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4 The à-trous scheme

5 2-dimensional separable CWT

6 Edges in images

WTBV WS 2014/15 CWT and edges January 23, 2015 2 / 39



Continuos wavelet transform (CWT)

Initial event:
A. Grossmannund J. Morlet,
Decompositions of Hardy functions into square integrable wavelets of
constant shape, SIAM J. Math. Analysis, 1984
(Analysis of seismic signals)

... but there were precursors . . . e.g.
A. P. Caldéron,
Intermediate Spaces and Interpolation, the Complex Method,
Studia Mathematica, 1964

see:
S. Jaffard, Y. Meyer, R. Ryan,
Wavelets, Tools for Science and Technology, SIAM 2001,
in particular: Chap. 2: Wavelets from a Historical Perspective
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Continuos wavelet transform (CWT)

Let  : R! C be a “suitable” wavelet function

now: continuous dilation and translation of  

 
s,a(t) =

1p
|s|
 (

t � a

s

) (s, a 2 R)

continuous wavlet transform (CWT) of a signal f : R! C using  (t)
defined as

f

 (s, a) = hf , 
s,ai =

Z

R
f (t) 

s,a(t) dt =
p

|s|
Z

R
f (st + a) (t) dt

Intuitively: f  (s, a) represents the behavior of f (t) in the vicinity of
a 2 R in resolution (scaling) s 2 R:

kf (t)�  
s,a(t)k2 = kf (t)k2 + k s,a(t)k2 � 2<

h
f

 (s, a)
i

Only the <-term depends on s and a !
Minimizing kf (t)�  

s,a(t)k2 means maximizing < . . .
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Continuos wavelet transform (CWT)

Let  (t) be a wavelet function with k k2 = 1 (w.l.o.g.),

then t 7! | (t)|2 can be viewed as a probability density on R with
average µ and variance �2:

µ =

Z
t | (t)|2 dt �2 =

Z
(t � µ)2 | (t)|2 dt

Parseval-Plancherel: k b k2 = k (t)k2 = 1

Also � 7! | b (�)|2 is a probability density with average bµ and variance
b�2

bµ =

Z
� | b (�)|2 d� b�2 =

Z
(�� bµ)2 | b (�)|2 d�

For s > 0, a 2 R one has

kd 
s,a(t)k2 = k s,a(t)k2 = k (t)k2 = 1

d 
s,a(�) =

p
se

�2⇡ia� b (s�)
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Continuos wavelet transform (CWT)

Localization in the time domain

µ
s,a =

Z
t | 

s,a(t)|2 dt = . . . = s µ + a

�2
s,a =

Z
(t � µ

s,a)
2 | 

s,a|2 dt = . . . = s

2 �2

Localization in the frequency domain

bµ
s,a =

Z
t |d 

s,a(t)|2 dt = . . . =
1

s

bµ

b�2
s,a =

Z
(t � µ

s,a)
2 |d 

s,a|2 dt = . . . =
1

s

2
b�2

The “uncertainty” �2
s,a · b�2

s,a is independent of s and a

�2
s,a · b�2

s,a = �2 · b�2
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Continuos wavelet transform (CWT)

bµ

2bµ

bµ/2

µ + a 2µ + aµ/2 + a

�

2�

�/2

b�/2

b�

2b�

s = 1/2

s = 1

s = 2
t

�

Figure: Heisenberg boxes for  
s,a, s = 1/2, 1, 2
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Continuos wavelet transform (CWT)

Haar wavelet function

 
haar

(t) =

8
><

>:

1 0  t < 1/2

�1 1/2  t < 1

0 otherwise

mexican-hat wavelet

 
mex

(t) = (1� 2 t2) e�t

2

Morlet wavelet

 
mor

(t) = e

�t

2
cos

 
⇡

r
2

ln 2
t

!
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Continuos wavelet transform (CWT)

Figure: mexican-hat wavelet (in red) and its spectrum (in blue)
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Continuos wavelet transform (CWT)

Figure: Morlet wavelet (in red and its spectrum (in blue)
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Continuos wavelet transform (CWT)

Fourier transforms

d
f

haar

(s) =
4 i (sin (1/4 s))2 e�1/2 is

s

d
f

haar

(0) = 0

d
f

mex

(s) = 1/2 s2e�1/4 s2p⇡ d
f

mex

(0) = 0

d
f

mor

(s) =
p
⇡ cosh

 
1/2

s⇡
p
2p

ln (2)

!
e
�1/4 s2�1/2 ⇡2

ln(2) d
f

mor

(0) ⇡ 0.0014

admissibility constants

C

haar

=

Z 1

s=�1

|df
haar

(s)|2

|s| ds = 2 ln(2)

C

mex

=

Z 1

s=�1

|df
mex

(s)|2

|s| ds = ⇡

C

mor

=

Z 1

s=�1

|df
mor

(s)|2

|s| ds =1
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Continuos wavelet transform (CWT)

Intuitively:

f

 (s, a) =

Z 1

t=�1
f (t)

1p
|s|
 (

t � a

s

) dt

represents the behavior of f (t) in the vicinity of a 2 R in resolution
(scaling) s 2 R
The data ⇣

f

 (s, a)
⌘

s>0,a2R

give a highly redundant representation of the function f (t)

Problem: how can one recover f (t) from these data ?
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Continuos wavelet transform (CWT)

Caldéron’s reconstruction formula:

f (t) =
1

C 

Z

s2R

Z

a2R
f

 (s, a) 
s,a(t) da

ds

s

2

where

0 < C =

Z

�2R

| b (�)|2

|�| d� <1

Note that the condition C <1 implies

Z

R
 (t) dt = b (0) = 0

WTBV WS 2014/15 CWT and edges January 23, 2015 13 / 39



Continuos wavelet transform (CWT)

If  : R! R is a real wavelet function, then Caldéron’s formula
can be written as

f (t) =
1

C

0
 

Z

s>0

Z

a2R
f

 (s, a) 
s,a(t) da

ds

s

2

where

0 < C

0
 =

Z

�>0

| b (�)|2

�
d� <1

This simplification is justified by the symmetry property

b (�) = b (��)

for any real function  (t)
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Continuos wavelet transform (CWT)

Lemma (1) [ Fourier transform w.r.t. t ]

⇥
 
s,a(t)

⇤^
t (�) =

p
|s| e�2⇡ia� b (�s)

Lemma (2) [ Fourier transform w.r.t. a ]

⇥
 
s,a(t)

⇤^
a(�) =

sp
|s|

e

�2⇡it� b (�s)

Lemma (3) [ Fourier transform w.r.t. a ]

⇥
f

 (s, a)
⇤^

a(�) =
sp
|s|
b
f (�) b (�s)
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Continuos wavelet transform (CWT)

Consequence of Lemma (3):

f

 (s, a) =

"
sp
|s|
b
f (�) b (�s)

#_
a

=
sp
|s|

Z

R
b
f (�) b (�s) e2⇡ia�d�

This indicates an e�cient way for computing the wavelet coe�cients
f

 (s, a) based on the FFT:
1 compute bf (�)
2 compute b (�)

(NB b is explicitly known in many cases)

3 multiply bf (�) · b (�s)
4 apply the inverse FFT
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Continuos wavelet transform (CWT)

Proof (sketch) of Caldéron’s reconstruction formula

From Parseval-Plancherel and Lemmas (2) and (3) one gets

Z

a2R
f

 (s, a) 
s,a(t) da = hf  (s, a), 

s,a(t)ia =

= h [f  (s, a)]^a(�), [ 
s,a(t)]

^
a(�) i�

=
s

2

|s| · hbf (�) b (�s), e�2⇡it� b (�s)i�

=
s

2

|s| ·
Z

�2R
b
f (�) | b (�s)|2 e2⇡it� d�
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Continuos wavelet transform (CWT)

and then

Z

s2R

Z

a2R
f

 (s, a) 
s,a(t) da

ds

s

2
=

Z

�2R
b
f (�) e2⇡it�

Z

s

| b (�s)|2

|s| ds d�

=

Z

�

b
f (�) e2⇡it�

Z

s

| b (s)|2

|s| ds d�

= C ·
Z

�2R
b
f (�) e2⇡it�d�

= C · f (t)
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Continuos wavelet transform (CWT)

Theorem
1 If  (t) is a continuous function with

Z

t2R
 (t) dt = 0

2 and if there are positive constants A,B s.th.

| (t)|  A e

�B |t| (t 2 R)

(exponentially rapid vanishing at infinity)

then

C =

Z

�2R

| b (�)|2

|�| d� <1

and Caldéron’s reconstruction formula holds for all f 2 L2(R)

WTBV WS 2014/15 CWT and edges January 23, 2015 19 / 39



Continuos wavelet transform (CWT)

Remarks on condition C <1
Eponentially rapid vanishing of  (t) at infinity implies  (t) 2 L2(R)
and b (�) 2 L2(R) and b (�) 2 C1(R) (di↵erentiability)
Decompose the integral into two parts

C =

Z

�2R

| b (�)|2

|�| d� =

Z

|�|1

. . . +

Z

|�|�1

. . .

Taylor expansion of b (�) at � = 0 and

b (0) =
Z
 (t) dt = 0

shows that the first integral
R

|�|1
. . . is finite

As for the second integral,
Z

|�|�1

. . . 
Z

| b (�)|2 d�  k b k2 <1

shows that this is finite too
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Edges and wavelet coe�cients

The Haar wavelet function  
haar

(t) can be regarded as a derivative

 
haar

(t) =
d

dt

�(t) mit �(t) =

8
><

>:

t 0  t  1/2

1� t 1/2  t  1

0 otherwise

The mexican-hat wavelet function  
mex

(t) is a derivative

 
mex

(t) =
d

dt

⇣
t e

�t

2
⌘
=

d

2

dt

2

�e�t

2

2
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Edges and wavelet coe�cients

Figure: mexican-hat wavelet as second derivative of a Gaussian
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Edges and wavelet coe�cients

Let  (t) be a wavelet function in the sense of the Theorem

Let  (t) be the derivative of a “smoothing function” ✓(t)

 (t) =
d

dt

✓(t)

Scaling of ✓(t)
 �
✓
s

(t) =
1

s

✓(� t

s

)

Then

(⇤) f

 (s, a) = �s�3/2 d

da

(f ?
 �
✓
s

)(a)

Note: f ?
 �
✓
s

is a
 �
✓
s

-smoothed version version of f
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Edges and wavelet coe�cients

Interpretation:
Edges in the graph of f (t) can be recognized by absolutely large

values of the wavelet coe�cients f  (s, a) over many scales (s values)

Proof of (⇤)
We have

(f ?
 �
✓
s

)(a) =

Z

t2R
f (t)
 �
✓
s

(a� t) dt =

Z

t2R
f (t)

1

s

✓(
t � a

s

) dt

and hence

d

da

(f ?
 �
✓
s

)(a) =

Z

t2R
f (t)

1

s

✓0(
t � a

s

) (�1

s

) dt

=

Z

t2R
f (t) (� 1

s

2
) (

t � a

s

) dt = �s�3/2hf , 
s,ai
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Discrete approximation of the CWT in MRA context

Assume that the wavelet function  (t) belongs to a MRA with
scaling function �(t)
Scaling and wavelet identities are

�(t) =
p
2
X

k2Z
h

k

�(2t � k)

 (t) =
p
2
X

k2Z
g

k

�(2t � k)

Approximation and detail coe�cients of a function f (t), using dyadic
scaling and integer translation (s, a) = (2m, n), are

a

m,n = hf ,�2m,ni d

m,n = hf , 2m,ni
Recursion formulas

�2m+1,n(t) = 2�(m+1)/2�(
t � n

2m+1
) = . . . =

X

k

h

k

�2m,n+k 2m(t)

 2m+1,n(t) = 2�(m+1)/2 (
t � n

2m+1
) = . . . =

X

k

g

k

�2m,n+k 2m(t)
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Discrete approximation of the CWT in MRA context

Recursion formulas for approximation and wavelet coe�cients

a

m+1,n =
X

k2Z
h

k

a

m,n+k 2m (n 2 Z)

d

m+1,n =
X

k2Z
g

k

a

m,n+k 2m (n 2 Z)

Written as filtering operations

(a
m+1,n)

n2Z =
 �����
[("2)m h] ? (a

m,n)
n2Z

(d
m+1,n)

n2Z =
 ������
[("2)m g ] ? (a

m,n)
n2Z

Here ("2)m h is the filter constructed from h by using m-fold
upsampling with factor 2

Algorithmic realization algorithme à trous

M. Holschneider et al., A real-time algorithm for signal analysis with the

help of wavelet transform. In: Wavelets, Time-Frequency Methods and

Phase Space, Springer-Verlag, 1989
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The à-trous scheme

a0 a1 a2 a3 a4a�1a�2

a(1)
2 , d(1)

2 a(1)
4 , d(1)

4a(1)
0 , d(1)

0a(1)
�2, d

(1)
�2

a(2)
0 , d(2)

0 a(2)
4 , d(2)

4

a(3)
0 , d(3)

0

Figure: Scheme of the Haar transform
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The à-trous scheme

a0 a1 a2 a3 a4a�1a�2

a(1)
2 , d(1)

2a(1)
1 , d(1)

1a(1)
�1, d

(1)
�1 a(1)

3 , d(1)
3 a(1)

4 , d(1)
4a(1)

0 , d(1)
0a(1)

�2, d
(1)
�2

a(2)
0 , d(2)

0 a(2)
4 , d(2)

4

a(3)
0 , d(3)

0

Figure: à-trous scheme (one level) for the Haar transform
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The à-trous scheme

a0 a1 a2 a3 a4a�1a�2

a(1)
2 , d(1)

2a(1)
1 , d(1)

1a(1)
�1, d

(1)
�1 a(1)

3 , d(1)
3 a(1)

4 , d(1)
4a(1)

0 , d(1)
0a(1)

�2, d
(1)
�2

a(2)
�2, d

(2)
�2 a(2)

�1, d
(2)
�1 a(2)

0 , d(2)
0 a(2)

1 , d(2)
1 a(2)

2 , d(2)
2 a(2)

3 , d(2)
3 a(2)

4 , d(2)
4

a(3)
0 , d(3)

0

Figure: à-trous scheme (two levels) for the Haar transform
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The à-trous scheme

a0 a1 a2 a3 a4a�1a�2

a(1)
2 , d(1)

2a(1)
1 , d(1)

1a(1)
�1, d

(1)
�1 a(1)

3 , d(1)
3 a(1)

4 , d(1)
4a(1)

0 , d(1)
0a(1)

�2, d
(1)
�2

a(2)
�2, d

(2)
�2 a(2)

�1, d
(2)
�1 a(2)

0 , d(2)
0 a(2)

1 , d(2)
1 a(2)

2 , d(2)
2 a(2)

3 , d(2)
3 a(2)

4 , d(2)
4

a(3)
4 , d(3)

4a(3)
3 , d(3)

3a(3)
2 , d(3)

2a(3)
1 , d(3)

1a(3)
0 , d(3)

0a(3)
�1, d

(3)
�1a(3)

�2, d
(3)
�2

Figure: à-trous scheme (three levels) for the Haar transform
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The à-trous scheme

a

a(1) d(1)

d(2)a(2)

a(3) d(3)

?g?h

?(h"2) ?(g"2)

?(g"4)?(h"4)

Figure: à-trous scheme (three levels)

high-pass filter: g , low-pass filter: h, signal: a = (a
k

)
n2Z

filtered signals: a(k) =
�
a

(k)
n

�
n2Z, d (k) =

�
d

(k)
n

�
n2Z,
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2-dimensional separable CWT

Let  (x) be a one-dimension wavelet function

 (x , y) =  (x) (y) the tw0-dimensional separable wavelet function
constructed from it

The 2-dim. CWT of a function f (x , y) is

f

 (a, b, s) =
1

s

ZZ

x ,y2R⇥R
f (x , y) (

x � a

s

,
y � b

s

) dx dy
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2-dimensional separable CWT

Let  (x) = d

dx

✓(x) be the derivative of a “smoothing function” ✓(x)

2-dim separable smoothing function

⇥(x , y) = ✓(x) ✓(y)

2-dim partial wavelet functions

 x(x , y) =  (x) ✓(y) =
@

@x
⇥(x , y)

 y (x , y) = ✓(x) (y) =
@

@y
⇥(x , y)
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2-dimensional separable CWT

2-dim partial CWT

f

 x

(a, b, s) =
1

s

ZZ

x ,y2R⇥R
f (x , y) x(

x � a

s

,
y � b

s

) dx dy

= � @

@a

ZZ

x ,y2R⇥R
f (x , y)⇥(

x � a

s

,
y � b

s

) dx dy

f

 y

(a, b, s) =
1

s

ZZ

x ,y2R⇥R
f (x , y) y (

x � a

s

,
y � b

s

) dx dy

= � @

@b

ZZ

x ,y2R⇥R
f (x , y)⇥(

x � a

s

,
y � b

s

) dx dy

The integral
RR

. . . is essentially scaled-⇥-smoothed version of f

(�f  x

(a, b, s),�f  y

(a, b, s)) is the gradient (a, b) of this function
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Edges in images

Recall Canny’s definition

Let f 2 L2(R2).
The vertex (x0, y0) 2 R2 is an edge vertex of f (x , y) if

|gradf | =

s✓
@f

@x

◆2

+

✓
@f

@y

◆2

has a local maximum when passing through (x0, y0) in the direction
of (gradf )(x0, y0)

This can be tested by computing

⇣
f

 x

(a, b, s)
⌘2

+
⇣
f

 y

(a, b, s)
⌘2

over several scale values s

A vertex which is declared edge vertex over several scales is assumed
to be a true edge vertex
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Edges in images

Looking at this in the MRA context

Scaling, wavelet and smoothing (1-dim) are described by

�(x) =
p
2
X

k

h

k

�(2x � k)  (x) =
p
2
X

k

g

k

�(2x � k)

✓(x) =
p
2
X

`

r

k

✓(2x � `)

Scalierung and wavelet equations for �x(x , y) = �(x) ✓(y/2) and for
 x(x , y) =  (x) ✓(y) are

�x(x , y) = 2
X

k,`

h

k

r`�
x(2x � k , 2y � `)

 x(x , y) = 2
X

k,`

g

k

✏`�
x(2x � k , 2y � `)

where ✏` =
1p
2
�`,0.

Similarly for �y (x , y) and  y (x , y)
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Edges in images

The Haar wavelet function  
haar

(t) is the derivative of the
smoothing function ✓(t) = �(t):

 
haar

(t) =
d

dt

�(t) where �(t) =

8
><

>:

t 0  t  1/2

1� t 1/2  t  1

0 sonst

The function �(t) satisfies

�(x) + 2�(x � 1/2) +�(x � 1) = 2�(x/2)

which can be written as a scaling equation

�(x) =
1

2

�
�(2x) + 2�(2x � 1) +�(2x � 2)

�

so that

r =
1

2
p
2
h1, 2, 1i
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Edges in images

Approximation and detail coe�cients are

a

x

m;k,` = hf ,�x

2m,k,`i =
ZZ

f (x , y)
1

2m
�x(

x � k

2m
,
y � `
2m

) dx dy

d

x

m;k,` = hf , x

2m,k,`i =
ZZ

f (x , y)
1

2m
 x(

x � k

2m
,
y � `
2m

) dx dy

and analogously for ay
m;k,` and d

y

m;k,`

Recursions formula for approximation

a

x

m+1;p,q =
X

k,`

h

k

r` a
x

m;p+k2m,q+`2m

detail coe�cients

d

x

m+1;p,q =
X

k,`

g

k

✏` a
x

m;p+k2m,q+`2m =
1p
2

X

k

g

k

a

x

m;p+k2m,q

Formulas for ax
m;k,` and d

y

m;k,` are analogous
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Edges in images

Scheme for computation (à trous algorithm)

A

x

m

=
h
f

�x

(2m; p, q)
i

p,q
A

y

m

=
h
f

�y

(2m; p, q)
i

p,q

D

x

m

=
h
f

 x

(2m; p, q)
i

p,q
D

y

m

=
h
f

 y

(2m; p, q)
i

p,q

where A0 = A

x

0 = A

y

0 = [f (p, q)]
p,q

A0

Dx
1 Dy

1

Dy
2Dx

2

Dx
3 Dy

3 Ay
3Ax

3

Ax
2 Ay

2

Ay
1Ax

1

g g

" g " g " h" h

"2 g "2 g
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