1, 2, 4
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From Fourier Series to the Fourier Transform

The relevant Hilbert space for the Fourier transform is L2(R),
the vector space of (Lebesgue-)square-integrable functions on R
Inner product and norm in L2(R)

〈 f | g 〉 =

∫

R
f (t) g(t) dt ‖f ‖2 = 〈 f | f 〉 =

∫

R
|f (t)|2 dt

Serious defect: simple functions like polynomials, trigonometric
functions and complex exponentials do NOT belong to L2(R);

in particular, the family
{
ωs(t) = e2πist

}
s∈R

cannot be a basis of the Hilbert space L2(R) !

For integrable functions f (t) the inner products

f̂ (s) := 〈 f |ωs(t) 〉 =

∫

R
f (t) e−2πist dt

are nevertheless well defined!
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Fourier Transform: Definition, Inversion, Comments

Definition: For “suitable” functions f : R→ C
their Fourier transform f̂ : R→ C is defined by

(Analysis) f̂ (s) =

∫ ∞

−∞
f (t) e−2πistdt (s ∈ R)

Often denoted as Ft [f (t)] or F [f ] instead of f̂

Inversion formula: If the function f (t) is sufficiently well-behaved, one
expects that it can be reconstructed from its Fourier transform f̂ by:

(Synthesis) f (t) =

∫ ∞

−∞
f̂ (s) e2πistds (t ∈ R)

Often denoted as f = F−1
s [f̂ (s) or f = F−1[f̂ ]

If this holds, then f (t) is “continuous linear combination”
(superposition) of harmonics (complex exponentials)

f̂ (s) is the amplitude or intensity of ωs(t) = e2πi s t in f (t)
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Fourier Transform: Definition, Inversion, Comments

Attention! In the literature there are many slightly different
conventions used of the definition of the Fourier transform.
The type of expressions used is

f̂ (s) =

√
|b|

(2π)1−a

∫ ∞

−∞
f (t) e i b s tdt

with the following conventions

(a, b) = (0, 1) (modern physics, Mathematica)
(a, b) = (1,−1) (mathematics, systems theory, Maple)
(a, b) = (−1, 1) (classical physics)
(a, b) = (0,−2π) (signal processing, this lecture)

The formula for the inverse transform has to be adapted accordingly
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Comments and Examples

Comments:

Fourier transform is a linear transformation,
it is even unitary (=complex-orthogonal) transform
(→ Parseval-Plancherel)

The definition of the Fourier transform makes sense if f ∈ L1(R), i.e.,
if f is integrable (in the sense of Lebesgue): ‖f ‖1 =

∫
R |f (t)| dt <∞

For the inversion formula to make sense, one should have f̂ ∈ L1(R),
which unfortunately is not guaranteed,

it holds, however, e.g., if f ∈ L1(R) is continuous

The complex exponentials t 7→ e2πist belong neither to L1(R), nor to
L2(R), i.e., they cannot be taken as basis functions

In order to get a satisfactory theory of the Fourier transform one has to
extend the space of admissible functions (→ distributions)
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Comments and Examples

Examples (1)

f (t) ! f̂ (s)

χ[−a,a](t) !
sin(2πas)

πs

(1−
[
t
a

]
) · χ[−a,a](t) !

sin2(πas)

a(πs)2

e−a |t| !
2a

a2 + (2πs)2

e−a t
2

!

√
π

a
e−(πs)2/a
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Comments and Examples

Fourier transform can/must be extended to cover familiar functions

Examples (2)

f (t) ! f̂ (s)

1 ! δ(s)

e2πi at ! δ(a− s)

1 + a t + b t2 ! δ(s) +
ia δ′(s)

2π
− b δ′′(s)

4π2

1

1 + a t2
!

π√
a

(
e2πs/

√
a θ(−2πs) + e−2πs/

√
a θ(2πs)

)

where

θ(t) = χt>0(t) denotes Heaviside’s jump function

δ(t) = d
dt θ(t) denotes Diracs Delta-“function”
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Comments and Examples

A possible definition of the distribution δ(t) is furnished by

δ : f (t) 7→ f (0)

for “sufficiently well-behaved” functions f (t) (“test functions”),
often written as ∫ ∞

−∞
δ(t) f (t) dt = f (0)

No function in the traditional sense can have this property,
so δ(t) is not a function, but a linear functional
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Properties of the Fourier Transform

Translation vs. Modulation

̂f (t − a)(s) = e−2πias · f̂ (t)(s)

Dilation (Scaling)

√
a f̂ (a t)(s) =

1√
a
f̂ (t)

( s
a

)

Derivation vs. Multiplication

d̂

dt
f (t)(s) = 2πis · f̂ (t)(s)

Convolution

(f ? g)(t) :=

∫ ∞

−∞
f (x) g(t − x) dx

Convolution theorem

̂(f ? g)(t)(s) = f̂ (t)(s) · ĝ(t)(s)
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Properties of the Fourier Transform

Dilation

The a-Dilation (Daf )(t) of a function f (t) is defined as

(Daf )(t) =
√
a f (a t)

Dilation means stretching (for 0 < a < 1) resp. squeezing (for a > 1)
of the graph of f so that the norm is conserved

‖Daf ‖ = ‖f ‖

The behavior of the Fourier transform w.r.t. dilation can be succinctly
described by

D̂af = D1/a f̂

This antagonistic property is one of the characteristics of the Fourier
transform (→ uncertainty relation)
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Properties of the Fourier Transform

Derivation vs. multiplication
Under suitable conditions on f (t) by partial integration or by
interchanging integration and derivation:

f̂ ′(t)(s) = (2πis) · f̂ (s)

f̂ ′(t)(s) =

∫

R
f ′(t) e−2πist dt

= e−2πist f (t)
∣∣t→+∞
t→−∞ + (2πis) ·

∫

R
f (t) e−2πist dt

= (2πis) ·
∫

R
f (t) e−2πist dt

t̂ · f (t)(s) =
−1

2πi
· d
ds

f̂ (s)

t̂ · f (t)(s) =

∫

R
t · f (t) e−2πist dt =

−1

2πi
· d
ds

∫

R
f (t) e−2πist dt
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Properties of the Fourier Transform

Derivation: Smoothness and vanishing at infinity

Riemann-Lebesgue Lemma

f ∈ L1(R) ⇒
{
f̂ is uniformly continuous on R
and lim|s|→∞ f̂ (s) = 0

“ tN · f (t) ∈ L1(R) ” means: f (t) vanishes fast as t → ±∞:

∫

R
|tN f (t)| dt <∞, so typically f (t) ∈ O(t−N−1−ε)

The faster a function f (t) vanishes as t → ±∞,

the smoother (higher order differentiable) is f̂ (s) – and conversely

f (t) ∈ L1(R)

tN · f (t) ∈ L1(R)

}
⇔





f̂ ∈ CN(R) and

dk

dsk
f̂ (s) = −1

(2πi)k
t̂k f (t)(s) (0 ≤ k ≤ N)

Derivation and multiplication with the variable are “complementary”

WTBV Fourier Essentials November 18, 2015 29 / 54



Properties of the Fourier Transform

B-Spline functions and their Fourier transforms

-2 -1 1 2
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Iterated convolutions of the box function b(t)

b?n(t) = (b ? b ? · · · ? b)(t) (n factors)

b?n is (n − 2)-fold differentiable
n: 1=black, 2=red, 3=green, 4 = blue
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Properties of the Fourier Transform

B-Spline functions and their Fourier transforms
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The Fourier transforms are the functions

b̂?n(s) = sinc(πs)n =
sin(πs)n

(πs)n
∈ O(s−n)

n: 1=black, 2=red, 3=green, 4 = blue
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Properties of the Fourier Transform

Definition of convolution

(f ? g)(t) :=

∫ ∞

−∞
f (x) g(t − x) dx

If g(t) = ωs(t) = e2πist :

(f ? ωs)(t) =

∫ ∞

−∞
f (x) e2πi s(t−x) dx

= e2πi st

∫ ∞

−∞
f (x) e−2πisx = f̂ (s) · ωs(t)

Convolution by a fixed function f (t)

Cf : g(t) 7→ (f ? g)(t)

is a linear transformation which has
the complex exponentials ωs(t) = e2πi st as eigenfunctions

with Fourier transform value f̂ (s) as the corresponding eigenvalues

Convolution with δ(t) replicates f (t)

(δ ? f )(t) =

∫ ∞

−∞
δ(x)f (t − x) dx = f (t)

WTBV Fourier Essentials November 18, 2015 32 / 54



Application of Convolution: Filtering

The convolution theorem

f , g
F

=⇒ f̂ , ĝ
⇓ ? ⇓ ·

f ? g
F

=⇒ f̂ ? g = f̂ · ĝ

Main application of convolution

“Filtering in the frequency domain”

f , g
F

=⇒ f̂ , ĝ
⇓ ? ⇓ ·

f ? g = F−1(f̂ · ĝ)
F−1

⇐= f̂ · ĝ
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Application of Convolution: Filtering

Proof of the convolution theorem (sketch)

f̂ ? g(s) =

∫

R
(f ? g)(t) e−2πist dt def. of FT

=

∫

R

∫

R
f (x) g(t − x) dx e−2πist dt def. of ?

=

∫

R

∫

R
f (x) e−2πisxg(t − x) e−2πis(t−x) dx dt

=

∫

R
f (x) e−2πisx

∫

R
g(t − x) e−2πis(t−x) dt dx

∫

t

∫

x
≡
∫

x

∫

t

=

∫

R
f (x) e−2πisx

∫

R
g(t) e−2πist dt dx t 7→ t + x

=

∫

R
f (x) e−2πix ĝ(s) dx def. of FT

= f̂ (s) · ĝ(s) def. of FT

The crucial point is the change of the order of integration!
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Application of Convolution: Filtering

Low-pass filtering with a Gauss filter

F
=⇒

⇓ ? ⇓ ·

F−1

⇐=
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Application of Convolution: Filtering

High-pass filtering with a Mexhat filter

F
=⇒

⇓ ? ⇓ ·

F−1

⇐=
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Consequence of the Convolution Theorem: Parseval-Plancherel

A fundamental consequence of the convolution theorem:

The Parseval-Plancherel identity: Fourier transform is an isometry!

For f , g ∈ L2 s.th. also f̂ , ĝ ∈ L2, one has

〈 f | g 〉 = 〈 f̂ | ĝ 〉 and in particular




‖f ‖ = ‖f̂ ‖

f ⊥ g ⇔ f̂ ⊥ ĝ

Sketch of proof
Define g̃(t) = g(−t) and check that ̂̃g(s) = ĝ(s), then

〈 f̂ | ĝ 〉 =

∫
f̂ (s) · ĝ(s) ds =

∫
f̂ (s) · ̂̃g(s) ds =

∫
(̂f ? g̃)(s) ds = (f ? g̃)(0) =

∫
f (t) · g̃(−t) dt

=

∫
f (t) · g(t) dt = 〈 f | g 〉

WTBV Fourier Essentials November 18, 2015 37 / 54



Uncertainty Relation

Uncertainty relation

For f (t) ∈ L2(R) with

‖f ‖2 =

∫

R
|f (t)|2 dt = 1

then t 7→ |f (t)|2 can be seen as a probability density function on R
Expectation and variance of this probability density are given by

µ(f ) =

∫

R
t |f (t)|2 dt σ2(f ) =

∫

R
(t − µ(f ))2 |f (t)|2 dt

Because of the Parseval-Plancherel identity one also has ‖f̂ ‖ = 1;

µ(f̂ ) and σ2(f̂ ) are defined analogously
Then the Heisenberg inequality holds:

σ2(f ) · σ2(f̂ ) ≥ 1

(4π)2

(For a proof see the Lecture Notes)
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Uncertainty Relation

Examples

f (t, a) σ2(f ) f̂ (s, a) σ2(f̂ )

√
aχ[−1/2,1/2](at) 1

12a2

√
a sin(π s/a)

π s ∞
√

3
2a (1− |at|) · χ−1/a,1/a(t) 1

10a2

√
3

2a
(sin(π s/a))2

π2s2
3a2

4π2

√
a e−a|t| 1

2a2 2 a3/2

a2+4π2s2
a2

4π2

4

√
2a
π e−a t

2 1
4a

4

√
2a
π e−

π2s2

a
a

4π2
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Uncertainty Relation

Graphical illustration of uncertainty: Heisenberg boxes

For any function f (t) and a > 0, b ∈ R let

fa,b(t) =
√
a · f (a t − b), µa,b = µ(fa,b), σ2

a,b = σ2(fa,b),

and similarly for f̂ (s)
Then

µa,b =
µ+ b

a
, σ2

a,b =
σ2

a2
, µ̂a,b = a µ̂, σ̂2

a,b = a2 σ̂2

The Heisenberg box for the function f (t) is the rectangle in the
(s, t)-plane centered at (µa,b, µ̂a,b) and with side lengths (σa,b, σ̂a,b).
This box characterizes the simultaneous uncertainty of f (t) in the
time/space domain and in the frequency domain
The box area σa,b · σ̂a,b ≥ 1

4π is independent of scaling a and
translation b !
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Uncertainty Relation
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σ
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t
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Figure: Heisenberg boxes for fa,b(t) with a = 1/2, a = 1 and a = 2
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Poisson’s Formula and the Sampling Theorem

Poisson’s formula

For any sufficently well-behaved function f : R→ C there is a relation

– between the values f (k) (k ∈ Z) at integer arguments

– and the values f̂ (s − n) (n ∈ Z) of its Fourier transform

∞∑

n=−∞
f̂ (s − n) =

∞∑

k=−∞
f (k) e−2πisk (s ∈ R)

Note: the sum on the l.h.s. defines a 1-periodic function,
the sum on the r.h.s. is a Fourier series

In particular (take s = 0)

∞∑

n=−∞
f̂ (n) =

∞∑

k=−∞
f (k)
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Poisson’s Formula and the Sampling Theorem

Equivalent version of Poisson’s formula (for a > 0)

∞∑

n=−∞
f (t − n/a) = a ·

∞∑

k=−∞
f̂ (k · a) e2πi t k a

Sketch of proof (case a = 1 suffices):

φ(t) =
∑

n f (t − n) is 1-periodic,

so if it has a Fourier series φ(t) =
∑

k∈Z ϕ[k] e2πikt , then

ϕ[k] =

∫ 1

0

φ(t) e−2πiktdt =
∑

n∈Z

∫ 1

0

f (t − n) e−2πiktdt

=
∑

n∈Z

∫ n+1

n

f (t) e−2πiktdt =

∫

R
f (t) e−2πiktdt = f̂ (k)
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Poisson’s Formula and the Sampling Theorem

Shannon-Nyquist sampling theorem

If a signal f : R→ C is band-limited in the sense that

|s| > 1

2a
=⇒ f̂ (s) = 0,

then f (t) can be perfectly reconstructed from its discrete sampling
values f (k · a) (k ∈ Z) by

f (t) =
∑

k∈Z
f (k · a) · sin(πa (t − k · a))

π
a (t − k · a)

=
∑

k∈Z
f (k · a) · sinc

(
1

a
(t − k · a)

)

This is Shannon’s formula (sinc(x) = sin(πx)
πx )
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Poisson’s Formula and the Sampling Theorem

From the band-limiting condition, only the (n = 0)-term from
∑

n∈Z
f̂ (s − n/a)

in Poisson’s formula survives, so that

f̂ (s) = a
∑

k∈Z
f (k · a) · e−2πis k·a

and thus f (t) =

∫

R
f̂ (s) e2πist ds

=

∫ 1/(2a)

−1/(2a)
f̂ (s) e2πist ds

= a
∑

k∈Z
f (k · a)

∫ 1/(2a)

−1/(2a)
e2πis(t−k·a)ds

=
∑

k∈Z
f (k · a) · sin π

a (t − k · a)
π
a (t − k · a)
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Poisson’s Formula and the Sampling Theorem

What sampling really means?

Sampling a continuous signal with frequency a means:
repeating its spectrum periodically with distance a

a function and its spectrum
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Towards a Precise Treatment of Sampling

In a purely formal way:

δ(s) = 1̂(s) =

∫

R
e−2πistdt

The integral doesn’t make sense, but ...
... if δ appears under an integral, it may work
∫

R
f (t) δ(t) dt =

∫

R
f (t)

∫

R
e−2πistds dt =

∫

R

∫

R
f (t) e−2πistdt ds =

∫

R
f̂ (s) ds = f (0)

which motivates the common definition (given earlier)
Another characteristic property: δ ? f = f

(δ ? f )(t) =

∫

R
δ(s) · f (t − s) ds = f (t)

i.e., δ(t) acts as a neutral element w.r.t. convolution
No “proper” function can have this property. Therefore

f̂ (s) = (̂δ ? f )(s) = δ̂(s) · f̂ (s) =⇒ δ̂ ≡ 1
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Towards a Precise Treatment of Sampling

Translation of δ

– definition

δa(t) = δ(t − a) or

∫
f (t) δa(t) dt = f (a) or δa : f (t) 7→ f (a)

– multiplication with a function

f (t) · δa(t) ≡ f (a) · δa(t)

– convolution with δa is translation

(f ? δa)(t) =

∫
f (t − x) δa(x) dx = f (t − a)

– the Fourier transform of δa is

δ̂a(s) = e−2πias
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Towards a Precise Treatment of Sampling

Dirac’s comb

– definition
qq(t) =

∑

k∈Z
δk(t)

– multiplication (the sampling property)

f (t) · qq(t) =
∑

k∈Z
f (t) δk(t) =

∑

k∈Z
f (k) δk(t)

– convolution (the periodizing property)

(f ?qq)(t) =
∑

k∈Z
(f ? δk)(t) =

∑

k∈Z
f (t − k)

– the Fourier transform of qq(t) is

q̂q(s) = qq(s)
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Towards a Precise Treatment of Sampling

Dirac’s comb and Poisson’s formula

∑

k∈Z
f̂ (t − k) = (f̂ ?qq)(t) qq-convolution

= (f̂ ? q̂q)(t) FT of qq
= ̂(f · qq)(t) convolution theorem

=
̂

(
∑

k∈Z
f (k) δk)(t) definition of qq

=
∑

k∈Z
f (k) δ̂k(t) linearity of FT

=
∑

k∈Z
f (k) e−2πikt FT of δk

WTBV Fourier Essentials November 18, 2015 50 / 54



Towards a Precise Treatment of Sampling

Sampling with width a Periodization with width 1/a

F
=)

F
=)

a

1/a

Time domain Frequency domain

f

f · qqa
\f · qqa =

1

a

⇣
bf ?qq1/a

⌘

bf

by the convolution theorem

a

Figure: The sampling scheme
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Towards a Precise Treatment of Sampling

Sampling with width a

a 1/a

Time domain Frequency domain

f

f · qqa
\f · qqa =

1

a

⇣
bf ?qq1/a

⌘

bf

by the convolution theorem

F�1

(=

F
=)

Bandlimiting by
multiplication
with �[�1/2a,1/2a]

a

Figure: Reconstructing a sampled bandlimited signal
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Towards a Precise Treatment of Sampling

δa(t) : f (t) 7−→ f (a)

qqa(t) =
∑

k∈Z δk·a(t) = 1
a

∑
k∈Z e

2πikt/a

δa(t) qqa(t)

action on f (t) f (a)
∑

k∈Z f (k · a)

product with f (t) f (a) · δa(t)
∑

k∈Z f (k · a) · δk·a(t)

scaling with p > 0 1
p δa/p(t) 1

p qqa/p(t)

convolution with f (t) f (t − a)
∑

k∈Z f (t − k · a)

Fourier transform e−2πias 1
a qq1/a(s)

periodizing a function
f (t) 7−→∑

k∈Z f (t − k · a) = (f ?qqa)(t)

sampling a function f (t) 7−→∑
k∈Z f (k · a) · δk·a(t) = (f · qqa)(t)
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Towards a Precise Treatment of Sampling

f (t) a b-bandlimited function

⇒ the copies of f̂ (s) contained in ̂f · qq1/b do not overlap

⇒ f̂ can be recovered by

f̂ = Πb · ̂f · qq1/b = b · Πb · (f̂ ?qqb)

where Πb(t) = χ[−b/2,b/2](t). Now compute:

f = F−1(b · Πb · (F(f ) ?qqb)) inverse Fourier transform

= b · F−1(Πb) ? F−1(F(f ) ?qqb) convolution theorem

= b · F−1(Πb) ? (f · F−1(qqb)) convolution theorem

= F−1(Πb) ? (f · qq1/b) iFT of qqb

which gives the celebrated Shannon-formula

f (t) = sinc(bt) ?
∑

k∈Z
f (k/b) δ(t − k/b) =

∑

k∈Z
f (k/b) sinc (b(t − k/b))

where

sinc(t) =
sin(πt)

πt
= F−1(Π1)(t)
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