# Continuos wavelet transform (CWT) and edge detection 

## WTBV WS 2014/15

January 23, 2015
(1) Continuos wavelet transform (CWT)
(2) Edges and wavelet coefficients
(3) Discrete approximation of the CWT in MRA context
(4) The à-trous scheme
(5) 2-dimensional separable CWT
(6) Edges in images

- Initial event:
A. Grossmannund J. Morlet,

Decompositions of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Analysis, 1984
(Analysis of seismic signals)

- ... but there were precursors ...e.g.
A. P. Caldéron,

Intermediate Spaces and Interpolation, the Complex Method, Studia Mathematica, 1964

- see:
S. Jaffard, Y. Meyer, R. Ryan, Wavelets, Tools for Science and Technology, SIAM 2001, in particular: Chap. 2: Wavelets from a Historical Perspective
- Let $\psi: \mathbb{R} \rightarrow \mathbb{C}$ be a "suitable" wavelet function
- now: continuous dilation and translation of $\psi$

$$
\psi_{s, a}(t)=\frac{1}{\sqrt{|s|}} \psi\left(\frac{t-a}{s}\right) \quad(s, a \in \mathbb{R})
$$

- continuous wavlet transform (CWT) of a signal $f: \mathbb{R} \rightarrow \mathbb{C}$ using $\psi(t)$ defined as

$$
f^{\psi}(s, a)=\left\langle f, \psi_{s, a}\right\rangle=\int_{\mathbb{R}} f(t) \overline{\psi_{s, a}(t)} d t=\sqrt{|s|} \int_{\mathbb{R}} f(s t+a) \overline{\psi(t)} d t
$$

- Intuitively: $f^{\psi}(s, a)$ represents the behavior of $f(t)$ in the vicinity of $a \in \mathbb{R}$ in resolution (scaling) $s \in \mathbb{R}$ :

$$
\left\|f(t)-\psi_{s, a}(t)\right\|^{2}=\|f(t)\|^{2}+\left\|\psi_{s, a}(t)\right\|^{2}-2 \Re\left[f^{\psi}(s, a)\right]
$$

Only the $\Re$-term depends on $s$ and $a!$ Minimizing $\left\|f(t)-\psi_{s, a}(t)\right\|^{2}$ means maximizing $\Re \ldots$

- Let $\psi(t)$ be a wavelet function with $\|\psi\|^{2}=1$ (w.l.o.g.), then $t \mapsto|\psi(t)|^{2}$ can be viewed as a probability density on $\mathbb{R}$ with average $\mu$ and variance $\sigma^{2}$ :

$$
\mu=\int t|\psi(t)|^{2} d t \quad \sigma^{2}=\int(t-\mu)^{2}|\psi(t)|^{2} d t
$$

- Parseval-Plancherel: $\|\widehat{\psi}\|^{2}=\|\psi(t)\|^{2}=1$

Also $\lambda \mapsto|\widehat{\psi}(\lambda)|^{2}$ is a probability density with average $\widehat{\mu}$ and variance $\widehat{\sigma}^{2}$

$$
\widehat{\mu}=\int \lambda|\widehat{\psi}(\lambda)|^{2} d \lambda \quad \widehat{\sigma}^{2}=\int(\lambda-\widehat{\mu})^{2}|\widehat{\psi}(\lambda)|^{2} d \lambda
$$

- For $s>0, a \in \mathbb{R}$ one has

$$
\begin{aligned}
\left\|\widehat{\psi_{s, a}}(t)\right\|^{2} & =\left\|\psi_{s, a}(t)\right\|^{2}=\|\psi(t)\|^{2}=1 \\
\widehat{\psi_{s, a}}(\lambda) & =\sqrt{s} e^{-2 \pi i a \lambda} \widehat{\psi}(s \lambda)
\end{aligned}
$$

- Localization in the time domain

$$
\begin{aligned}
\mu_{s, a} & =\int t\left|\psi_{s, a}(t)\right|^{2} d t=\ldots=s \mu+a \\
\sigma_{s, a}^{2} & =\int\left(t-\mu_{s, a}\right)^{2}\left|\psi_{s, a}\right|^{2} d t=\ldots=s^{2} \sigma^{2}
\end{aligned}
$$

- Localization in the frequency domain

$$
\begin{aligned}
& \widehat{\mu}_{s, a}=\int t\left|\widehat{\psi_{s, a}}(t)\right|^{2} d t=\ldots=\frac{1}{s} \widehat{\mu} \\
& \widehat{\sigma}_{s, a}^{2}=\int\left(t-\mu_{s, a}\right)^{2}\left|\widehat{\psi_{s, a}}\right|^{2} d t=\ldots=\frac{1}{s^{2}} \widehat{\sigma}^{2}
\end{aligned}
$$

- The "uncertainty" $\sigma_{s, a}^{2} \cdot \widehat{\sigma}_{s, a}^{2}$ is independent of $s$ and $a$

$$
\sigma_{s, a}^{2} \cdot \widehat{\sigma}_{s, a}^{2}=\sigma^{2} \cdot \widehat{\sigma}^{2}
$$



Figure: Heisenberg boxes for $\psi_{s, a}, s=1 / 2,1,2$

- HaAR wavelet function

$$
\psi_{\text {haar }}(t)= \begin{cases}1 & 0 \leq t<1 / 2 \\ -1 & 1 / 2 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

- mexican-hat wavelet

$$
\psi_{\text {mex }}(t)=\left(1-2 t^{2}\right) e^{-t^{2}}
$$

- Morlet wavelet

$$
\psi_{\text {mor }}(t)=e^{-t^{2}} \cos \left(\pi \sqrt{\frac{2}{\ln 2}} t\right)
$$



Figure: mexican-hat wavelet (in red) and its spectrum (in blue)


Figure: Morlet wavelet (in red and its spectrum (in blue)

- Fourier transforms

$$
\begin{array}{ll}
\widehat{f_{\text {haar }}}(s)=\frac{4 i(\sin (1 / 4 s))^{2} \mathrm{e}^{-1 / 2 i s}}{s} & \widehat{f_{\text {haar }}}(0)=0 \\
\widehat{f_{\text {mex }}}(s)=1 / 2 s^{2} \mathrm{e}^{-1 / 4 s^{2}} \sqrt{\pi} & \widehat{f_{\text {mex }}}(0)=0 \\
\widehat{f_{\text {mor }}}(s)=\sqrt{\pi} \cosh \left(1 / 2 \frac{s \pi \sqrt{2}}{\sqrt{\ln (2)}}\right) \mathrm{e}^{-1 / 4 s^{2}-1 / 2 \frac{\pi^{2}}{\ln (2)}} & \widehat{f_{\text {mor }}}(0) \approx 0.0014
\end{array}
$$

- admissibility constants

$$
\begin{aligned}
C_{\text {haar }} & =\int_{s=-\infty}^{\infty} \frac{\left|\widehat{f_{\text {haar }}}(s)\right|^{2}}{|s|} d s=2 \ln (2) \\
C_{\text {mex }} & =\int_{s=-\infty}^{\infty} \frac{\left|\widehat{f_{\text {mex }}}(s)\right|^{2}}{|s|} d s=\pi \\
C_{\text {mor }} & =\int_{s=-\infty}^{\infty} \frac{\left|\widehat{f_{\text {mor }}}(s)\right|^{2}}{|s|} d s=\infty
\end{aligned}
$$

- Intuitively:

$$
f^{\psi}(s, a)=\int_{t=-\infty}^{\infty} f(t) \frac{1}{\sqrt{|s|}} \psi\left(\frac{t-a}{s}\right) d t
$$

represents the behavior of $f(t)$ in the vicinity of $a \in \mathbb{R}$ in resolution (scaling) $s \in \mathbb{R}$

- The data

$$
\left(f^{\psi}(s, a)\right)_{s>0, a \in \mathbb{R}}
$$

give a highly redundant representation of the function $f(t)$

- Problem: how can one recover $f(t)$ from these data ?
- Caldéron's reconstruction formula:

$$
f(t)=\frac{1}{C_{\psi}} \int_{s \in \mathbb{R}} \int_{a \in \mathbb{R}} f^{\psi}(s, a) \psi_{s, a}(t) d a \frac{d s}{s^{2}}
$$

where

$$
0<C_{\psi}=\int_{\lambda \in \mathbb{R}} \frac{|\widehat{\psi}(\lambda)|^{2}}{|\lambda|} d \lambda<\infty
$$

- Note that the condition $C_{\psi}<\infty$ implies

$$
\int_{\mathbb{R}} \psi(t) d t=\widehat{\psi}(0)=0
$$

- If $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is a real wavelet function, then Caldéron's formula can be written as

$$
f(t)=\frac{1}{C_{\psi}^{\prime}} \int_{s>0} \int_{a \in \mathbb{R}} f^{\psi}(s, a) \psi_{s, a}(t) d a \frac{d s}{s^{2}}
$$

where

$$
0<C_{\psi}^{\prime}=\int_{\lambda>0} \frac{|\widehat{\psi}(\lambda)|^{2}}{\lambda} d \lambda<\infty
$$

- This simplification is justified by the symmetry property

$$
\overline{\widehat{\psi}(\lambda)}=\widehat{\psi}(-\lambda)
$$

for any real function $\psi(t)$

- Lemma (1) [ Fourier transform w.r.t. $t$ ]

$$
\left[\psi_{s, a}(t)\right]^{\wedge t}(\lambda)=\sqrt{|s|} e^{-2 \pi i a \lambda} \widehat{\psi}(\lambda s)
$$

- Lemma (2) [ Fourier transform w.r.t. a ]

$$
\left[\overline{\psi_{s, a}}(t)\right]^{\wedge_{a}}(\lambda)=\frac{s}{\sqrt{|s|}} e^{-2 \pi i t \lambda} \overline{\widehat{\psi}(\lambda s)}
$$

- Lemma (3) [ Fourier transform w.r.t. a ]

$$
\left[f^{\psi}(s, a)\right]^{\wedge a}(\lambda)=\frac{s}{\sqrt{|s|}} \widehat{f}(\lambda) \overline{\widehat{\psi}(\lambda s)}
$$

- Consequence of Lemma (3):

$$
\begin{aligned}
f^{\psi}(s, a) & =\left[\frac{s}{\sqrt{|s|}} \widehat{f}(\lambda) \overline{\widehat{\psi}(\lambda s)}\right]^{V_{a}} \\
& =\frac{s}{\sqrt{|s|}} \int_{\mathbb{R}} \widehat{f}(\lambda) \overline{\widehat{\psi}(\lambda s)} e^{2 \pi i a \lambda} d \lambda
\end{aligned}
$$

- This indicates an efficient way for computing the wavelet coefficients $f^{\psi}(s, a)$ based on the FFT:
(1) compute $\widehat{f}(\lambda)$
(2) compute $\widehat{\psi}(\lambda)$
(NB $\widehat{\psi}$ is explicitly known in many cases)
(3) multiply $\widehat{f}(\lambda) \cdot \overline{\widehat{\psi}(\lambda s)}$
(9) apply the inverse FFT

Proof (sketch) of Caldéron's reconstruction formula

- From Parseval-Plancherel and Lemmas (2) and (3) one gets

$$
\begin{aligned}
\int_{a \in \mathbb{R}} f^{\psi}(s, a) \psi_{s, a}(t) d a & =\left\langle f^{\psi}(s, a), \overline{\psi_{s, a}}(t)\right\rangle_{a}= \\
& =\left\langle\left[f^{\psi}(s, a)\right]^{\wedge_{a}}(\lambda),\left[\overline{\psi_{s, a}}(t)\right]^{\wedge_{a}}(\lambda)\right\rangle_{\lambda} \\
& =\frac{s^{2}}{|s|} \cdot\left\langle\widehat{f}(\lambda) \overline{\widehat{\psi}(\lambda s)}, e^{-2 \pi i t \lambda} \overline{\widehat{\psi}(\lambda s)}\right\rangle_{\lambda} \\
& =\frac{s^{2}}{|s|} \cdot \int_{\lambda \in \mathbb{R}} \widehat{f}(\lambda)|\widehat{\psi}(\lambda s)|^{2} e^{2 \pi i t \lambda} d \lambda
\end{aligned}
$$

- and then

$$
\begin{aligned}
\int_{s \in \mathbb{R}} \int_{a \in \mathbb{R}} f^{\psi}(s, a) \psi_{s, a}(t) d a \frac{d s}{s^{2}} & =\int_{\lambda \in \mathbb{R}} \widehat{f}(\lambda) e^{2 \pi i t \lambda} \int_{s} \frac{|\widehat{\psi}(\lambda s)|^{2}}{|s|} d s d \lambda \\
& =\int_{\lambda} \widehat{f}(\lambda) e^{2 \pi i t \lambda} \int_{s} \frac{|\widehat{\psi}(s)|^{2}}{|s|} d s d \lambda \\
& =C_{\psi} \cdot \int_{\lambda \in \mathbb{R}} \widehat{f}(\lambda) e^{2 \pi i t \lambda} d \lambda \\
& =C_{\psi} \cdot f(t)
\end{aligned}
$$

- Theorem
(1) If $\psi(t)$ is a continuous function with

$$
\int_{t \in \mathbb{R}} \psi(t) d t=0
$$

(2) and if there are positive constants $A, B$ s.th.

$$
|\psi(t)| \leq A e^{-B|t|} \quad(t \in \mathbb{R})
$$

(exponentially rapid vanishing at infinity)
then

$$
C_{\psi}=\int_{\lambda \in \mathbb{R}} \frac{|\widehat{\psi}(\lambda)|^{2}}{|\lambda|} d \lambda<\infty
$$

and Caldéron's reconstruction formula holds for all $f \in \mathcal{L}^{2}(\mathbb{R})$

- Remarks on condition $C_{\psi}<\infty$
- Eponentially rapid vanishing of $\psi(t)$ at infinity implies $\psi(t) \in \mathcal{L}^{2}(\mathbb{R})$ and $\widehat{\psi}(\lambda) \in \mathcal{L}^{2}(\mathbb{R})$ and $\widehat{\psi}(\lambda) \in \mathcal{C}^{1}(\mathbb{R})$ (differentiability)
- Decompose the integral into two parts

$$
C_{\psi}=\int_{\lambda \in \mathbb{R}} \frac{|\widehat{\psi}(\lambda)|^{2}}{|\lambda|} d \lambda=\int_{|\lambda| \leq 1} \ldots+\int_{|\lambda| \geq 1} \ldots
$$

- Taylor expansion of $\widehat{\psi}(\lambda)$ at $\lambda=0$ and

$$
\widehat{\psi}(0)=\int \psi(t) d t=0
$$

shows that the first integral $\int_{|\lambda| \leq 1} \ldots$ is finite

- As for the second integral,

$$
\int_{|\lambda| \geq 1} \ldots \leq \int|\widehat{\psi}(\lambda)|^{2} d \lambda \leq\|\widehat{\psi}\|^{2}<\infty
$$

shows that this is finite too

- The HaAR wavelet function $\psi_{\text {haar }}(t)$ can be regarded as a derivative

$$
\psi_{\text {haar }}(t)=\frac{d}{d t} \Delta(t) \quad \text { mit } \quad \Delta(t)= \begin{cases}t & 0 \leq t \leq 1 / 2 \\ 1-t & 1 / 2 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- The mexican-hat wavelet function $\psi_{\text {mex }}(t)$ is a derivative

$$
\psi_{\operatorname{mex}}(t)=\frac{d}{d t}\left(t e^{-t^{2}}\right)=\frac{d^{2}}{d t^{2}} \frac{-e^{-t^{2}}}{2}
$$



Figure: mexican-hat wavelet as second derivative of a Gaussian

- Let $\psi(t)$ be a wavelet function in the sense of the Theorem
- Let $\psi(t)$ be the derivative of a "smoothing function" $\theta(t)$

$$
\psi(t)=\frac{d}{d t} \theta(t)
$$

- Scaling of $\theta(t)$

$$
\overleftarrow{\theta_{s}}(t)=\frac{1}{s} \theta\left(-\frac{t}{s}\right)
$$

- Then

$$
(*) \quad f^{\psi}(s, a)=-s^{-3 / 2} \frac{d}{d a}\left(f \star \overleftarrow{\theta_{s}}\right)(a)
$$

- Note: $f \star \overleftarrow{\theta_{s}}$ is a $\overleftarrow{\theta_{s}}$-smoothed version version of $f$
- Interpretation:

Edges in the graph of $f(t)$ can be recognized by absolutely large values of the wavelet coefficients $f^{\psi}(s, a)$ over many scales ( $s$ values)

- Proof of $(*)$

We have

$$
\left(f \star \overleftarrow{\theta_{s}}\right)(a)=\int_{t \in \mathbb{R}} f(t) \overleftarrow{\theta_{s}}(a-t) d t=\int_{t \in \mathbb{R}} f(t) \frac{1}{s} \theta\left(\frac{t-a}{s}\right) d t
$$

and hence

$$
\begin{aligned}
\frac{d}{d a}\left(f \star \overleftarrow{\theta_{s}}\right)(a)= & \int_{t \in \mathbb{R}} f(t) \frac{1}{s} \theta^{\prime}\left(\frac{t-a}{s}\right)\left(-\frac{1}{s}\right) d t \\
& =\int_{t \in \mathbb{R}} f(t)\left(-\frac{1}{s^{2}}\right) \psi\left(\frac{t-a}{s}\right) d t=-s^{-3 / 2}\left\langle f, \psi_{s, a}\right\rangle
\end{aligned}
$$

- Assume that the wavelet function $\psi(t)$ belongs to a MRA with scaling function $\phi(t)$
- Scaling and wavelet identities are

$$
\begin{aligned}
& \phi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} h_{k} \phi(2 t-k) \\
& \psi(t)=\sqrt{2} \sum_{k \in \mathbb{Z}} g_{k} \phi(2 t-k)
\end{aligned}
$$

- Approximation and detail coefficients of a function $f(t)$, using dyadic scaling and integer translation $(s, a)=\left(2^{m}, n\right)$, are

$$
a_{m, n}=\left\langle f, \phi_{2^{m}, n}\right\rangle \quad d_{m, n}=\left\langle f, \psi_{2^{m}, n}\right\rangle
$$

- Recursion formulas

$$
\begin{aligned}
& \phi_{2^{m+1}, n}(t)=2^{-(m+1) / 2} \phi\left(\frac{t-n}{2^{m+1}}\right)=\ldots=\sum_{k} h_{k} \phi_{2^{m}, n+k 2^{m}}(t) \\
& \psi_{2^{m+1}, n}(t)=2^{-(m+1) / 2} \psi\left(\frac{t-n}{2^{m+1}}\right)=\ldots=\sum_{k} g_{k} \phi_{2^{m}, n+k 2^{m}}(t)
\end{aligned}
$$

- Recursion formulas for approximation and wavelet coefficients

$$
\begin{aligned}
& a_{m+1, n}=\sum_{k \in \mathbb{Z}} h_{k} a_{m, n+k 2^{m}} \quad(n \in \mathbb{Z}) \\
& d_{m+1, n}=\sum_{k \in \mathbb{Z}} g_{k} a_{m, n+k 2^{m}} \quad(n \in \mathbb{Z})
\end{aligned}
$$

- Written as filtering operations

$$
\begin{aligned}
& \left(a_{m+1, n}\right)_{n \in \mathbb{Z}}=\overleftarrow{\left[\left(\uparrow_{2}\right)^{m} \boldsymbol{h}\right]} \star\left(a_{m, n}\right)_{n \in \mathbb{Z}} \\
& \left(d_{m+1, n}\right)_{n \in \mathbb{Z}}=\overleftarrow{\left[\left(\uparrow_{2}\right)^{m} \boldsymbol{g}\right]} \star\left(a_{m, n}\right)_{n \in \mathbb{Z}}
\end{aligned}
$$

- Here $\left(\uparrow_{2}\right)^{m} \boldsymbol{h}$ is the filter constructed from $\boldsymbol{h}$ by using $m$-fold upsampling with factor 2
- Algorithmic realization algorithme à trous
- M. Holschneider et al., A real-time algorithm for signal analysis with the help of wavelet transform. In: Wavelets, Time-Frequency Methods and Phase Space, Springer-Verlag, 1989


Figure: Scheme of the Haar transform


Figure: à-trous scheme (one level) for the Haar transform


Figure: à-trous scheme (two levels) for the Haar transform


Figure: à-trous scheme (three levels) for the Haar transform


Figure: à-trous scheme (three levels)
high-pass filter: $\boldsymbol{g}$, low-pass filter: $\boldsymbol{h}$, signal: $\boldsymbol{a}=\left(a_{k}\right)_{n \in \mathbb{Z}}$
filtered signals: $\boldsymbol{a}^{(k)}=\left(a_{n}^{(k)}\right)_{n \in \mathbb{Z}} \boldsymbol{d}^{(k)}=\left(d_{n}^{(k)}\right)_{n \in \mathbb{Z}}$,

- Let $\psi(x)$ be a one-dimension wavelet function
- $\Psi(x, y)=\psi(x) \psi(y)$ the tw0-dimensional separable wavelet function constructed from it
- The 2-dim. CWT of a function $f(x, y)$ is

$$
f^{\Psi}(a, b, s)=\frac{1}{s} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Psi\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y
$$

- Let $\psi(x)=\frac{d}{d x} \theta(x)$ be the derivative of a "smoothing function" $\theta(x)$
- 2-dim separable smoothing function

$$
\Theta(x, y)=\theta(x) \theta(y)
$$

- 2-dim partial wavelet functions

$$
\begin{aligned}
& \Psi^{x}(x, y)=\psi(x) \theta(y) \\
&=\frac{\partial}{\partial x} \Theta(x, y) \\
& \Psi^{y}(x, y)=\theta(x) \psi(y)=\frac{\partial}{\partial y} \Theta(x, y)
\end{aligned}
$$

- 2-dim partial CWT

$$
\begin{aligned}
f^{\Psi^{x}}(a, b, s) & =\frac{1}{s} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Psi^{x}\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y \\
& =-\frac{\partial}{\partial a} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Theta\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y \\
f^{\psi^{y}}(a, b, s) & =\frac{1}{s} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Psi^{y}\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y \\
& =-\frac{\partial}{\partial b} \iint_{x, y \in \mathbb{R} \times \mathbb{R}} f(x, y) \Theta\left(\frac{x-a}{s}, \frac{y-b}{s}\right) d x d y
\end{aligned}
$$

- The integral $\iint \ldots$ is essentially scaled- $\Theta$-smoothed version of $f$
- $\left(-f^{\Psi^{x}}(a, b, s),-f^{\Psi^{y}}(a, b, s)\right)$ is the gradient $(a, b)$ of this function


## Recall Canny's definition

- Let $f \in \mathcal{L}^{2}\left(\mathbb{R}^{2}\right)$.

The vertex $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is an edge vertex of $f(x, y)$ if

$$
|\operatorname{grad} f|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

has a local maximum when passing through $\left(x_{0}, y_{0}\right)$ in the direction of $(\operatorname{grad} f)\left(x_{0}, y_{0}\right)$

- This can be tested by computing

$$
\left(f^{\Psi^{x}}(a, b, s)\right)^{2}+\left(f^{\psi^{y}}(a, b, s)\right)^{2}
$$

over several scale values $s$

- A vertex which is declared edge vertex over several scales is assumed to be a true edge vertex

Looking at this in the MRA context

- Scaling, wavelet and smoothing (1-dim) are described by

$$
\begin{aligned}
\phi(x) & =\sqrt{2} \sum_{k} h_{k} \phi(2 x-k) \quad \psi(x)=\sqrt{2} \sum_{k} g_{k} \phi(2 x-k) \\
\theta(x) & =\sqrt{2} \sum_{\ell} r_{k} \theta(2 x-\ell)
\end{aligned}
$$

- Scalierung and wavelet equations for $\Phi^{x}(x, y)=\phi(x) \theta(y / 2)$ and for $\Psi^{x}(x, y)=\psi(x) \theta(y)$ are

$$
\begin{aligned}
& \Phi^{x}(x, y)=2 \sum_{k, \ell} h_{k} r_{\ell} \Phi^{x}(2 x-k, 2 y-\ell) \\
& \Psi^{x}(x, y)=2 \sum_{k, \ell} g_{k} \epsilon_{\ell} \Phi^{x}(2 x-k, 2 y-\ell)
\end{aligned}
$$

where $\epsilon_{\ell}=\frac{1}{\sqrt{2}} \delta_{\ell, 0}$.
Similarly for $\Phi^{y}(x, y)$ and $\Psi^{y}(x, y)$

- The HaAR wavelet function $\psi_{h a a r}(t)$ is the derivative of the smoothing function $\theta(t)=\Delta(t)$ :

$$
\psi_{\text {haar }}(t)=\frac{d}{d t} \Delta(t) \text { where } \Delta(t)= \begin{cases}t & 0 \leq t \leq 1 / 2 \\ 1-t & 1 / 2 \leq t \leq 1 \\ 0 & \text { sonst }\end{cases}
$$

- The function $\Delta(t)$ satisfies

$$
\Delta(x)+2 \Delta(x-1 / 2)+\Delta(x-1)=2 \Delta(x / 2)
$$

- which can be written as a scaling equation

$$
\Delta(x)=\frac{1}{2}(\Delta(2 x)+2 \Delta(2 x-1)+\Delta(2 x-2))
$$

- so that

$$
\boldsymbol{r}=\frac{1}{2 \sqrt{2}}\langle 1,2,1\rangle
$$

- Approximation and detail coefficients are

$$
\begin{aligned}
a_{m ; k, \ell}^{x} & =\left\langle f, \Phi_{2^{m}, k, \ell}^{x}\right\rangle
\end{aligned}=\iint f(x, y) \frac{1}{2^{m}} \Phi^{x}\left(\frac{x-k}{2^{m}}, \frac{y-\ell}{2^{m}}\right) d x d y, ~(x, y) \frac{1}{2^{m}} \Psi^{\times}\left(\frac{x-k}{2^{m}}, \frac{y-\ell}{2^{m}}\right) d x d y
$$

and analogously for $a_{m ; k, \ell}^{y}$ and $d_{m ; k, \ell}^{y}$

- Recursions formula for approximation

$$
a_{m+1 ; p, q}^{x}=\sum_{k, \ell} h_{k} r_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{x}
$$

- detail coefficients

$$
d_{m+1 ; p, q}^{x}=\sum_{k, \ell} g_{k} \epsilon_{\ell} a_{m ; p+k 2^{m}, q+\ell 2^{m}}^{x}=\frac{1}{\sqrt{2}} \sum_{k} g_{k} a_{m ; p+k 2^{m}, q}^{x}
$$

- Formulas for $a_{m ; k, \ell}^{x}$ and $d_{m ; k, \ell}^{y}$ are analogous
- Scheme for computation (à trous algorithm)

$$
\begin{array}{ll}
A_{m}^{x}=\left[f^{\Phi^{x}}\left(2^{m} ; p, q\right)\right]_{p, q} & A_{m}^{y}=\left[f^{\Phi^{y}}\left(2^{m} ; p, q\right)\right]_{p, q} \\
D_{m}^{x}=\left[f^{\psi^{\times}}\left(2^{m} ; p, q\right)\right]_{p, q} & D_{m}^{y}=\left[f^{\psi^{y}}\left(2^{m} ; p, q\right)\right]_{p, q}
\end{array}
$$

where $A_{0}=A_{0}^{x}=A_{0}^{y}=[f(p, q)]_{p, q}$


