Fourier Essentials

WTBV

November 18, 2015
(1) Fourier Series
(2) Gibbs-Wilbraham Phenomenon
(3) From Fourier Series to the Fourier Transform
(4) Fourier Transform: Definition, Inversion, Comments
(5) Comments and Examples
(6) Properties of the Fourier Transform
(7) Application of Convolution: Filtering
(8) Consequence of the Convolution Theorem: Parseval-Plancherel
(9) Uncertainty Relation
(10) Poisson's Formula and the Sampling Theorem
(11) Towards a Precise Treatment of Sampling

key aspects of the Fourier transform

- Fundamental idea: functions/signals have a life both in time/space and in frequency domain - and both aspects are equivalent
- Motivation: Fourier transform can be obtained from Fourier series by a limiting process
- Basic properties of FT
- Translation and Dilation
basic wavelet operations
- Derivation
- Convolution smoothness properties of wavelets filtering properties of wavelets
- Advanced properties of FT
- Time/frequency localization, duality and uncertainty
- Poisson's formula and sampling
- Fourier transform theory is
- important
- not easy
- beautiful
immense number of applications making ideas rigorous requires lot of work leads into a new universe
- Some highlights
- Trying to make Fourier's ideas precise spawned lots of new mathematics (convergence concepts, set theory, distributions,...)
- The Cooley-Tukey 1965 paper on FFT is the most frequently cited article in all of mathematics
- First US patent for a mathematical algorithm for a variant of FFT
- About 3/4 of all Nobel prices in physics were awarded for work done with Fourier analysis
- Other notable Nobel prices: Crick/Watson/Wilkins (1962): DNA structure by diffraction Cormack/Hounsfield (1979): computed tomography Hauptman/Karle (1985): structure of molecules by X-ray diffraction Lauterbur/Mansfield (2003): MRI
- Other fields: PDE, Quantum Mechanics, Signals and Systems, Fourier Optics, ...
- A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is p-periodic, if $f(t+p)=f(t)$ for all $t \in \mathbb{R}$.
- Equivalently:
$f(t)$ is defined in any real interval $[a, b)$ of length $b-a=p$ and is extended periodically
- Simple 1-periodic funktions are the harmonics

$$
\sin (2 \pi k t) \quad(k \geq 1), \quad \cos (2 \pi k t) \quad(k \geq 0), \quad \omega_{k}(t)=\mathrm{e}^{2 \pi i k t} \quad(k \in \mathbb{Z})
$$

- Superposition principle: linear combinations of 1-periodic functions are again 1-periodic functions
- Fourier's Idea (1807): "Any" 1-periodic function $f(t)$ can be represented as a superposition (Fourier series) of harmonics, i.e., there are sequences $\left(a_{k}\right)_{k \geq 0},\left(b_{k}\right)_{k \geq 1},\left(c_{k}\right)_{k \in \mathbb{Z}} \in \mathbb{C}$ s.th.

$$
\begin{aligned}
f(t) & =" \frac{a_{0}}{2}+\sum_{k>0} a_{k} \cos (2 \pi k t)+b_{k} \sin (2 \pi k t) \\
& "=" \sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{2 \pi i k t}
\end{aligned}
$$

- $\mathcal{L}^{2}([0,1))$: Hilbert space of square-integrable (in the sense of Lebesgue) functions $f:[0,1) \rightarrow \mathbb{C}$ with inner product

$$
\langle f \mid g\rangle=\int_{0}^{1} f(t) \overline{g(t)} d t<\infty
$$

and norm

$$
\|f\|^{2}=\langle f \mid f\rangle=\int_{0}^{1}|f(t)|^{2} d t<\infty
$$

- The families

$$
\left\{\omega_{k}(t)=\mathrm{e}^{2 \pi i k t}\right\}_{k \in \mathbb{Z}}
$$

and

$$
\{\sin (2 \pi k t)\}_{k \geq 1} \cup\{\cos (2 \pi k t)\}_{k \geq 0}
$$

are orthonormal families (even Hilbert bases) of $\mathcal{L}^{2}([0,1))$:

$$
\left\langle\omega_{k} \mid \omega_{\ell}\right\rangle=\int_{0}^{1} \mathrm{e}^{2 \pi i(k-\ell) t} d t=\delta_{k, \ell}
$$

- Similarly for the family of harmonics sin-cos
- Fourier coefficients (Analysis)

$$
c_{k}=\widehat{f}[k]=\left\langle f \mid \omega_{k}\right\rangle=\int_{0}^{1} f(t) \mathrm{e}^{-2 \pi i k t} d t \quad(k \in \mathbb{Z})
$$

- Fourier series (Synthesis)

$$
f(t)=\sum_{k \in \mathbb{Z}}\left\langle f \mid \omega_{k}\right\rangle \omega_{k}(t)=\sum_{k \in \mathbb{Z}} \widehat{f}[k] \mathrm{e}^{2 \pi i k t}
$$

- For $f \in \mathcal{L}^{2}([0,1))$ one has

$$
S_{N}(t)=\sum_{k=-N}^{N} \widehat{f}[k] \mathrm{e}^{2 \pi i k t} \rightarrow_{N \rightarrow \infty} f(t)
$$

in the sense of \mathcal{L}^{2}-convergence (optimal \mathcal{L}^{2}-approximation)

- Stronger assertions about convergence are possible, but more difficult to obtain
- Important aspects
- The Fourier coefficients of $f(t)$ depend on the behavior of $f(t)$ over the whole interval $[0,1)$
- The basis functions $\omega_{k}(t)=\mathrm{e}^{2 \pi i k t}$ are
- perfectly localized w.r.t. frequency
- not at all localized w.r.t.time/space
- The family $\left\{\omega_{k}(t)=\mathrm{e}^{2 \pi i k t}\right\}_{k \in \mathbb{Z}}$ is a complete basis (Hilbert basis) in $\mathcal{L}^{2}([0,1))$
- Hilbert space of sequences ("discrete signals with finite energy")
- complex bi-infinite sequences

$$
\boldsymbol{x}=(\ldots, x[-1], x[0], x[1], x[2], \ldots)=(x[k])_{k \in \mathbb{Z}} \text { with } x[k] \in \mathbb{C}(k \in \mathbb{Z})
$$

- the relevant vector space is ℓ^{2}

$$
\ell^{2}=\left\{\boldsymbol{x}=(x[k])_{k \in \mathbb{Z}} ; \sum_{k \in \mathbb{Z}}|x[k]|^{2}<\infty\right\}
$$

with inner product $\langle\boldsymbol{x} \mid \boldsymbol{y}\rangle=\sum_{k \in \mathbb{Z}} x[k] \cdot \bar{y}[k]$ and norm $\|\boldsymbol{x}\|^{2}=\sum_{k \in \mathbb{Z}}|x[k]|^{2}$

- Parseval-Plancherel property: The mapping

$$
f(t) \longmapsto(\widehat{f}[k])_{k \in \mathbb{Z}}
$$

- is a linear mapping $\mathcal{L}^{2}([0,1)) \longmapsto \ell^{2}$
- is an isometry, which means

$$
\langle f \mid g\rangle_{\mathcal{L}^{2}}=\int_{0}^{1} f(t) \overline{g(t)} d t=\sum_{k \in \mathbb{Z}} \widehat{f}[k] \overline{\bar{g}}[k]=\langle\widehat{f} \mid \widehat{g}\rangle_{\ell^{2}}
$$

- is surjective (the Riesz-Fischer theorem)
- Conclusion: $\mathcal{L}^{2}([0,1))$ and ℓ^{2} are isomorphic as Hilbert spaces
- Everything carries over routinely from $[0,1)$ to arbitrary finite intervals $[a, b)$ and p-periodic functions with $p=b-a$
- $\mathcal{L}^{2}([a, b))$ has a basis of functions

$$
\left\{\omega_{k}(t / p)=\mathrm{e}^{2 \pi i k t / p}\right\}_{k \in \mathbb{Z}}
$$

and similarly for sin-cos

- the inner product in $\mathcal{L}^{2}([a, b))$ is

$$
\langle f \mid g\rangle=\frac{1}{p} \int_{a}^{b} f(t) \overline{g(t)} d t
$$

- Fourier coefficients (Analysis)

$$
\widehat{f}[k]=\left\langle f \mid \omega_{k}(t / p)\right\rangle=\frac{1}{p} \int_{a}^{b} f(t) \mathrm{e}^{-2 \pi i k t / p} d t
$$

- Fourier series (Synthesis)

$$
f(t)=\sum_{k \in \mathbb{Z}} \widehat{f}[k] \mathrm{e}^{2 \pi i k t / p}
$$

- The Gibbs-Wilbraham phenomenon
- describes the convergence of the approximations $s_{N}(t)$ at a jump discontinuity of the function $f(t)$
- typical example: $f(t)$ as extension of $\chi_{[-1 / 2,1 / 2)}(t)$ to a 2-periodic function
- Fourier coefficients

$$
\widehat{f}[k]=\frac{1}{2} \int_{-1}^{1} \chi_{[-1 / 2,1 / 2)}(t) \frac{\mathrm{e}^{-\pi i k t}}{\sqrt{2}} d t= \begin{cases}1 / 2 & k=0 \\ 0 & k \neq 0 \text { and even } \\ \frac{(-1)^{(k-1) / 2}}{\pi k} & k \text { odd }\end{cases}
$$

- Fourier series

$$
\frac{1}{2}+\frac{2}{\pi} \cos (\pi t)-\frac{2}{3 \pi} \cos (3 \pi t)+\frac{2}{5 \pi} \cos (5 \pi t) \mp \cdots
$$

- Approximation

$$
S_{N}(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{N}(-1)^{n-1} \frac{\cos ((2 n-1) \pi t)}{2 n-1}
$$

- graphical display

Figure: S_{5} (left), S_{50}, S_{100}, S_{200} (right)

- Notabene: the "overshooting" of the approximation does NOT disappear as $N \rightarrow \infty$!
- Consider a function $f(t)$ which vanishes outside a finite interval $\left[-L_{0}, L_{0}\right)$, and for $L \geq L_{0}$ consider

$$
f_{L}(t)= \begin{cases}f(t) & \text { for }|t| \leq L_{0} \\ 0 & \text { for } L_{0} \leq|t| \leq L\end{cases}
$$

as a $2 L$-periodic function

- Fourier coefficients (analysis)

$$
\widehat{f}_{L}[k]=\frac{1}{2 L} \int_{-L}^{L} f_{L}(t) \mathrm{e}^{-2 \pi i k t / 2 L} d t
$$

- Synthesis formula

$$
f_{L}(t)=\sum_{k \in \mathbb{Z}} \widehat{f}_{L}[k] \mathrm{e}^{2 \pi i k t / 2 L}
$$

- Now define for all $s \in \mathbb{R}$ and $L \geq L_{0}$

$$
\widehat{f}(s)=\int_{-L}^{L} f_{L}(t) \mathrm{e}^{-2 \pi i s t} d t
$$

This definition is independent of L !

- Then for all $s \in \mathbb{R}$ of the form $s=\frac{k}{2 L}$ with $k \in \mathbb{Z}$ it is true that

$$
\widehat{f}(s)=2 L \cdot \widehat{f}_{L}[k]
$$

- For $L \geq L_{0}$ one has

$$
g_{L}: \frac{k}{2 L} \longmapsto 2 L \cdot \widehat{f_{L}}[k] \quad\left(=\widehat{f}\left(\frac{k}{2 L}\right)\right) \quad(k \in \mathbb{Z})
$$

as a discrete function

- Conclusion: For $L \rightarrow \infty$ the graphs of the discrete functions g_{L} "converge" to the graph of a function $s \longmapsto \widehat{f}(s)$ defined on \mathbb{R}
- Furthermore

$$
f_{L}(t)=\sum_{k \in \mathbb{Z}} \widehat{f}_{L}[k] \mathrm{e}^{2 \pi i k t / 2 L}=\sum_{k \in \mathbb{Z}} \frac{1}{2 L} \widehat{f}\left(\frac{k}{2 L}\right) \mathrm{e}^{2 \pi i(k / 2 L) t}
$$

The right-hand side is the Riemann sum for the integral

$$
\int_{\mathbb{R}} \widehat{f}(s) \mathrm{e}^{2 \pi i s t} d s
$$

- Thus for $L \rightarrow \infty$ on expects a synthesis formula

$$
f(t):=f_{\infty}(t)=\int_{\mathbb{R}} \widehat{f}(s) \mathrm{e}^{2 \pi i s t} d s
$$

- together with an analysis formula

$$
\widehat{f}(s)=\int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t
$$

- Example: A 1-periodic function and it Fourier transform

$$
f(t)=\cos (2 \pi t) \quad|t| \leq 1 / 2
$$

$$
\widehat{f}(s)=\frac{s \sin \pi s}{\pi-\pi s^{2}}
$$

- Schematic display of the transition Fourier series \rightarrow Fourier transform for $f(t)=\cos (2 \pi t)$ with $|t| \leq 1 / 2$ and $L=1,2,4$

- The relevant Hilbert space for the Fourier transform is $\mathcal{L}^{2}(\mathbb{R})$, the vector space of (Lebesgue-)square-integrable functions on \mathbb{R}
- Inner product and norm in $\mathcal{L}^{2}(\mathbb{R})$

$$
\langle f \mid g\rangle=\int_{\mathbb{R}} f(t) \overline{g(t)} d t \quad\|f\|^{2}=\langle f \mid f\rangle=\int_{\mathbb{R}}|f(t)|^{2} d t
$$

- Serious defect: simple functions like polynomials, trigonometric functions and complex exponentials do NOT belong to $\mathcal{L}^{2}(\mathbb{R})$; in particular, the family

$$
\left\{\omega_{s}(t)=\mathrm{e}^{2 \pi i s t}\right\}_{s \in \mathbb{R}}
$$

cannot be a basis of the Hilbert space $\mathcal{L}^{2}(\mathbb{R})$!

- For integrable functions $f(t)$ the inner products

$$
\widehat{f}(s):=\left\langle f \mid \omega_{s}(t)\right\rangle=\int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t
$$

are nevertheless well defined!

- Definition: For "suitable" functions $f: \mathbb{R} \rightarrow \mathbb{C}$ their Fourier transform $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ is defined by

$$
\text { (Analysis) } \quad \widehat{f}(s)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i s t} d t \quad(s \in \mathbb{R})
$$

Often denoted as $\mathcal{F}_{t}[f(t)]$ or $\mathcal{F}[f]$ instead of \widehat{f}

- Inversion formula: If the function $f(t)$ is sufficiently well-behaved, one expects that it can be reconstructed from its Fourier transform \widehat{f} by:

$$
\text { (Synthesis) } \quad f(t)=\int_{-\infty}^{\infty} \widehat{f}(s) e^{2 \pi i s t} d s \quad(t \in \mathbb{R})
$$

Often denoted as $f=\mathcal{F}_{s}^{-1}\left[\widehat{f}(s)\right.$ or $f=\mathcal{F}^{-1}[\widehat{f}]$

- If this holds, then $f(t)$ is "continuous linear combination" (superposition) of harmonics (complex exponentials)
- $\widehat{f}(s)$ is the amplitude or intensity of $\omega_{s}(t)=\mathrm{e}^{2 \pi i s t}$ in $f(t)$
- Attention! In the literature there are many slightly different conventions used of the definition of the Fourier transform. The type of expressions used is

$$
\widehat{f}(s)=\sqrt{\frac{|b|}{(2 \pi)^{1-a}}} \int_{-\infty}^{\infty} f(t) e^{i b s t} d t
$$

- with the following conventions
- $(a, b)=(0,1) \quad$ (modern physics, Mathematica)
- $(a, b)=(1,-1) \quad$ (mathematics, systems theory, Maple)
- $(a, b)=(-1,1) \quad$ (classical physics)
- $(a, b)=(0,-2 \pi)$ (signal processing, this lecture)
- The formula for the inverse transform has to be adapted accordingly
- Comments:
- Fourier transform is a linear transformation, it is even unitary (=complex-orthogonal) transform (\rightarrow Parseval-Plancherel)
- The definition of the Fourier transform makes sense if $f \in \mathcal{L}^{1}(\mathbb{R})$, i.e., if f is integrable (in the sense of Lebesgue): $\|f\|_{1}=\int_{\mathbb{R}}|f(t)| d t<\infty$
- For the inversion formula to make sense, one should have $\widehat{f} \in \mathcal{L}^{1}(\mathbb{R})$, which unfortunately is not guaranteed, it holds, however, e.g., if $f \in \mathcal{L}^{1}(\mathbb{R})$ is continuous
- The complex exponentials $t \mapsto \mathrm{e}^{2 \pi i s t}$ belong neither to $\mathcal{L}^{1}(\mathbb{R})$, nor to $\mathcal{L}^{2}(\mathbb{R})$, i.e., they cannot be taken as basis functions
- In order to get a satisfactory theory of the Fourier transform one has to extend the space of admissible functions (\rightarrow distributions)
- Examples (1)

$$
\begin{array}{ccc}
f(t) & \widehat{f}(s) \\
\chi_{[-a, a]}(t) & \longleftrightarrow & \frac{\sin (2 \pi a s)}{\pi s} \\
\left(1-\left[\frac{t}{a}\right]\right) \cdot \chi_{[-a, a]}(t) & \longleftrightarrow \rightsquigarrow & \frac{\sin ^{2}(\pi a s)}{a(\pi s)^{2}} \\
\mathrm{e}^{-a|t|} & \longleftrightarrow & \frac{2 a}{a^{2}+(2 \pi s)^{2}} \\
\mathrm{e}^{-a t^{2}} & <u s \sqrt{\frac{\pi}{a}} \mathrm{e}^{-(\pi s)^{2} / a}
\end{array}
$$

- Fourier transform can/must be extended to cover familiar functions
- Examples (2)

$f(t)$	$\widehat{f}(s)$	
1	$\delta(s)$	
$\mathrm{e}^{2 \pi i a t}$	$\delta(a-s)$	
$1+a t+b t^{2}$		$\delta(s)+\frac{i a \delta^{\prime}(s)}{2 \pi}-\frac{b \delta^{\prime \prime}(s)}{4 \pi^{2}}$
$\frac{1}{1+a t^{2}}$		$\frac{\pi}{\sqrt{a}}\left(\mathrm{e}^{2 \pi s / \sqrt{a}} \theta(-2 \pi s)+\mathrm{e}^{-2 \pi s / \sqrt{a}} \theta(2 \pi s)\right)$

where

- $\theta(t)=\chi_{t>0}(t)$ denotes Heaviside's jump function
- $\delta(t)=\frac{d}{d t} \theta(t) \quad$ denotes Diracs Delta-"function"
- A possible definition of the distribution $\delta(t)$ is furnished by

$$
\delta: f(t) \mapsto f(0)
$$

for "sufficiently well-behaved" functions $f(t)$ ("test functions"), often written as

$$
\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)
$$

- No function in the traditional sense can have this property, so $\delta(t)$ is not a function, but a linear functional
- Translation vs. Modulation

$$
\widehat{f(t-a)}(s)=e^{-2 \pi i a s} \cdot \widehat{f(t)}(s)
$$

- Dilation (Scaling)

$$
\sqrt{a} \widehat{f(a t)}(s)=\frac{1}{\sqrt{a}} \widehat{f(t)}\left(\frac{s}{a}\right)
$$

- Derivation vs. Multiplication

$$
\widehat{\frac{d}{d t} f(t)}(s)=2 \pi i s \cdot \widehat{f(t)}(s)
$$

- Convolution

$$
(f \star g)(t):=\int_{-\infty}^{\infty} f(x) g(t-x) d x
$$

Convolution theorem

$$
\widehat{(f \star g)(t)}(s)=\widehat{f(t)}(s) \cdot \widehat{g(t)}(s)
$$

- Dilation
- The a-Dilation $\left(D_{a} f\right)(t)$ of a function $f(t)$ is defined as

$$
\left(D_{a} f\right)(t)=\sqrt{a} f(a t)
$$

- Dilation means stretching (for $0<a<1$) resp. squeezing (for $a>1$) of the graph of f so that the norm is conserved

$$
\left\|D_{\mathrm{a}} f\right\|=\|f\|
$$

- The behavior of the Fourier transform w.r.t. dilation can be succinctly described by

$$
\widehat{D_{a} f}=D_{1 / a} \widehat{f}
$$

This antagonistic property is one of the characteristics of the Fourier transform (\rightarrow uncertainty relation)

- Derivation vs. multiplication

Under suitable conditions on $f(t)$ by partial integration or by interchanging integration and derivation:

- $\widehat{f^{\prime}(t)}(s)=(2 \pi i s) \cdot \widehat{f}(s)$

$$
\widehat{f^{\prime}(t)}(s)=\int_{\mathbb{R}} f^{\prime}(t) \mathrm{e}^{-2 \pi i s t} d t
$$

$$
=\left.\mathrm{e}^{-2 \pi i s t} f(t)\right|_{t \rightarrow-\infty} ^{t \rightarrow+\infty}+(2 \pi i s) \cdot \int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t
$$

$$
=(2 \pi i s) \cdot \int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t
$$

- $\widehat{t \cdot f(t)}(s)=\frac{-1}{2 \pi i} \cdot \frac{d}{d s} \widehat{f}(s)$
$\widehat{t \cdot f(t)}(s)=\int_{\mathbb{R}} t \cdot f(t) \mathrm{e}^{-2 \pi i s t} d t=\frac{-1}{2 \pi i} \cdot \frac{d}{d s} \int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t$
- Derivation: Smoothness and vanishing at infinity
- Riemann-Lebesgue Lemma

$$
f \in \mathcal{L}^{1}(\mathbb{R}) \Rightarrow\left\{\begin{array}{l}
\widehat{f} \text { is uniformly continuous on } \mathbb{R} \\
\text { and } \lim _{|s| \rightarrow \infty} \widehat{f}(s)=0
\end{array}\right.
$$

- " $t^{N} \cdot f(t) \in \mathcal{L}^{1}(\mathbb{R})$ " means: $f(t)$ vanishes fast as $t \rightarrow \pm \infty$:

$$
\int_{\mathbb{R}}\left|t^{N} f(t)\right| d t<\infty, \text { so typically } f(t) \in \mathcal{O}\left(t^{-N-1-\varepsilon}\right)
$$

- The faster a function $f(t)$ vanishes as $t \rightarrow \pm \infty$, the smoother (higher order differentiable) is $\widehat{f}(s)$ - and conversely

$$
\left.\begin{array}{c}
f(t) \in \mathcal{L}^{1}(\mathbb{R}) \\
t^{N} \cdot f(t) \in \mathcal{L}^{1}(\mathbb{R})
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
\widehat{f} \in \mathcal{C}^{N}(\mathbb{R}) \quad \text { and } \\
\frac{d^{k}}{d s^{k}} \widehat{f}(s)=\frac{-1}{(2 \pi i)^{k}} \widehat{k^{k} f(t)}(s) \quad(0 \leq k \leq N)
\end{array}\right.
$$

- Derivation and multiplication with the variable are "complementary"
- B-Spline functions and their Fourier transforms

Iterated convolutions of the box function $b(t)$

$$
b^{\star n}(t)=(b \star b \star \cdots \star b)(t) \quad(n \text { factors })
$$

$b^{\star n}$ is ($n-2$)-fold differentiable
n : $1=$ black, $2=$ red, $3=$ green, $4=$ blue

- B-Spline functions and their Fourier transforms

The Fourier transforms are the functions

$$
\widehat{b^{\star n}}(s)=\operatorname{sinc}(\pi s)^{n}=\frac{\sin (\pi s)^{n}}{(\pi s)^{n}} \in \mathcal{O}\left(s^{-n}\right)
$$

n : $1=$ black, $2=$ red, $3=$ green, $4=$ blue

- Definition of convolution

$$
(f \star g)(t):=\int_{-\infty}^{\infty} f(x) g(t-x) d x
$$

- If $g(t)=\omega_{s}(t)=\mathrm{e}^{2 \pi i s t}$:

$$
\begin{aligned}
\left(f \star \omega_{s}\right)(t) & =\int_{-\infty}^{\infty} f(x) \mathrm{e}^{2 \pi i s(t-x)} d x \\
& =\mathrm{e}^{2 \pi i s t} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-2 \pi i s x}=\widehat{f}(s) \cdot \omega_{s}(t)
\end{aligned}
$$

- Convolution by a fixed function $f(t)$

$$
\mathcal{C}_{f}: g(t) \mapsto(f \star g)(t)
$$

is a linear transformation which has

- the complex exponentials $\omega_{s}(t)=\mathrm{e}^{2 \pi i s t}$ as eigenfunctions
- with Fourier transform value $\widehat{f}(s)$ as the corresponding eigenvalues
- Convolution with $\delta(t)$ replicates $f(t)$

$$
(\delta \star f)(t)=\int_{-\infty}^{\infty} \delta(x) f(t-x) d x=f(t)
$$

- The convolution theorem

$$
\begin{array}{ccc}
f, g & \stackrel{\mathcal{F}}{\Longrightarrow} & \widehat{f}, \widehat{g} \\
\Downarrow \star & & \\
\downarrow \star g & \stackrel{\mathcal{F}}{\Longrightarrow} & \widehat{f \star g}=\widehat{f} \cdot \widehat{g}
\end{array}
$$

- Main application of convolution
"Filtering in the frequency domain"

$$
\begin{array}{ccc}
f, g \\
\Downarrow \star & \stackrel{\mathcal{F}}{\rightleftharpoons} & \widehat{f}, \widehat{g} \\
\Downarrow \star g=\mathcal{F}^{-1}(\widehat{f} \cdot \widehat{g}) & \stackrel{\mathcal{F}^{-1}}{\rightleftharpoons} \widehat{f} \cdot \widehat{g}
\end{array}
$$

- Proof of the convolution theorem (sketch)

$$
\begin{array}{rlr}
\widehat{f \star g}(s) & =\int_{\mathbb{R}}(f \star g)(t) \mathrm{e}^{-2 \pi i s t} d t & \text { def. of } \mathrm{FT} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) g(t-x) d x \mathrm{e}^{-2 \pi i s t} d t & \text { def. of } \star \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi i s x} g(t-x) \mathrm{e}^{-2 \pi i s(t-x)} d x d t & \\
& =\int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi i s x} \int_{\mathbb{R}} g(t-x) \mathrm{e}^{-2 \pi i s(t-x)} d t d x & \int_{t} \int_{x} \equiv \int_{x} \int_{t} \\
& =\int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi i s x} \int_{\mathbb{R}} g(t) \mathrm{e}^{-2 \pi i s t} d t d x & t \mapsto t+x \\
& =\int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi i x} \widehat{g}(s) d x & \text { def. of } F T \\
& =\widehat{f}(s) \cdot \widehat{g}(s) & \text { def. of } F T
\end{array}
$$

The crucial point is the change of the order of integration!

- Low-pass filtering with a Gauss filter

$$
\stackrel{\mathcal{F}}{\Longrightarrow}
$$

-

- High-pass filtering with a Mexhat filter

$$
\stackrel{\mathcal{F}}{\Longrightarrow}
$$

- A fundamental consequence of the convolution theorem:

The Parseval-Plancherel identity: Fourier transform is an isometry!

- For $f, g \in \mathcal{L}^{2}$ s.th. also $\widehat{f}, \widehat{g} \in \mathcal{L}^{2}$, one has

$$
\langle f \mid g\rangle=\langle\widehat{f} \mid \widehat{g}\rangle \text { and in particular }\left\{\begin{array}{l}
\|f\|=\|\widehat{f}\| \\
f \perp g \Leftrightarrow \widehat{f} \perp \widehat{g}
\end{array}\right.
$$

Sketch of proof
Define $\widetilde{g}(t)=\overline{g(-t)}$ and check that $\widehat{\widetilde{g}}(s)=\overline{\hat{g}(s)}$, then

$$
\begin{aligned}
\langle\widehat{f} \mid \widehat{g}\rangle=\int \widehat{f}(s) \cdot \overline{\hat{g}(s)} d s=\int \widehat{f}(s) \cdot & \cdot \widehat{\tilde{g}}(s) d s= \\
\int(\widehat{f \star \widetilde{g}})(s) d s=(f \star \widetilde{g})(0) & =\int f(t) \cdot \widetilde{g}(-t) d t \\
& =\int f(t) \cdot \overline{g(t)} d t=\langle f \mid g\rangle
\end{aligned}
$$

- Uncertainty relation
- For $f(t) \in \mathcal{L}^{2}(\mathbb{R})$ with

$$
\|f\|^{2}=\int_{\mathbb{R}}|f(t)|^{2} d t=1
$$

then $t \mapsto|f(t)|^{2}$ can be seen as a probability density function on \mathbb{R}

- Expectation and variance of this probability density are given by

$$
\mu(f)=\int_{\mathbb{R}} t|f(t)|^{2} d t \quad \sigma^{2}(f)=\int_{\mathbb{R}}(t-\mu(f))^{2}|f(t)|^{2} d t
$$

- Because of the Parseval-Plancherel identity one also has $\|\widehat{f}\|=1$; $\mu(\widehat{f})$ and $\sigma^{2}(\widehat{f})$ are defined analogously
- Then the Heisenberg inequality holds:

$$
\sigma^{2}(f) \cdot \sigma^{2}(\widehat{f}) \geq \frac{1}{(4 \pi)^{2}}
$$

(For a proof see the Lecture Notes)

- Examples

$f(t, a)$	$\sigma^{2}(f)$	$\widehat{f}(s, a)$	$\sigma^{2}(\widehat{f})$
$\sqrt{a} \chi_{[-1 / 2,1 / 2]}(a t)$	$\frac{1}{12 a^{2}}$	$\sqrt{a} \frac{\sin (\pi s / a)}{\pi s}$	∞
$\sqrt{\frac{3}{2 a}}(1-\|a t\|) \cdot \chi_{-1 / a, 1 / a}(t)$	$\frac{1}{10 a^{2}}$	$\sqrt{\frac{3}{2 a}} \frac{(\sin (\pi s / a))^{2}}{\pi^{2} s^{2}}$	$\frac{3 a^{2}}{4 \pi^{2}}$
$\sqrt{a} \mathrm{e}^{-a\|t\|}$	$\frac{1}{2 a^{2}}$	$2 \frac{a^{3 / 2}}{a^{2}+4 \pi^{2} s^{2}}$	$\frac{a^{2}}{4 \pi^{2}}$
$\sqrt[4]{\frac{2 a}{\pi}} \mathrm{e}^{-a t^{2}}$	$\frac{1}{4 a}$	$\sqrt[4]{\frac{2 a}{\pi}} \mathrm{e}^{-\frac{\pi^{2} s^{2}}{a}}$	$\frac{a}{4 \pi^{2}}$

- Graphical illustration of uncertainty: Heisenberg boxes
- For any function $f(t)$ and $a>0, b \in \mathbb{R}$ let

$$
f_{a, b}(t)=\sqrt{a} \cdot f(a t-b), \quad \mu_{a, b}=\mu\left(f_{a, b}\right), \quad \sigma_{a, b}^{2}=\sigma^{2}\left(f_{a, b}\right),
$$

and similarly for $\widehat{f}(s)$

- Then

$$
\mu_{a, b}=\frac{\mu+b}{a}, \quad \sigma_{a, b}^{2}=\frac{\sigma^{2}}{a^{2}}, \quad \widehat{\mu}_{a, b}=a \widehat{\mu}, \quad \widehat{\sigma}_{a, b}^{2}=a^{2} \widehat{\sigma}^{2}
$$

- The Heisenberg box for the function $f(t)$ is the rectangle in the (s, t)-plane centered at ($\mu_{a, b}, \widehat{\mu}_{a, b}$) and with side lengths ($\sigma_{a, b}, \widehat{\sigma}_{a, b}$). This box characterizes the simultaneous uncertainty of $f(t)$ in the time/space domain and in the frequency domain The box area $\sigma_{a, b} \cdot \widehat{\sigma}_{a, b} \geq \frac{1}{4 \pi}$ is independent of scaling a and translation b !

Figure: Heisenberg boxes for $f_{a, b}(t)$ with $a=1 / 2, a=1$ and $a=2$

- Poisson's formula

For any sufficently well-behaved function $f: \mathbb{R} \rightarrow \mathbb{C}$ there is a relation

- between the values $f(k)(k \in \mathbb{Z})$ at integer arguments
- and the values $\widehat{f}(s-n)(n \in \mathbb{Z})$ of its Fourier transform

$$
\sum_{n=-\infty}^{\infty} \widehat{f}(s-n)=\sum_{k=-\infty}^{\infty} f(k) \mathrm{e}^{-2 \pi i s k} \quad(s \in \mathbb{R})
$$

- Note: the sum on the I.h.s. defines a 1-periodic function, the sum on the r.h.s. is a Fourier series
- In particular (take $s=0$)

$$
\sum_{n=-\infty}^{\infty} \widehat{f}(n)=\sum_{k=-\infty}^{\infty} f(k)
$$

- Equivalent version of Poisson's formula (for $a>0$)

$$
\sum_{n=-\infty}^{\infty} f(t-n / a)=a \cdot \sum_{k=-\infty}^{\infty} \widehat{f}(k \cdot a) \mathrm{e}^{2 \pi i t k a}
$$

- Sketch of proof (case $a=1$ suffices):

$$
\phi(t)=\sum_{n} f(t-n) \text { is 1-periodic, }
$$

so if it has a Fourier series $\phi(t)=\sum_{k \in \mathbb{Z}} \varphi[k] \mathrm{e}^{2 \pi i k t}$, then

$$
\begin{aligned}
\varphi[k]= & \int_{0}^{1} \phi(t) \mathrm{e}^{-2 \pi i k t} d t=\sum_{n \in \mathbb{Z}} \int_{0}^{1} f(t-n) \mathrm{e}^{-2 \pi i k t} d t \\
& =\sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(t) \mathrm{e}^{-2 \pi i k t} d t=\int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i k t} d t=\widehat{f}(k)
\end{aligned}
$$

- Shannon-Nyquist sampling theorem

If a signal $f: \mathbb{R} \rightarrow \mathbb{C}$ is band-limited in the sense that

$$
|s|>\frac{1}{2 a} \Longrightarrow \widehat{f}(s)=0
$$

then $f(t)$ can be perfectly reconstructed from its discrete sampling values $f(k \cdot a)(k \in \mathbb{Z})$ by

$$
\begin{aligned}
f(t) & =\sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot \frac{\sin \left(\frac{\pi}{a}(t-k \cdot a)\right)}{\frac{\pi}{a}(t-k \cdot a)} \\
& =\sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot \operatorname{sinc}\left(\frac{1}{a}(t-k \cdot a)\right)
\end{aligned}
$$

This is Shannon's formula $\quad\left(\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}\right)$

- From the band-limiting condition, only the $(n=0)$-term from

$$
\sum_{n \in \mathbb{Z}} \widehat{f}(s-n / a)
$$

in Poisson's formula survives, so that

$$
\widehat{f}(s)=a \sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot e^{-2 \pi i s k \cdot a}
$$

and thus

$$
\begin{aligned}
f(t) & =\int_{\mathbb{R}} \widehat{f}(s) e^{2 \pi i s t} d s \\
& =\int_{-1 /(2 a)}^{1 /(2 a)} \widehat{f}(s) e^{2 \pi i s t} d s \\
& =a \sum_{k \in \mathbb{Z}} f(k \cdot a) \int_{-1 /(2 a)}^{1 /(2 a)} e^{2 \pi i s(t-k \cdot a)} d s \\
& =\sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot \frac{\sin \frac{\pi}{a}(t-k \cdot a)}{\frac{\pi}{a}(t-k \cdot a)}
\end{aligned}
$$

- What sampling really means?
- Sampling a continuous signal with frequency a means: repeating its spectrum periodically with distance a
a function and its spectrum
sampling with limit frequency
oversampling
undersampling

- In a purely formal way:

$$
\delta(s)=\widehat{1}(s)=\int_{\mathbb{R}} \mathrm{e}^{-2 \pi i s t} d t
$$

The integral doesn't make sense, but ...

- ... if δ appears under an integral, it may work

$$
\begin{aligned}
\int_{\mathbb{R}} f(t) \delta(t) d t=\int_{\mathbb{R}} f(t) & \int_{\mathbb{R}} \mathrm{e}^{-2 \pi i s t} d s d t= \\
& \int_{\mathbb{R}} \int_{\mathbb{R}} f(t) \mathrm{e}^{-2 \pi i s t} d t d s=\int_{\mathbb{R}} \widehat{f}(s) d s=f(0)
\end{aligned}
$$

which motivates the common definition (given earlier)

- Another characteristic property: $\delta \star f=f$

$$
(\delta \star f)(t)=\int_{\mathbb{R}} \delta(s) \cdot f(t-s) d s=f(t)
$$

i.e., $\delta(t)$ acts as a neutral element w.r.t. convolution

No "proper" function can have this property. Therefore

$$
\widehat{f}(s)=\widehat{(\delta \star f)}(s)=\widehat{\delta}(s) \cdot \widehat{f}(s) \Longrightarrow \widehat{\delta} \equiv 1
$$

- Translation of δ
- definition

$$
\delta_{a}(t)=\delta(t-a) \text { or } \int f(t) \delta_{a}(t) d t=f(a) \text { or } \delta_{a}: f(t) \mapsto f(a)
$$

- multiplication with a function

$$
f(t) \cdot \delta_{a}(t) \equiv f(a) \cdot \delta_{a}(t)
$$

- convolution with δ_{a} is translation

$$
\left(f \star \delta_{a}\right)(t)=\int f(t-x) \delta_{a}(x) d x=f(t-a)
$$

- the Fourier transform of δ_{a} is

$$
\widehat{\delta_{a}}(s)=\mathrm{e}^{-2 \pi i a s}
$$

- Dirac's comb
- definition

$$
\amalg(t)=\sum_{k \in \mathbb{Z}} \delta_{k}(t)
$$

- multiplication (the sampling property)

$$
f(t) \cdot \amalg(t)=\sum_{k \in \mathbb{Z}} f(t) \delta_{k}(t)=\sum_{k \in \mathbb{Z}} f(k) \delta_{k}(t)
$$

- convolution (the periodizing property)

$$
(f \star \amalg)(t)=\sum_{k \in \mathbb{Z}}\left(f \star \delta_{k}\right)(t)=\sum_{k \in \mathbb{Z}} f(t-k)
$$

- the Fourier transform of $\amalg(t)$ is

$$
\widehat{\amalg}(s)=\amalg(s)
$$

- Dirac's comb and Poisson's formula

$$
\begin{array}{rlr}
\sum_{k \in \mathbb{Z}} \widehat{f}(t-k) & =(\widehat{f} \star \amalg)(t) & \text { W-convolution } \\
& =(\widehat{f} \star \widehat{\amalg})(t) & \text { FT of } \amalg \\
& =(\widehat{f \cdot W})(t) & \text { convolution theorem } \\
& =\left(\widehat{\sum_{k \in \mathbb{Z}}}(k) \delta_{k}\right)(t) & \text { definition of } \amalg \\
& =\sum_{k \in \mathbb{Z}} f(k) \widehat{\delta_{k}}(t) & \text { linearity of FT } \\
& =\sum_{k \in \mathbb{Z}} f(k) e^{-2 \pi i k t} & \text { FT of } \delta_{k}
\end{array}
$$

Periodization with width $1 / a$

$\ldots-\cdots{\widehat{f \cdot \amalg_{a}}}_{a}=\frac{1}{a}\left(\widehat{f} \star \amalg_{1 / a}\right)$

Figure: The sampling scheme

Figure: Reconstructing a sampled bandlimited signal

- $\delta_{a}(t): f(t) \longmapsto f(a)$
- $\amalg_{a}(t)=\sum_{k \in \mathbb{Z}} \delta_{k \cdot a}(t)=\frac{1}{a} \sum_{k \in \mathbb{Z}} e^{2 \pi i k t / a}$

	$\delta_{a}(t)$	$Ш_{a}(t)$
action on $f(t)$	$f(a)$	$\sum_{k \in \mathbb{Z}} f(k \cdot a)$
product with $f(t)$	$f(a) \cdot \delta_{a}(t)$	$\sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot \delta_{k \cdot a}(t)$
scaling with $p>0$	$\frac{1}{p} \delta_{a / p}(t)$	$\frac{1}{p} \amalg_{a / p}(t)$
convolution with $f(t)$	$f(t-a)$	$\sum_{k \in \mathbb{Z}} f(t-k \cdot a)$
Fourier transform	$e^{-2 \pi i a s}$	$\frac{1}{a} \amalg_{1 / a}(s)$

- periodizing a function
$f(t) \longmapsto \sum_{k \in \mathbb{Z}} f(t-k \cdot a)=\left(f \star Ш_{a}\right)(t)$
- sampling a function $f(t) \longmapsto \sum_{k \in \mathbb{Z}} f(k \cdot a) \cdot \delta_{k \cdot a}(t)=\left(f \cdot Ш_{a}\right)(t)$
$f(t)$ a b-bandlimited function
\Rightarrow the copies of $\widehat{f}(s)$ contained in $\widehat{f \cdot \amalg_{1 / b}}$ do not overlap
$\Rightarrow \widehat{f}$ can be recovered by

$$
\widehat{f}=\Pi_{b} \cdot f \widehat{\amalg_{1 / b}}=b \cdot \Pi_{b} \cdot\left(\widehat{f} \star \amalg_{b}\right)
$$

where $\Pi_{b}(t)=\chi_{[-b / 2, b / 2]}(t)$. Now compute:

$$
\begin{aligned}
f & =\mathcal{F}^{-1}\left(b \cdot \Pi_{b} \cdot\left(\mathcal{F}(f) \star Ш_{b}\right)\right) \\
& =b \cdot \mathcal{F}^{-1}\left(\Pi_{b}\right) \star \mathcal{F}^{-1}\left(\mathcal{F}(f) \star \amalg_{b}\right) \\
& =b \cdot \mathcal{F}^{-1}\left(\Pi_{b}\right) \star\left(f \cdot \mathcal{F}^{-1}\left(\amalg_{b}\right)\right) \\
& =\mathcal{F}^{-1}\left(\Pi_{b}\right) \star\left(f \cdot \amalg_{1 / b}\right)
\end{aligned}
$$

inverse Fourier transform
convolution theorem
convolution theorem
iFT of \amalg_{b}
which gives the celebrated Shannon-formula

$$
f(t)=\operatorname{sinc}(b t) \star \sum_{k \in \mathbb{Z}} f(k / b) \delta(t-k / b)=\sum_{k \in \mathbb{Z}} f(k / b) \operatorname{sinc}(b(t-k / b))
$$

where

$$
\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}=\mathcal{F}^{-1}\left(\Pi_{1}\right)(t)
$$

