
Signals and Filters

WTBV

November 25, 2015



1 Reminder: 2π-periodic Functions

2 Signals

3 Convolution

4 Filter

5 Downsampling und Upsampling



periodic functions (1)

• 2π-periodic functions can be identified with functions defined
on the interval I = [−π, π)

• L2(−π, π): (Hilbert-)space of square-integrable functions in I ,
i.e., functions f : I → C with

∫
I |f (ω)|2dω <∞ and

(complex) inner product

〈 f | g 〉 =
1

2π

∫ π

−π
f (ω) g(ω) dω

• L2-norm

‖f ‖22 = 〈 f | f 〉 =
1

2π

∫ π

−π
|f (ω)|2dω.



periodic functions (2)

• The functions (for k ∈ Z)

εk : ω 7→ e i k ω

form a complete orthonormal basis (Hilbert-basis) of the
space L2(−π, π)

• Proof of orthonormality:

〈 εj | εk〉 =
1

2π

∫ π

−π
e i j ωe−i k ωdω

=
1

2π

∫ π

−π
e i (j−k)ωdω

=


1
2π

∫ π
−π 1 dω = 1 if j = k ,

1
2πi

1
j−k e

i (j−k)ω
∣∣∣π
−π

= 0 if j 6= k .



periodic functions (3)

• For any integrable 2π-periodic function f , i.e.,∫
I |f (ω)| dω <∞, its Fourier coefficients are defined by

cf ,k = 〈 f | εk 〉 =
1

2π

∫ π

−π
f (ω) e−i k ωdω

• For sufficiently well-behaved functions one has the expansion
into a Fourier series:

f (ω) '
∑
k∈Z

cf ,k e
i k ω



periodic functions (4)

• For functions f , g ∈ L2(−π, π) the Parseval identity holds∑
k∈Z

cf ,k · cg ,k =
1

2π

∫ π

−π
f (ω) · g(ω) dω = 〈 f | g 〉,

and so does the Plancherel identity∑
k∈Z
|cf ,k |2 =

1

2π

∫ π

−π
|f (ω)|2 dω = ‖f ‖22

• Proof: It follows from orthonormality of the functions εk that

〈 f | g 〉 = 〈
∑
j

cf ,j εj |
∑
k

cg ,k εk 〉

=
∑
j

∑
k

cf ,j cg ,k 〈 εj | εk 〉

=
∑
k

cj ,k cg ,k



signals (1)

• A (time-discrete) signal is a two-sided infinite sequence

x = (. . . , x [−2], x [−1], x [0], x [1], x [2|, . . .) = (x [n])n∈Z

of complex numbers, i.e., x ∈ CZ

• CZ is a C-vector space (of uncountable dimension) w.r.t.
component-wise addition and scalar multiplikation

• `1-signals are signals x with ‖x‖1 =
∑

n |x [n]| <∞
• `2-signals are signals x with ‖x‖22 =

∑
n∈Z |x [n]|2 <∞

• Every `1-signal is a `2-signal, but not conversely

• `1 = `1(Z) resp. `2 = `2(Z) denote the subspaces (with norm)
of CZ of `1- resp. `2-signals. Both have countable dimension.
`2 is even a Hilbert space w.r.t. the inner product

〈 x , | y 〉 =
∑
n∈Z

x [n] · y [n]



signals (2)

• The frequency representation of a signal x is its Fourier series

X (ω) =
∑
n∈Z

x [n] e inω

This is a 2π-periodic function

• The coefficients are obtained from X (ω) by Fourier’s integral:

x [n] =
1

2π

∫ π

−π
X (ω) e−i nωdω = 〈X | εn 〉



signals (3)

• For `2-signals one has energy conservation
(see the Plancherel formula above)

‖x‖22 =
∑
n∈Z
|x [n]|2 =

1

2π

∫ π

−π
|X (ω)|2 dω = ‖X (ω)‖22,

• and more generally the Parseval identity holds:

〈 x | y 〉 =
∑
n∈Z

x [n] y [n] =
1

2π

∫ π

−π
X (ω)Y (ω) dω = 〈X (ω) |Y (ω) 〉



signals (4)

• The unit impulse at time 0 is the signal δ given by

δ[n] =

{
1 for n = 0

0 for n 6= 0

• For any signal x and k ∈ Z the k-shifted signal τkx
(by time or distance k) is given by(

τkx
)

[n] = x [n − k] (n ∈ Z)

• The linear mappings

τk : CZ → CZ : x 7→ τkx

are also linear transformations of `1 and of `2



convolution (1)

• The convolution x ? y of two signals x = (x [n])n∈Z and
y = (y [n])n∈Z is defined by

(x ? y)[n] =
∑
k∈Z

x [k] · y [n − k] (n ∈ N)

(provided that the sums converge for all n ∈ Z)

• Convolution is commutative and associative:

x ? y = y ? x and x ? (y ? z) = (x ? y) ? z



convolution (2)
• The most important special cases are these:

• If x = (x [n])n∈Z is a finite signal (finitely many x [n] are 6= 0),
then
– for any signal y the convolution x ? y is again a signal, and
– for y ∈ `1 resp. ∈ `2 the conv. x ? y is again ∈ `1 resp. ∈ `2.
The same is true if y is a finite signal.

• For x , y ∈ `1, one has x ? y ∈ `1. This follows from

‖x ? y‖1 =
∑
n∈Z
|(x ? y)[k]|

=
∑
n∈Z

∣∣∣∣∣∑
k∈Z

x [k] · y [n − k]

∣∣∣∣∣
≤
∑
n∈Z

∑
k∈Z
|x [k]| · |y [n − k]|

=
∑
k∈Z
|x [k]| ·

∑
n∈Z
|y [n]| = ‖x‖1 · ‖y‖1

• For `2 the correct statement is a bit more complicated



convolution (3)

• The convolution theorem:
For signals x , y , z ∈ `1 with z = x ? y one has

∀ω : Z (ω) = X (ω) · Y (ω)

for the corresponding Fourier series

• This follows from

Z (ω) =
∑
n∈Z

(∑
k∈Z

x [k] y [n − k]

)
e i nω

=
∑
n,k∈Z

x [k] e i k ω y [n − k] e i (n−k)ω

=
∑
k∈Z

x [k] e i k ω ·
∑
n∈Z

y [n] e i nω

= X (ω) · Y (ω)



filter (1)

• A linear transformation T : CZ → CZ (or of `1 resp. `2) is
translation invariant, if it commutes with the shift τ :

∀x ∈ CZ : T (τx) = τ(Tx),

in shorthand: T ◦ τ = τ ◦ T .

• If this holds, then T ◦ τk = τk ◦ T for all k ∈ Z



filter (2)

• A linear transformation T : `1 → `1 is continuous (or stable),
if there is a constant C > 0 such that

∀x ∈ `1 : ‖Tx‖1 ≤ C · ‖x‖1

• An equivalent statement is:
for every sequence of signals

(
x (m)

)
m∈N in `1 and x ∈ `1 with(

x (m)
)
m∈N →`1 x one has

(
Tx (m)

)
m∈N →`1 Tx , i.e.,

‖x (m) − x‖ →m→∞ 0 ⇒ ‖Tx (m) − Tx‖ →m→∞ 0

• A similar definition is made for transformations of `2



Filter (3)

• Definition: An `1- filter resp. `2-filter is a linear
transformation of `1 resp. `2 which is both translation
invariant and continuous

• For any h ∈ `1 the convolution mapping

Th : `1 → `1 : x 7→ x ? h

is an `1-Filter
• translation invariance can be checked directly
• continuity follows from

‖Thx‖1 = ‖x ? h‖ ≤ ‖x‖1 · ‖h‖1

The required constant C is just ‖h‖1



filter (4)

• Theorem: For any `1-Filter T there is an h ∈ `1 s.th. T = Th.
• Sketch of proof:

• Write the signal x as a linear combination of shifted impulses:

x =
∑
k∈Z

x [k] τ kδ

• Now put h = Tδ.
It follows from linearity and translation invariance of T that

Tx
(∗)
=
∑
k

x [k]T τ kδ =
∑
k

x [k] τ kTδ =
∑
k

x [k] τ kh

• From (τ kh)[n] = h[n − k] one has

(Tx)[n] =
∑
k∈Z

x [k] h[n − k].

and thus Tx = x ? h
• Notabene: Continuity of T is needed in order to justify

switching of T with the infinite sum
∑

k in (∗)



filter (5)

• About teminology: the signal h = Tδ is called impulse
response of the filter. The corresponding Fourier series H(ω)
is the frequency response or transfer function of the filter

• In systems theory, the z-transform of a signal (or filter)
h = (h[k])k∈Z is the power series

h(z) =
∑
k∈Z

h[k] zk ,

so that the frequency response is H(ω) = h(e i ω)

• Writing H(ω) for real ω is the same as considering h(z) only
for z from the complex unit circle, i.e. |z | = 1. In writing h(z)
one implicitly considers z as a general complex variable

• Some authors define H(ω) = h(e−i ω), in which case
H(ω) =

∑
k h[k] e−i k ω



filter (6)

• The “harmonic” signal xω =
(
e−i nω

)
n∈Z belongs neither to

`1 nor to `2, but the convolution Th xω = xω ? h can be
computed for any h ∈ `1 :

(xω ∗ h)[n] =
∑
k∈Z

e−i k ωh[n − k]

= e−i nω
∑
k∈Z

e i(n−k)ωh[n − k] = H(ω) · e−i nω

or Th xω = H(ω) · xω

• This means: each harmonic xω =
(
e−i nω

)
n∈Z is an

eigenvector of Th with eigenvalue H(ω)

• Conclusion: If T = Th is an `1-filter with frequency response
H(ω), then for any `1-signal x and y = Tx = x ? h one has

∀ω : Y (ω) = X (ω) · H(ω)



filter (7)

• The corresponding `2-theory is technically a bit more
complicated, but the results are essentially the same:

`2-filters are precisely the convolution transformations

Th : x 7→ x ? h,

for which H(ω) ∈ L∞(−π, π), i.e. H(ω) is bounded.



filter (8)

• A filter T = Th is real, if h[n] ∈ R for all n ∈ Z
• For a real filter h one has

H(ω) =
∑
n

h[n]e−i nω = H(−ω)

• Consequently |H(ω)| = |H(−ω)|, i.e., the function
ω 7→ |H(ω)| is an even function. It suffices to know this
function on the interval [0, π]



filter (9)

• A filter T = Th is causal, if h[n] = 0 for all n < 0

• For a causal filter h one has for y = Thx :

y [n] =
∑
k≤n

x [k] h[n − k] =
∑
k≥0

x [n − k] h[k],

i.e., the response (output) y [n] at time n only depends on the
inputs x [n − k] at previous times n − k ≤ n



filter (10)

• A filter T = Th is a FIR-filter (finite impulse response), if
h[n] 6= 0 only for a finite number of filter coefficients

• A FIR-Filter is specified by a finite vector of filter coefficients
(h[a], h[a + 1], . . . , h[b]) with a < b and h[a] 6= 0 6= h[b]



downsampling und upsampling (1)

• For any signal x one denotes by y = ↓2x (2-downsampling)
the signal given by

y [n] = x [2n] (n ∈ Z)

(coefficients with odd index are eliminated)

• This is not a filtering operation because it is not
translation-invariant! In general:

(↓2 τk x)[0] = x [−k] 6= x [−2k] = (τk ↓2 x)[0]

• As for the frequency representation, one has
(because of (−1)n = e i n π):

Y (ω) =
∑
n∈Z

x [2n] e i nω =
∑
n∈Z

x [n]
1 + (−1)n

2
e i nω/2

=
1

2

(
X (
ω

2
) + X (

ω

2
+ π)

)



downsampling und upsampling (2)

• For any signal x one denotes by y = ↑2x (2-upsampling) the
signal given by

y [n] =

{
x [n/2] if n is even,

0 if n is odd.

(inserting 0 between any two neighboring coefficients of x)

• This is not a filtering operation because it is not
translation-invariant!

• As for the frequency representation, one has

Y (ω) =
∑
n∈Z

x [n]e i 2nω = X (2ω)



downsampling und upsampling (3)

• Downsampling and upsampling do not commute!

One has ↓2↑2x = x , but for y = ↑2↓2x one gets

y [n] =

{
x [n] if n is even,

0 if n is odd,

with frequency representation

Y (ω) =
1

2

(
X (ω) + X (ω + π)

)
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