A closer look at the cascade algorithm: convergence, compact support, reproducing polynomials, vanishing moments

Volker Strehl

December 9, 2015

- Orthogonal filters, scaling and wavelet equations
- 2 The cascade iteration and its convergence
- Compact support
 - Orthogonal families of translates
- 5 QMF and polynomials
- 6 The high-pass filter
- Vanishing moments and smoothness
- 8 Estimating the size of wavelet coefficients

Outline of the main ideas and results

- The cascade iteration for a suitable finite filter $\mathbf{h} = (h_{\ell}, \dots, h_{L})$ converges in the \mathcal{L}^{2} -sense to a function $\phi(t)$, the scaling function
- The convergence is easier to handle in the frequency domain (making use of the convolution theorem!)
- Cascade iteration
 - shows that the scaling function $\phi(t)$ and the wavelet function $\psi(t)$ vanish outside finite intervals of length $L \ell$ (compact support)
 - preserves the ONST property, which guarantees orthogonality for $\phi(t)$ and $\psi(t)$ and its scaled and translated versions

• shows that necessarily $\widehat{\phi}(0)=1$ and $\widehat{\psi}(0)=0$

• Low-pass conds. (vanishing moments) like $\widehat{\psi}^{(n)}(0) = 0$ $(0 \le n < N)$

- ensure exact reproduction of low-degree polynomials in the approximation spaces and makes them "transparent" in the wavelet spaces
- provide sharp bounds for the size of wavelet coefficients of (locally) smooth functions

- The filters
 - $\boldsymbol{h} = (h_k)_{k=\ell..L}$ a finite filter satisfying the orthogonality conditions

$$\sum_{k} h_k h_{2k-m} = \delta_{m,0} \quad \text{and} \quad \sum_{k} h_k = \sqrt{2}$$

Such a filter is called a (finite) quadrature mirror filter (QMF)
g = (g_k)_{k=1-L.1-l} the dual filter to h, defined by

$$g_k = (-1)^k h_{1-k},$$

satisfying automatically the orthogonality conditions

$$\sum_{k} g_k g_{2k-m} = \delta_{m,0}$$

• Orthogonality of \boldsymbol{h} and \boldsymbol{g} is a consequence

$$\sum_{k} h_k g_{2k-m} = 0$$

- The Fourier picture
 - for the filter **h**

$$m_0(s) = \frac{1}{\sqrt{2}}H(-2\pi s) = \frac{1}{\sqrt{2}}\sum_k h_k e^{-2\pi i k s} = \frac{1}{\sqrt{2}}\widehat{\sum_k h_k \delta_k(s)}$$
$$m_0(0) = \frac{1}{\sqrt{2}}\sum_k h_k = 1$$

 ${\scriptstyle \bullet}\,$ for the filter ${\it g}$

$$m_1(s) = \frac{1}{\sqrt{2}}G(-2\pi s) = \frac{1}{\sqrt{2}}\sum_k g_k e^{-2\pi i k s} = \frac{1}{\sqrt{2}}\widehat{\sum_k g_k \delta_k}(s)$$
$$= e^{-2\pi i (s+1/2)} \cdot \overline{m_0(s+1/2)}$$

orthogonality

$$egin{aligned} &|m_0(s)|^2+|m_0(s+1/2)|^2\equiv 1\ &|m_1(s)|^2+|m_1(s+1/2)|^2\equiv 1\ &m_0(s)\cdot\overline{m_0(s+1/2)}+m_1(s)\cdot\overline{m_1(s+1/2)}\equiv 0 \end{aligned}$$

low/highpass

$$m_0(1/2) = m_1(0) = 0$$

Volker Strehl

cascade algorithm

• The scaling equation

(S)
$$\phi(t) = \sqrt{2} \sum_{k} h_k \phi(2t - k)$$

• The wavelet equation

$$(W) \qquad \psi(t) = \sqrt{2} \sum_{k} g_k \, \phi(2t-k)$$

• The scaling equation in the frequency domain

$$(\widehat{S})$$
 $\widehat{\phi}(s) = m_0(s/2) \cdot \widehat{\phi}(s/2)$

• The wavelet equation in the frequency domain

$$(\widehat{W})$$
 $\widehat{\psi}(s) = m_1(s/2) \cdot \widehat{\phi}(s/2)$

• The cascade mapping in the time domain

$$\mathcal{C}: f(t) \longmapsto (\mathcal{C}f)(t) = \begin{cases} \sqrt{2} \sum_{k} h_{k} f(2t-k) \\ = D_{2} \left(\sum_{k} h_{k} f(t-k) \right) \\ = D_{2} \left(\sum_{k} h_{k} \delta_{k}(t) \star f(t) \right) \end{cases}$$

• The cascade mapping in the frequency domain

$$\widehat{\mathcal{C}} : \widehat{f}(s) \longmapsto (\widehat{\mathcal{C}f})(s) = \begin{cases} D_{1/2} \left(\widehat{\sum_k h_k} \delta_k(s) \cdot \widehat{f}(s) \right) \\ = \frac{1}{\sqrt{2}} \sum_k h_k e^{-2\pi i k(s/2)} \cdot \widehat{f}(s/2) \\ = m_0(s/2) \cdot \widehat{f}(s/2) \end{cases}$$

• Iterating the cascading operation

$$\mathcal{C}^n: f(t) \longmapsto \mathcal{C}(\mathcal{C}^{n-1}f)(t) = (\underbrace{\mathcal{C} \circ \cdots \circ \mathcal{C}}_{n \text{ times}} f)(t)$$

• Iterating the cascading operation in the frequency domain

$$\widehat{\mathcal{C}}^n: \widehat{f}(s) \longmapsto \widehat{(\mathcal{C}^n f)}(s) = \begin{cases} m_0(s/2) \cdot m_0(s/4) \cdots m_0(s/2^n) \cdot \widehat{f}(s/2^n) \\ = m^{[n]}(s) \cdot \widehat{f}(s/2^\ell) \end{cases}$$

where

$$m^{[n]}(s) := m_0(s/2) \cdot m_0(s/4) \cdots m_0(s/2^n)$$

is an exponential polynomial of period $2^n \dots$

• ... but these *cascade multipliers* do not belong to $\mathcal{L}^2(\mathbb{R})$

• Question: Is there a $\phi(t)\in \mathcal{L}^2(\mathbb{R})$ which satisfies the scaling equation

(S)
$$\phi(t) = \sqrt{2} \sum_k h_k \phi(2t-k)$$

i.e., does the cascading operator have a fixed point in $\mathcal{L}^2(\mathbb{R})$? • What one ideally would like to have:

Do limit functions η^[∞](t) and m^[∞](s) exist in L²(ℝ)?
 If so, what properties do they have? What tells this about the properties of the wavelet transform based on h?

It appears that if

$$m^{[\infty]}(s) = \prod_{n \ge 1} m_0(s/2^n) = \lim_{N \to \infty} \prod_{1 \le n \le N} m_0(s/2^n)$$

makes sense and belongs to $\mathcal{L}^1(\mathbb{R})(\mathbb{R}) \cap \mathcal{L}^2$, then its inverse Fourier transform would satisfy

$$\left(m^{[\infty]}\right)^{\vee}(t) = \eta^{[\infty]}(t)$$

and hence would be the $\phi(t)$ as desired ...

- The good news
 - One can show that the infinite product

$$m^{[\infty]}(s) = \prod_{n \ge 1} m_0(s/2^n) = \lim_{N \to \infty} \prod_{1 \le n \le N} m_0(s/2^n) = \lim_{N \to \infty} m^{[N]}(s)$$

converges absolutely and uniformly on every finite interval $[-\rho, \rho] \subset \mathbb{R}$. Thus it makes sense to speak of this expression as defining function defined (and continuous) of \mathbb{R}

- The bad news
 - The multiplier for N-fold cascading

$$m^{[N]}(s) = m_0(s/2) \cdot m_0(s/4) \cdots m_0(s/2^N)$$

is a 2^N-periodic function – so the $m^{[N]}(s)$ (as $m_0(s)$) do certainly not belong to $\mathcal{L}^2(\mathbb{R})$ and therefore cannot converge in $\mathcal{L}^2(\mathbb{R})$ towards $\overline{m^{[\infty]}(t)}$

- Solving the problem
 - A common technique to resolve this kind of problem is to introduce *band-limited* versions of these functions:

$$\mu^{[n]}(s) = m^{[n]}(s) \cdot \chi_{[-2^{n-1}, 2^{n-1}]}(s)$$

Check that

$$(*) \qquad \mu^{[n]}(s) = m_0(s/2) \cdot \mu^{[n-1]}(s/2)$$

- Band-limiting ensures that μ^[ℓ](s) ∈ L²(ℝ) ∩ L¹(ℝ), so these functions do have an inverse Fourier transform (μ^[ℓ])[∨](t)
- From (*) one gets cascading in the time domain:

$$(\mu^{[n]})^{\vee}(t) = \mathcal{C}(\mu^{[n-1]})^{\vee}(t)$$

• It now makes sense to consider the sequence $(\mu^{[n]}(s))_{\ell \ge 0}$ as a sequence in $\mathcal{L}^2(\mathbb{R})$ and ask for its convergence

• Theorem:

If **h** is a QMF as above, for which there exists a constant c > 0 such that $|m_0(s)| \ge c$ for all $|s| \ge 1/4$. Then one has \mathcal{L}^2 -convergence

$$\mu^{[n]}(s) \longrightarrow_{n \to \infty} m^{[\infty]}(s) = \widehat{\phi}(s)$$

 \bullet Consequently, by applying the inverse Fourier transform, one gets $\mathcal{L}^2\text{-}\mathsf{convergence}$

$$\mu^{[n]})^{\vee}(t) \longrightarrow_{n \to \infty} \phi(t),$$

where the functions $(\mu^{[\ell]})^{\vee}(t)$ are band-limited approximations of $\phi(t)$

 \bullet This can be used to show that, as desired, one has $\mathcal{L}^2\text{-}convergence}$

$$\widehat{\eta^{[n]}}(s) o_{n o \infty} \widehat{\phi}(s)$$
 and $\eta^{[n]}(t) o_{n o \infty} \phi(t)$

as desired

- A function f : ℝ → C has compact support, if it vanishes outside an interval I ⊂ ℝ of <u>finite</u> length
- From the cascade iteration step for a QMF of length 2N

$$\eta^{[n+1]}(s) = C\eta^{[n]}(t) = \sqrt{2} \sum_{k=\ell}^{L} h_k \eta^{[n]}(2t-k)$$

one gets

- if $\eta^{[n]}(t)$ vanishes outside the interval $[a_n, b_n]$ then $\eta^{[n+1]}(t)$ vanishes outside the interval $[a_{n+1}, b_{n+1}] = [(a_n + \ell)/2, (b_n + L)/2]$
- by induction one gets in the limit that $\eta^{[\infty]}(t) = \phi(t)$ vanishes outside the interval $[a_{\infty}, b_{\infty}] = [\ell, L]$ of length $L \ell = 2N 1$
- and by (W) it follows that $\psi(t)$ vanishes outside the interval [-N + 1, N]

- Orthogonality property of the cascade operator (1)
 - A family of translates $\{(T_k f)(t)\}_{k \in \mathbb{Z}} = \{f(t k)\}_{k \in \mathbb{Z}}$ of an \mathcal{L}^2 -function f(t) is <u>orthonormal</u> if and only if

$$\sum_{n \in \mathbb{Z}} |\widehat{f}(s+n)|^2 \equiv 1$$
Proof: $\langle f \mid T_k f \rangle = \langle \widehat{f} \mid \widehat{T_k f} \rangle = \int_{\mathbb{R}} \widehat{f}(s) \overline{\widehat{f}(s)} e^{2\pi i k s} ds$

$$= \sum_{n \in \mathbb{Z}} \int_n^{n+1} \left| \widehat{f(s)} \right|^2 e^{2\pi i k s} ds = \sum_{n \in \mathbb{Z}} \int_0^1 \left| \widehat{f}(s+n) \right|^2 e^{2\pi i k s} ds$$

$$= \int_0^1 \sum_{n \in \mathbb{Z}} \left| \widehat{f}(s+n) \right|^2 e^{2\pi i k s} ds$$

Hence in terms of Fourier series

$$\sum_{k\in\mathbb{Z}}\langle f\mid T_kf\rangle e^{-2\pi iks} = \sum_{n\in\mathbb{Z}} \left|\widehat{f}(s+n)\right|^2$$

• Such a family with $\langle T_k f | T_\ell f \rangle = \delta_{k,\ell}$ $(k, \ell \in \mathbb{Z})$ is called an orthonormal system of translates (ONST)

- Orthogonality property of the cascade operator (2)
 - Reminder: orthogonality of the filter \boldsymbol{h} reads as

$$|m_0(s)|^2 + |m_0(s+1/2)|^2 \equiv 1$$

• If $\{ T_k f \}_{k \in \mathbb{Z}}$ is an ONST, then $\{ T_k (Cf) \}_{k \in \mathbb{Z}}$ is again an ONST

$$\begin{split} \sum_{n\in\mathbb{Z}} \left| (\widehat{\mathcal{C}f})(s+n) \right|^2 &= \sum_{n\in\mathbb{Z}} \left| m_0(\frac{s+n}{2}) \cdot \widehat{f}(\frac{s+n}{2}) \right|^2 = \sum_{n \text{ even}} \dots + \sum_{n \text{ odd}} \dots \\ &= \left| m_0(\frac{s}{2}) \right|^2 \sum_{n'\in\mathbb{Z}} \left| \widehat{f}(\frac{s}{2}+n') \right|^2 + \left| m_0(\frac{s+1}{2}) \right|^2 \sum_{n''\in\mathbb{Z}} \left| \widehat{f}(\frac{s+1}{2}+n'') \right|^2 \\ &= \left| m_0(\frac{s}{2}) \right|^2 + \left| m_0(\frac{s+1}{2}) \right|^2 \equiv 1 \end{split}$$

because $m_0(s)$ is a 1-periodic function

- Orthogonality property of the cascade operator (3)
 - The family $\left\{ {{{\mathcal T}_k}{\chi _{\left[{1/2,1/2}
 ight]}}(t)}
 ight\}_{k \in {\mathbb Z}}$ is obviously an ONST
 - Then, by induction, all intermediate families

$$\left\{T_k\eta^{[n]}(t)\right\}_{k\in\mathbb{Z}}$$
 $(n=1,2,3,\ldots)$

are ONST

• From \mathcal{L}^2 -convergence $\eta^{[n]}(t)
ightarrow_{n
ightarrow \infty} \phi(t)$ one gets:

 $\{ T_k \phi(t) \}_{k \in \mathbb{Z}}$ is an ONST

Integrals

• If f(t) is integrable, then

$$\int_{\mathbb{R}} (\mathcal{C}f)(t) dt = \sqrt{2} \sum_{k} h_k \int_{\mathbb{R}} f(2t-k) dt = \frac{1}{\sqrt{2}} \sum_{k} h_k \int_{\mathbb{R}} f(t) dt = \int_{\mathbb{R}} f(t) dt$$

• hence from the cascade iteration

$$\widehat{\phi}(\mathsf{0}) = \int_{\mathbb{R}} \phi(t) \, dt = \ldots = \int_{\mathbb{R}} \chi_{[\mathsf{0},\mathsf{1})}(t) \, dt = 1$$

• and from the wavelet equation (\widehat{W})

$$\int_{\mathbb{R}} \psi(t) dt = \widehat{\psi}(0) = m_1(0) \cdot \widehat{\phi}(0) = m_1(0) = 0$$

- Now consider low-pass properties of the QMF **h**
- as specified by

$$m_0^{(n)}(1/2) = 0$$
 $(0 \le n < N)$

• or in terms of the *moment conditions*

$$\sum_{k} (-1)^{k} h_{k} k^{n} = 0 \ (0 \le n < N)$$

or else by

$$m_0(s) = (rac{1+e^{-2\pi i s}}{2})^N \cdot L(s)$$

with L(s) a trigonometric polynomial (finite Fourier series) of period 1

 If any of these equivalent properties is satisfied, then one says that the QMF h has N vanishing moments By differentiating the scaling equation in the frequency domain form

$$\widehat{\phi}(s) = m_0(s/2) \cdot \widehat{\phi}(s/2)$$

one gets (remember $\widehat{\phi}(0)=1)$

$$\widehat{\phi}^{(n)}(k) = 0 \hspace{.1in}$$
 for $0 \leq n < N \hspace{.1in}$ and $\hspace{.1in} k \in \mathbb{Z} \setminus \{0\}$

• Hence the following Fourier series is a constant

$$(2\pi i)^n \sum_{k \in \mathbb{Z}} \widehat{t^n \phi(t)}(k) e^{2\pi i k t} = \sum_{k \in \mathbb{Z}} \widehat{\phi}^{(n)}(k) e^{2\pi i k t} = \widehat{\phi}^{(n)}(0)$$

• From Poisson's formula one gets

$$\sum_{k\in\mathbb{Z}}\widehat{t^n\phi(t)}(k)\,e^{2\pi ikt}=\sum_{\ell\in\mathbb{Z}}(t+\ell)^n\phi(t+\ell)$$

and hence

$$\widehat{\phi}^{(n)}(0) = (2\pi i)^n \sum_{\ell \in \mathbb{Z}} (t+\ell)^n \phi(t+\ell)$$

• Now use the binomial theorem for $0 \le n < N$

$$\begin{split} \sum_{\ell \in \mathbb{Z}} \phi(t+\ell) \cdot \ell^n &= \sum_{\ell \in \mathbb{Z}} \phi(t+\ell) \sum_{j=0}^n \binom{n}{j} (t+\ell)^j (-t)^{n-j} \\ &= \sum_{j=0}^n \binom{n}{j} (-t)^{n-j} \sum_{\ell \in \mathbb{Z}} (t+\ell)^j \phi(t+\ell) \\ &= \frac{1}{(2\pi i)^n} \sum_{j=0}^n \binom{n}{j} (-t)^{n-j} \widehat{\phi}^{(j)}(0) \\ &= p_n(t) \end{split}$$

which is a polynomial of degree n in t

• Note: even though the sum $\sum_{\ell \in \mathbb{Z}}$ is infinite, for any specific $t \in \mathbb{R}$ it contains only a finite number of non-zero summands, since $\phi(t)$ has finite support

Since the polynomials p_n(t) (0 ≤ n < N) are a basis in the vector space of polynomials of degree < N, one gets

• There are polynomials $q_n(t) = \sum_{j=0}^n q_{n,j} t^j$ $(0 \le n < N)$ such that

$$\sum_{j=0}^n q_{n,j} \cdot p_j(t) = t^n \quad (0 \le n < N)$$

and hence

$$\sum_{\ell\in\mathbb{Z}}\phi(t+\ell)\cdot q_n(\ell)=t^n$$

• Theorem:

For any polynomial r(t) of degree < N there are constants ρ_{ℓ} ($\ell \in \mathbb{Z}$) such that

$$\sum_{\ell \in \mathbb{Z}} \phi(t + \ell) \cdot
ho_\ell = r(t)$$

and by referring to the orthogonality of the translates of $\phi(t)$ one can deduce what these constants really are:

$$\rho_{\ell} = \langle r(t) | \phi(t+\ell) \rangle$$

- Recall, that given a QMF $\boldsymbol{h} = (h_k)$ one has
 - the dual filter $\boldsymbol{g} = (g_k)$ defined by setting $g_k = (-1)^k h_{1-k}$
 - with Fourier series

$$m_1(s) = rac{1}{\sqrt{2}} \sum_k g_k e^{-2\pi i k s} = e^{-2\pi i (s+1/2)} \overline{m_0(s+1/2)}$$

• This is indeed an orthogonal filter

$$|m_1(s)|^2 + |m_1(s+1/2)|^2 \equiv 1$$

and

$$m_1(0) = rac{1}{\sqrt{2}} \sum_k g_k = rac{1}{\sqrt{2}} \sum_k (-1)^{k-1} h_k = -\overline{m_0(1/2)}$$

- Thus if \boldsymbol{h} is low-pass $(m_0(1/2) = 0)$ then \boldsymbol{g} is high-pass $(m_1(0) = 0)$
- Orthogonality between \boldsymbol{h} and \boldsymbol{g} is expressed by

$$m_0(s)\cdot \overline{m_0(s+1/2)} + m_1(s)\cdot \overline{m_1(s+1/2)} \equiv 0$$

• Using the scaling function $\phi(t)$ belonging to the QMF **h** one defines the wavelet function $\psi(t)$ by the wavelet equation

(W)
$$\psi(t) = \sum_{k} g_k \phi_{1,k}(t) = \sqrt{2} \sum_{k} g_k \phi(2t-k)$$

- This is a finite sum, so ψ(t) is also a function with compact support (as mentioned before)
- The frequency picture is

$$\widehat{\psi}(s) = m_1(s/2) \cdot \widehat{\phi}(s/2)$$

• The scaling and wavelet functions $\phi(t)$ and $\psi(t)$ can be translated and dilated as usual

$$\phi_{j,k}(t) = D_{2^j} T_k \phi(t) = 2^{j/2} \phi(2^j t - k)$$

$$\psi_{j,k}(t) = D_{2^j} T_k \psi(t) = 2^{j/2} \psi(2^j t - k)$$

- As shown before, the family { *T_kφ(t)* }_{k∈ℤ} is an ONST, hence for any fixed *j* ∈ ℤ the family { *φ_{j,k}(t)* }_{k∈ℤ} is orthonormal
- From the orthogonality property of g it follows that for any fixed $j \in \mathbb{Z}$ the family $\{\psi_{j,k}(t)\}_{k \in \mathbb{Z}}$ is orthonormal
- From the orthogonality between h and g it follows that for any fixed $j \in \mathbb{Z}$ the families $\{\phi_{j,k}(t)\}_{k\in\mathbb{Z}}$ and $\{\psi_{j,\ell}(t)\}_{\ell\in\mathbb{Z}}$ are orthonormal
- It is then easy to show that the family of all wavelet functions $\{\psi_{j,k}(t)\}_{j,k\in\mathbb{Z}}$ is an orthonormal family in $\mathcal{L}^2(\mathbb{R})$
- \mathcal{L}^2 -completeness is not guaranteed!

• Remember that in the QMF cascading situation

$$\widehat{\psi}(0) = \int_{\mathbb{R}} \psi(t) \, dt = 0$$

• Theorem:

If $\{\psi_{j,k}(t)\}_{j,k\in\mathbb{Z}}$ is any orthonormal family in $\mathcal{L}^2(\mathbb{R})$ with $\psi(t)$ and $\widehat{\psi}(s)$ integrable, i.e., $\in \mathcal{L}^1(\mathbb{R})$. Then

$$\int_{\mathbb{R}}\psi(t)\,dt=0$$

Comment: Integrability of $\psi(t)$ assures that the integral exists. Integrability of $\widehat{\psi}(t)$ plus the Riemann-Lebesgue Lemma says that $\psi(t)$ is uniformly continuous on \mathbb{R} and vanishes at infinity

• For a proof see the Lecture Notes

The previous theorem can be extended.

• Theorem:

If $\{\psi_{j,k}(t)\}_{j,k\in\mathbb{Z}}$ is an orthonormal family, with $t^N \cdot \psi(t)$ and $s^{N+1} \cdot \widehat{\psi}(s)$ integrable, i.e., $\in \mathcal{L}^1(\mathbb{R})$. Then $\psi(t)$ has N vanishing moments:

$$\int_{\mathbb{R}} t^n \psi(t) \, dt = 0 \quad (0 \le n < N)$$

• In the context of a QMF **h** and its wavelet function $\psi(t)$ this vanishing moments property is indeed equivalent to the earlier statements like

$$m_0^{(n)}(1/2) = 0 \quad (0 \le n < N)$$

or

$$\sum_{k} (-1)^{k} h_{k} k^{n} = 0 \quad (0 \le n < N)$$

Comments:

- The proof goes by induction over N
- The condition $t^N \, \psi(t) \in \mathcal{L}^1(\mathbb{R})$ guarantees existence of the integrals
- The condition $s^{N+1} \cdot \widehat{\psi}(s) \in \mathcal{L}^1(\mathbb{R})$ says that $\psi(t)$ is *smooth*: it has N+1 continuous derivatives, remember

$$(2\pi is)^{N+1}\cdot\widehat{\psi}(s)=\widehat{\psi^{(N+1)}}(s)$$

So $\psi^{(N+1)}(t)$ is uniformly continuous and vanishes as $t \to \pm \infty$ (R-L)

- A practical consequence: If f(t) ∈ L²(ℝ) behaves like a polynomial function of degree < N on the support of ψ_{j,k} (a finite interval), then ⟨f | ψ_{j,k}⟩ = 0, i.e., f becomes "invisible" or "transparent" for the detail parts of the wavelet transformation
- The smoothness of a wavelet function $\psi(t)$ corresponds to the number of vanishing moments

- The previous Theorem can be extended even further by making a statement about the size of wavelet coefficients for smooth functions
- Assume:
 - ψ(t) is a (real) wavelet function (coming from an QMF h, with compact support [0, a]), so that
 - $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ is an orthonormal family
 - Intervals $I_{j,k}$ of length $2^{-j}a$ are obtained from $I_{0,0} = [0, a]$ by dilation and translation
 - $t_{j,k} = 2^{-(j+1)}a + 2^{-j}k$ is the midpoint of $I_{j,k}$
 - $\psi(t)$ has N vanishing moments

• Theorem:

For any *N*-times differentiable function f(t) on \mathbb{R} with $f^{(N)}(t)$ bounded, the size of its wavelet coefficients can be bounded:

i. There exists a constant $C_{N,f} > 0$ such that for all $j, k \in \mathbb{Z}$

$$|\langle f | \psi_{j,k} \rangle| \leq C_{N,f} \cdot 2^{-jN} 2^{-j/2}$$

ii. More precisely: for large j

$$|\langle f | \psi_{j,k} \rangle| \approx 2^{-jN} 2^{-j/2} \left(\frac{1}{N!} f^{(N)}(t_{j,k}) \int_{-a/2}^{a/2} t^n \psi(t+a/2) dt \right)$$

About the proof

• Use Taylor's expansion with remainder term for f(t) around $t_{j,k}$, noting that $\int_{l_{j,k}} (t - t_{j,k})^n \psi_{j,k}(t) dt = 0$ for n < N to get

$$\langle f | \psi_{j,k} \rangle = \int_{I_{j,k}} R_N(t) \psi_{j,k}(t) dt$$

where

$$R_{N}(t) = \frac{1}{N!}(t - t_{j,k})^{N} f^{(N)}(\xi)$$

for some ξ between t and $t_{j,k}$ For $t \in I_{j,k}$ $|R_N(t)| \leq \frac{1}{N!} 2^{-N(j+1)} a^N \max_{t' \in I_{j,k}} |f^{(N)}(t')|$

With this estimate use Cauchy-Schwarz inequality

- What the Theorem says is:
 - Wavelet coefficients for <u>smooth</u> functions decay rapidly as the resolution parameter *j* increases!
 - This is (as ii. shows) a strictly <u>local</u> phenomenon: If a function f(t) is *N*-times continuously differentiable at some point $t_0 \in \mathbb{R}$, hence $f^{(N)}(t)$ is continuous in some interval *J* containing t_0 , the estimate ii. holds for any *j*, *k* for which $I_{j,k} \subseteq J$
 - This means: wavelet coefficients belonging to smooth parts of a signal are usually much smaller than wavelet coefficients for non-smooth parts
 - This has important practical consequences, e.g., for image compression