Signals and Filters

WTBV

November 25, 2015
(1) Reminder: 2π-periodic Functions
(2) Signals
(3) Convolution
(4) Filter
(5) Downsampling und Upsampling

periodic functions (1)

- 2π-periodic functions can be identified with functions defined on the interval $I=[-\pi, \pi)$
- $\mathcal{L}^{2}(-\pi, \pi)$: (Hilbert-)space of square-integrable functions in I, i.e., functions $f: I \rightarrow \mathbb{C}$ with $\int_{I}|f(\omega)|^{2} d \omega<\infty$ and (complex) inner product

$$
\langle f \mid g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\omega) \overline{g(\omega)} d \omega
$$

- \mathcal{L}^{2}-norm

$$
\|f\|_{2}^{2}=\langle f \mid f\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\omega)|^{2} d \omega
$$

periodic functions (2)

- The functions (for $k \in \mathbb{Z}$)

$$
\varepsilon_{k}: \omega \mapsto e^{i k \omega}
$$

form a complete orthonormal basis (Hilbert-basis) of the space $\mathcal{L}^{2}(-\pi, \pi)$

- Proof of orthonormality:

$$
\begin{aligned}
\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i j \omega} e^{-i k \omega} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(j-k) \omega} d \omega \\
& = \begin{cases}\frac{1}{2 \pi} \int_{-\pi}^{\pi} 1 d \omega=1 & \text { if } j=k \\
\left.\frac{1}{2 \pi i} \frac{1}{j-k} e^{i(j-k) \omega}\right|_{-\pi} ^{\pi}=0 & \text { if } j \neq k\end{cases}
\end{aligned}
$$

periodic functions (3)

- For any integrable 2π-periodic function f, i.e., $\int_{I}|f(\omega)| d \omega<\infty$, its Fourier coefficients are defined by

$$
c_{f, k}=\left\langle f \mid \varepsilon_{k}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\omega) e^{-i k \omega} d \omega
$$

- For sufficiently well-behaved functions one has the expansion into a Fourier series:

$$
f(\omega) \simeq \sum_{k \in \mathbb{Z}} c_{f, k} e^{i k \omega}
$$

periodic functions (4)

- For functions $f, g \in \mathcal{L}^{2}(-\pi, \pi)$ the Parseval identity holds

$$
\sum_{k \in \mathbb{Z}} c_{f, k} \cdot \overline{c_{g, k}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\omega) \cdot \overline{g(\omega)} d \omega=\langle f \mid g\rangle
$$

and so does the Plancherel identity

$$
\sum_{k \in \mathbb{Z}}\left|c_{f, k}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\omega)|^{2} d \omega=\|f\|_{2}^{2}
$$

- Proof: It follows from orthonormality of the functions ε_{k} that

$$
\begin{aligned}
\langle f \mid g\rangle & =\left\langle\sum_{j} c_{f, j} \varepsilon_{j} \mid \sum_{k} c_{g, k} \varepsilon_{k}\right\rangle \\
& =\sum_{j} \sum_{k} c_{f, j} \overline{c_{g, k}}\left\langle\varepsilon_{j} \mid \varepsilon_{k}\right\rangle \\
& =\sum_{k} c_{j, k} \overline{c_{g, k}}
\end{aligned}
$$

signals (1)

- A (time-discrete) signal is a two-sided infinite sequence

$$
\boldsymbol{x}=\left(\ldots, x[-2], x[-1], x[0], x[1], x[2 \mid, \ldots)=(x[n])_{n \in \mathbb{Z}}\right.
$$

of complex numbers, i.e., $\boldsymbol{x} \in \mathbb{C}^{\mathbb{Z}}$

- $\mathbb{C}^{\mathbb{Z}}$ is a \mathbb{C}-vector space (of uncountable dimension) w.r.t. component-wise addition and scalar multiplikation
- ℓ^{1}-signals are signals \boldsymbol{x} with $\|\boldsymbol{x}\|_{1}=\sum_{n}|x[n]|<\infty$
- ℓ^{2}-signals are signals \boldsymbol{x} with $\|\boldsymbol{x}\|_{2}^{2}=\sum_{n \in \mathbb{Z}}|x[n]|^{2}<\infty$
- Every ℓ^{1}-signal is a ℓ^{2}-signal, but not conversely
- $\ell^{1}=\ell^{1}(\mathbb{Z})$ resp. $\ell^{2}=\ell^{2}(\mathbb{Z})$ denote the subspaces (with norm) of $\mathbb{C}^{\mathbb{Z}}$ of ℓ^{1} - resp. ℓ^{2}-signals. Both have countable dimension. ℓ^{2} is even a Hilbert space w.r.t. the inner product

$$
\langle\boldsymbol{x}, \mid \boldsymbol{y}\rangle=\sum_{n \in \mathbb{Z}} x[n] \cdot \overline{y[n]}
$$

signals (2)

- The frequency representation of a signal \boldsymbol{x} is its Fourier series

$$
X(\omega)=\sum_{n \in \mathbb{Z}} x[n] e^{i n \omega}
$$

This is a 2π-periodic function

- The coefficients are obtained from $X(\omega)$ by Fourier's integral:

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{-i n \omega} d \omega=\left\langle X \mid \varepsilon_{n}\right\rangle
$$

signals (3)

- For ℓ^{2}-signals one has energy conservation (see the Plancherel formula above)

$$
\|\boldsymbol{x}\|_{2}^{2}=\sum_{n \in \mathbb{Z}}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\omega)|^{2} d \omega=\|X(\omega)\|_{2}^{2}
$$

- and more generally the Parseval identity holds:

$$
\langle\boldsymbol{x} \mid \boldsymbol{y}\rangle=\sum_{n \in \mathbb{Z}} x[n] \overline{y[n]}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) \bar{Y}(\omega) d \omega=\langle X(\omega) \mid Y(\omega)\rangle
$$

signals (4)

- The unit impulse at time 0 is the signal δ given by

$$
\delta[n]= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}
$$

- For any signal \boldsymbol{x} and $k \in \mathbb{Z}$ the k-shifted signal $\tau^{k} \boldsymbol{x}$ (by time or distance k) is given by

$$
\left(\tau^{k} \boldsymbol{x}\right)[n]=x[n-k] \quad(n \in \mathbb{Z})
$$

- The linear mappings

$$
\tau^{k}: \mathbb{C}^{\mathbb{Z}} \rightarrow \mathbb{C}^{\mathbb{Z}}: \boldsymbol{x} \mapsto \tau^{k} \boldsymbol{x}
$$

are also linear transformations of ℓ^{1} and of ℓ^{2}

convolution (1)

- The convolution $\boldsymbol{x} \star \boldsymbol{y}$ of two signals $\boldsymbol{x}=(x[n])_{n \in \mathbb{Z}}$ and $\boldsymbol{y}=(y[n])_{n \in \mathbb{Z}}$ is defined by

$$
(\boldsymbol{x} \star \boldsymbol{y})[n]=\sum_{k \in \mathbb{Z}} x[k] \cdot y[n-k] \quad(n \in \mathbb{N})
$$

(provided that the sums converge for all $n \in \mathbb{Z}$)

- Convolution is commutative and associative:

$$
x \star y=y \star x \text { and } x \star(y \star z)=(x \star y) \star z
$$

convolution (2)

- The most important special cases are these:
- If $\boldsymbol{x}=(x[n])_{n \in \mathbb{Z}}$ is a finite signal (finitely many $x[n]$ are $\neq 0$), then
- for any signal \boldsymbol{y} the convolution $\boldsymbol{x} \star \boldsymbol{y}$ is again a signal, and - for $\boldsymbol{y} \in \ell^{1}$ resp. $\in \ell^{2}$ the conv. $\boldsymbol{x} \star \boldsymbol{y}$ is again $\in \ell^{1}$ resp. $\in \ell^{2}$. The same is true if \boldsymbol{y} is a finite signal.
- For $\boldsymbol{x}, \boldsymbol{y} \in \ell^{1}$, one has $\boldsymbol{x} \star \boldsymbol{y} \in \ell^{1}$. This follows from

$$
\begin{aligned}
\|\mathbf{x} \star \mathbf{y}\|_{1} & =\sum_{n \in \mathbb{Z}}|(\boldsymbol{x} \star \boldsymbol{y})[k]| \\
& =\sum_{n \in \mathbb{Z}}\left|\sum_{k \in \mathbb{Z}} x[k] \cdot y[n-k]\right| \\
& \leq \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}}|x[k]| \cdot|y[n-k]| \\
& =\sum_{k \in \mathbb{Z}}|x[k]| \cdot \sum_{n \in \mathbb{Z}}|y[n]|=\|\boldsymbol{x}\|_{1} \cdot\|\boldsymbol{y}\|_{1}
\end{aligned}
$$

- For ℓ^{2} the correct statement is a bit more complicated

convolution (3)

- The convolution theorem:

For signals $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \ell^{1}$ with $\boldsymbol{z}=\boldsymbol{x} \star \boldsymbol{y}$ one has

$$
\forall \omega: Z(\omega)=X(\omega) \cdot Y(\omega)
$$

for the corresponding Fourier series

- This follows from

$$
\begin{aligned}
Z(\omega) & =\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} x[k] y[n-k]\right) e^{i n \omega} \\
& =\sum_{n, k \in \mathbb{Z}} x[k] e^{i k \omega} y[n-k] e^{i(n-k) \omega} \\
& =\sum_{k \in \mathbb{Z}} x[k] e^{i k \omega} \cdot \sum_{n \in \mathbb{Z}} y[n] e^{i n \omega} \\
& =X(\omega) \cdot Y(\omega)
\end{aligned}
$$

filter (1)

- A linear transformation $T: \mathbb{C}^{\mathbb{Z}} \rightarrow \mathbb{C}^{\mathbb{Z}}$ (or of ℓ^{1} resp. ℓ^{2}) is translation invariant, if it commutes with the shift τ :

$$
\forall \boldsymbol{x} \in \mathbb{C}^{\mathbb{Z}}: T(\tau \boldsymbol{x})=\tau(T \boldsymbol{x})
$$

in shorthand: $T \circ \tau=\tau \circ T$.

- If this holds, then $T \circ \tau^{k}=\tau^{k} \circ T$ for all $k \in \mathbb{Z}$

filter (2)

- A linear transformation $T: \ell^{1} \rightarrow \ell^{1}$ is continuous (or stable), if there is a constant $C>0$ such that

$$
\forall \boldsymbol{x} \in \ell^{1}:\|T \boldsymbol{x}\|_{1} \leq C \cdot\|\boldsymbol{x}\|_{1}
$$

- An equivalent statement is: for every sequence of signals $\left(\boldsymbol{x}^{(m)}\right)_{m \in \mathbb{N}}$ in ℓ^{1} and $\boldsymbol{x} \in \ell^{1}$ with $\left(\boldsymbol{x}^{(m)}\right)_{m \in \mathbb{N}} \rightarrow_{\ell^{1}} \boldsymbol{x}$ one has $\left(T \boldsymbol{x}^{(m)}\right)_{m \in \mathbb{N}} \rightarrow_{\ell^{1}} T \boldsymbol{x}$, i.e.,

$$
\left\|\boldsymbol{x}^{(m)}-\boldsymbol{x}\right\| \rightarrow_{m \rightarrow \infty} 0 \Rightarrow\left\|\boldsymbol{x}^{(m)}-T \boldsymbol{x}\right\| \rightarrow_{m \rightarrow \infty} 0
$$

- A similar definition is made for transformations of ℓ^{2}

Filter (3)

- Definition: An ℓ^{1} - filter resp. ℓ^{2}-filter is a linear transformation of ℓ^{1} resp. ℓ^{2} which is both translation invariant and continuous
- For any $\boldsymbol{h} \in \ell^{1}$ the convolution mapping

$$
T_{\boldsymbol{h}}: \ell^{1} \rightarrow \ell^{1}: \boldsymbol{x} \mapsto \boldsymbol{x} \star \boldsymbol{h}
$$

is an ℓ^{1}-Filter

- translation invariance can be checked directly
- continuity follows from

$$
\left\|T_{\boldsymbol{h}} \boldsymbol{x}\right\|_{1}=\|\boldsymbol{x} \star \boldsymbol{h}\| \leq\|\boldsymbol{x}\|_{1} \cdot\|\boldsymbol{h}\|_{1}
$$

The required constant C is just $\|\boldsymbol{h}\|_{1}$

filter (4)

- Theorem: For any ℓ^{1}-Filter T there is an $\boldsymbol{h} \in \ell^{1}$ s.th. $T=T_{\boldsymbol{h}}$.
- Sketch of proof:
- Write the signal \boldsymbol{x} as a linear combination of shifted impulses:

$$
\boldsymbol{x}=\sum_{k \in \mathbb{Z}} x[k] \tau^{k} \boldsymbol{\delta}
$$

- Now put $\boldsymbol{h}=T \boldsymbol{\delta}$.

It follows from linearity and translation invariance of T that

$$
T \boldsymbol{x} \stackrel{(*)}{=} \sum_{k} x[k] T \tau^{k} \boldsymbol{\delta}=\sum_{k} x[k] \tau^{k} \boldsymbol{T} \boldsymbol{\delta}=\sum_{k} x[k] \tau^{k} \boldsymbol{h}
$$

- From $\left(\tau^{k} \boldsymbol{h}\right)[n]=h[n-k]$ one has

$$
(T \boldsymbol{x})[n]=\sum_{k \in \mathbb{Z}} x[k] h[n-k] .
$$

and thus $T \boldsymbol{x}=\boldsymbol{x} \star \boldsymbol{h}$

- Notabene: Continuity of T is needed in order to justify switching of T with the infinite sum \sum_{k} in (*)

filter (5)

- About teminology: the signal $\boldsymbol{h}=T \boldsymbol{\delta}$ is called impulse response of the filter. The corresponding Fourier series $H(\omega)$ is the frequency response or transfer function of the filter
- In systems theory, the z-transform of a signal (or filter) $\boldsymbol{h}=(h[k])_{k \in \mathbb{Z}}$ is the power series

$$
h(z)=\sum_{k \in \mathbb{Z}} h[k] z^{k}
$$

so that the frequency response is $H(\omega)=h\left(e^{i \omega}\right)$

- Writing $H(\omega)$ for real ω is the same as considering $h(z)$ only for z from the complex unit circle, i.e. $|z|=1$. In writing $h(z)$ one implicitly considers z as a general complex variable
- Some authors define $H(\omega)=h\left(e^{-i \omega}\right)$, in which case $H(\omega)=\sum_{k} h[k] e^{-i k \omega}$

filter (6)

- The "harmonic" signal $\boldsymbol{x}_{\omega}=\left(e^{-i n \omega}\right)_{n \in \mathbb{Z}}$ belongs neither to ℓ^{1} nor to ℓ^{2}, but the convolution $T_{\boldsymbol{h}} \boldsymbol{x}_{\omega}=\boldsymbol{x}_{\omega} \star \boldsymbol{h}$ can be computed for any $\boldsymbol{h} \in \ell^{1}$:

$$
\begin{aligned}
\left(\boldsymbol{x}_{\omega} * \boldsymbol{h}\right)[n] & =\sum_{k \in \mathbb{Z}} e^{-i k \omega} h[n-k] \\
& =e^{-i n \omega} \sum_{k \in \mathbb{Z}} e^{i(n-k) \omega} h[n-k]=H(\omega) \cdot e^{-i n \omega} \\
\text { or } \quad T_{\boldsymbol{h}} \boldsymbol{x}_{\omega} & =H(\omega) \cdot \boldsymbol{x}_{\omega}
\end{aligned}
$$

- This means: each harmonic $\boldsymbol{x}_{\omega}=\left(e^{-i n \omega}\right)_{n \in \mathbb{Z}}$ is an eigenvector of $T_{\boldsymbol{h}}$ with eigenvalue $H(\omega)$
- Conclusion: If $T=T_{\boldsymbol{h}}$ is an ℓ^{1}-filter with frequency response $H(\omega)$, then for any ℓ^{1}-signal \boldsymbol{x} and $\boldsymbol{y}=T \boldsymbol{x}=\boldsymbol{x} \star \boldsymbol{h}$ one has

$$
\forall \omega: Y(\omega)=X(\omega) \cdot H(\omega)
$$

filter (7)

- The corresponding ℓ^{2}-theory is technically a bit more complicated, but the results are essentially the same:
ℓ^{2}-filters are precisely the convolution transformations

$$
T_{\boldsymbol{h}}: x \mapsto \boldsymbol{x} \star \boldsymbol{h}
$$

for which $H(\omega) \in \mathcal{L}^{\infty}(-\pi, \pi)$, i.e. $H(\omega)$ is bounded.

filter (8)

- A filter $T=T_{\boldsymbol{h}}$ is real, if $h[n] \in \mathbb{R}$ for all $n \in \mathbb{Z}$
- For a real filter \boldsymbol{h} one has

$$
\overline{H(\omega)}=\sum_{n} h[n] e^{-i n \omega}=H(-\omega)
$$

- Consequently $|H(\omega)|=|H(-\omega)|$, i.e., the function $\omega \mapsto|H(\omega)|$ is an even function. It suffices to know this function on the interval $[0, \pi]$

filter (9)

- A filter $T=T_{\boldsymbol{h}}$ is causal, if $h[n]=0$ for all $n<0$
- For a causal filter \boldsymbol{h} one has for $\boldsymbol{y}=T_{\boldsymbol{h}} \boldsymbol{x}$:

$$
y[n]=\sum_{k \leq n} x[k] h[n-k]=\sum_{k \geq 0} x[n-k] h[k],
$$

i.e., the response (output) $y[n]$ at time n only depends on the inputs $x[n-k]$ at previous times $n-k \leq n$

filter (10)

- A filter $T=T_{\boldsymbol{h}}$ is a FIR-filter (finite impulse response), if $h[n] \neq 0$ only for a finite number of filter coefficients
- A FIR-Filter is specified by a finite vector of filter coefficients $(h[a], h[a+1], \ldots, h[b])$ with $a<b$ and $h[a] \neq 0 \neq h[b]$

downsampling und upsampling (1)

- For any signal \boldsymbol{x} one denotes by $\boldsymbol{y}=\downarrow_{2} \boldsymbol{x}$ (2-downsampling) the signal given by

$$
y[n]=x[2 n] \quad(n \in \mathbb{Z})
$$

(coefficients with odd index are eliminated)

- This is not a filtering operation because it is not translation-invariant! In general:

$$
\left(\downarrow_{2} \tau^{k} \boldsymbol{x}\right)[0]=x[-k] \neq x[-2 k]=\left(\tau^{k} \downarrow_{2} \boldsymbol{x}\right)[0]
$$

- As for the frequency representation, one has (because of $(-1)^{n}=e^{i n \pi}$):

$$
\begin{aligned}
Y(\omega) & =\sum_{n \in \mathbb{Z}} x[2 n] e^{i n \omega}=\sum_{n \in \mathbb{Z}} x[n] \frac{1+(-1)^{n}}{2} e^{i n \omega / 2} \\
& =\frac{1}{2}\left(X\left(\frac{\omega}{2}\right)+X\left(\frac{\omega}{2}+\pi\right)\right)
\end{aligned}
$$

downsampling und upsampling (2)

- For any signal \boldsymbol{x} one denotes by $\boldsymbol{y}=\uparrow_{2} \boldsymbol{x}$ (2-upsampling) the signal given by

$$
y[n]= \begin{cases}x[n / 2] & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

(inserting 0 between any two neighboring coefficients of \boldsymbol{x})

- This is not a filtering operation because it is not translation-invariant!
- As for the frequency representation, one has

$$
Y(\omega)=\sum_{n \in \mathbb{Z}} x[n] e^{i 2 n \omega}=X(2 \omega)
$$

downsampling und upsampling (3)

- Downsampling and upsampling do not commute!

One has $\downarrow_{2} \uparrow_{2} \boldsymbol{x}=\boldsymbol{x}$, but for $\boldsymbol{y}=\uparrow_{2} \downarrow_{2} \boldsymbol{x}$ one gets

$$
y[n]= \begin{cases}x[n] & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

with frequency representation

$$
Y(\omega)=\frac{1}{2}(X(\omega)+X(\omega+\pi))
$$

