# Biorthogonal Filter Pairs und Wavelets 

## WTBV

January 20, 2016
(1) Review: orthogonal filters
(2) Biorthogonal filter pairs

- Motivation and setup
- Transformation matrices and orthogonality
- Example: a biorthogonal $(5,3)$ filter pair
- Length and symmetry
- Construction of a biorthogonal $(2,6)$-pair of symmetric filters
- Outline of the filter construction method
(3) Spline filters
- Symmetric low-pass filters
- Spline functions
- Daubechies biorthogonal filters
(4) Cohen-Daubechies-Feauveau filters
- Daubechies polynomials again
- Symmetric filters of odd length
- The Cohen-Daubechies-Feauveau- $(7,9)$ filter pair
- Up to now: orthogonal wavelet transforms with filters of finite length $L+1$, based on pairs of filters

$$
\begin{aligned}
\text { low-pass filter } & \boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{L}\right) \\
\text { high-pass filter } & \boldsymbol{g}=\left(g_{0}, g_{1}, \ldots, g_{L}\right)
\end{aligned}
$$

defining an orthogonal transform of signals (of finite length)

- written in matrix form as

$$
W_{N}=\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right] \quad \text { with } \quad W_{N}^{-1}=W_{N}^{\dagger}
$$



Figure: Filter bank scheme of orthogonal WT

- Orthogonality as specified by

$$
I_{N}=W_{N} W_{N}^{\dagger} \text { resp. } I_{N}=W_{N}^{\dagger} W_{N}
$$

is equivalent to three idenities

$$
\begin{aligned}
G_{N} G_{N}^{\dagger} & =I_{N / 2}=H_{N} H_{N}^{\dagger} \\
G_{N} H_{N}^{\dagger} & =0_{N / 2}=H_{N} G_{N}^{\dagger} \\
I_{N} & =G_{N}^{\dagger} G_{N}+H_{N}^{\dagger} H_{N}
\end{aligned}
$$

- The third identity expresses the reconstruction property
- Looking at the frequency picture:

$$
\begin{aligned}
|H(\omega)|^{2}+|H(\omega+\pi)|^{2} & =2 \\
|G(\omega)|^{2}+|G(\omega+\pi)|^{2} & =2 \\
H(\omega) \overline{G(\omega)}+H(\omega+\pi) \overline{G(\omega+\pi)} & =0 \\
H(0)=G(\pi) & =\sqrt{2} \\
H(\pi)=G(0) & =0
\end{aligned}
$$

- the last two equation expressing low-pass properties of $\boldsymbol{h}$, resp. the high-pass properties of $\boldsymbol{g}$
- The reason to deviate from this standard scheme comes from the following observations:
- Symmetric filters (and wavelets) often give visually better reconstruction results (e.g. when using wavelets for image compression)
- Apart from the HaAR-filter there are no other symmetric scaling filters from which an orthogonal transform scheme (as above) can be built
- The idea to be able to use symmetric filters leads to a more general approach:
- Take two pairs of filters
- one pair ( $\boldsymbol{h}, \widetilde{\boldsymbol{h}}$ ) of low-pass filters
- one pair ( $\boldsymbol{g}, \widetilde{\boldsymbol{g}}$ ) of high-pass filters
- length and index ranges of these filters are not yet specified but the filters shall have finite length
- it is not required that $\boldsymbol{h}$ and $\boldsymbol{g}$ have the same length
- This leads to the so-called bi-orthogonal set-up


Figure: Filter bank scheme of a bi-orthogonal WT

- The transformation matrices for analysis and synthesis are given by

$$
\text { analysis: } \quad W_{N}=\left[\begin{array}{l}
H_{N} \\
G_{N}
\end{array}\right] \quad \text { synthesis: } \quad \widetilde{W}_{N}=\left[\begin{array}{c}
\widetilde{H}_{N} \\
\widetilde{G}_{N}
\end{array}\right]
$$

and these matrices are required to be inverse to each other:

$$
W_{N}^{-1}=\widetilde{W}_{N}^{\dagger}
$$

- which means

$$
W_{N} \widetilde{W}_{N}^{\dagger}=\widetilde{W}_{N}^{\dagger} W_{N}=I_{N}
$$

- and in more detail

$$
\begin{aligned}
G_{N} \widetilde{G}_{N}^{\dagger} & =I_{N / 2}=H_{N} \widetilde{H}_{N}^{\dagger} \\
G_{N} \widetilde{H}_{N}^{\dagger} & =0_{N / 2}=H_{N} \widetilde{G}_{N}^{\dagger} \\
I_{N} & =\widetilde{G}_{N}^{\dagger} G_{N}+\widetilde{H}_{N}^{\dagger} H_{N}
\end{aligned}
$$

- The different ways to express these requirements
transformation matrices $\leftrightarrow$ filter coefficients $\leftrightarrow$ frequency representation

$$
\begin{align*}
& \left(H_{N}, G_{N}\right) \quad(\boldsymbol{h}, \boldsymbol{g}) \quad(H(\omega), G(\omega)) \\
& \left(\widetilde{H}_{N}, \widetilde{G}_{N}\right) \quad(\widetilde{\boldsymbol{h}}, \widetilde{\boldsymbol{g}}) \quad(\widetilde{H}(\omega), \widetilde{G}(\omega)) \\
& H_{N} \widetilde{H}_{N}^{\dagger}=I_{N / 2} \Leftrightarrow \sum_{k} \widetilde{h}_{k} h_{k-2 m}=\delta_{m, 0} \\
& \Leftrightarrow \widetilde{H}(\omega) \bar{H}(\omega)+\widetilde{H}(\omega+\pi) \bar{H}(\omega+\pi)=2  \tag{1}\\
& G_{N} \widetilde{G}_{N}^{\dagger}=I_{N / 2} \Leftrightarrow \sum_{k} \widetilde{g}_{k} g_{k-2 m}=\delta_{m, 0} \\
& \Leftrightarrow \widetilde{G}(\omega) \bar{G}(\omega)+\widetilde{G}(\omega+\pi) \bar{G}(\omega+\pi)=2  \tag{2}\\
& H_{N} \widetilde{G}_{N}^{\dagger}=0_{N / 2} \Leftrightarrow \sum_{k} \widetilde{g}_{k} h_{k-2 m}=0 \\
& \Leftrightarrow \widetilde{H}(\omega) \bar{G}(\omega)+\widetilde{H}(\omega+\pi) \bar{G}(\omega+\pi)=0  \tag{3}\\
& G_{N} \widetilde{H}_{N}^{\dagger}=0_{N / 2} \Leftrightarrow \sum_{k} \widetilde{h}_{k} g_{k-2 m}=0 \\
& \stackrel{k}{\Leftrightarrow} \widetilde{G}(\omega) \bar{H}(\omega)+\widetilde{G}(\omega+\pi) \bar{H}(\omega+\pi)=0 \tag{4}
\end{align*}
$$

## Definition

A pair $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ of (low-pass) filters of finite length is said to be a biorthogonal filter pair if condition (1) holds

$$
\begin{equation*}
\widetilde{H}(\omega) \bar{H}(\omega)+\widetilde{H}(\omega+\pi) \bar{H}(\omega+\pi)=2 \tag{1}
\end{equation*}
$$

## Proposition

If $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ is a biorthogonal filter pair, i.e., (1) holds, and if one defines a filter pair $(\mathbf{g}, \widetilde{\boldsymbol{g}})$ by setting

$$
G(\omega)=e^{i(n \omega+b)} \widetilde{H}(\omega+\pi) \quad \widetilde{G}(\omega)=e^{i(n \omega+b)} \overline{H(\omega+\pi)}
$$

with odd $n \in \mathbb{Z}$ and $b \in \mathbb{R}$, the conditions (2), (3) und (4) and reconstructibility are automatically satisfied

- For the filter coefficients these setting give

$$
g_{k}=-e^{i b}(-1)^{k} \widetilde{h}_{n-k}, \quad \widetilde{g}_{k}=-e^{i b}(-1)^{k} h_{n-k} .
$$

- One usually puts $b=\pi$ ( in order to have real filter coefficients!) and $n=1$, so that

$$
g_{k}=(-1)^{k} \widetilde{h}_{1-k}, \quad \widetilde{g}_{k}=(-1)^{k} h_{1-k}
$$

- Note: filter $\boldsymbol{h}$ determines filter $\widetilde{\boldsymbol{g}}$ - in particular: they have the same length - and similarly filter $\widetilde{\boldsymbol{h}}$ determines the filter $\boldsymbol{g}$
Filters $\boldsymbol{h}$ and $\widetilde{\boldsymbol{h}}$ do not need to have the same length, but their choice is not completely arbitrary - see the following proposition
- Example

$$
\begin{aligned}
\boldsymbol{h} & =\frac{\sqrt{2}}{4}(-2,4,3,-2,1)=\left(h_{-2}, \ldots, h_{2}\right) \\
\widetilde{\boldsymbol{h}} & =\frac{\sqrt{2}}{4}(1,2,1)=\left(\widetilde{h}_{-1}, \widetilde{h}_{0}, \widetilde{h}_{1}\right)
\end{aligned}
$$

- frequency representation

$$
\begin{aligned}
& H(\omega)=\frac{\sqrt{2}}{4}\left(-2 e^{-2 i \omega}+\cdots+1 e^{2 i \omega}\right) \\
& \widetilde{H}(\omega)=\frac{\sqrt{2}}{4}\left(e^{-i \omega}+2+e^{i \omega}\right)
\end{aligned}
$$

- check that

$$
\begin{aligned}
& H(0)=\widetilde{H}(0)=\sqrt{2} \\
& H(\pi)=\widetilde{H}(\pi)=0 \\
& \widetilde{H}(\omega) \overline{H(\omega)}=\frac{1}{8}\left(e^{-3 i \omega}+8+9 e^{i \omega}-2 e^{3 i \omega}\right) \\
& \widetilde{H}(\omega+\pi) \overline{H(\omega+\pi)}=\frac{1}{8}\left(-e^{-3 i \omega}+8-9 e^{i \omega}+2 e^{3 i \omega}\right)
\end{aligned}
$$

- ... which gives

$$
\widetilde{H}(\omega) \overline{H(\omega)}+\widetilde{H}(\omega+\pi) \overline{H(\omega+\pi)}=2
$$

so that the necessary requirement (1) is satisfied

- As for the filters $\boldsymbol{g}$ and $\widetilde{\mathbf{g}}$ :

$$
\begin{aligned}
& \boldsymbol{g}=\frac{\sqrt{2}}{4}(1,-2,1)=\left(g_{0}, g_{1}, g_{2}\right) \\
& \widetilde{\boldsymbol{g}}=\frac{\sqrt{2}}{4}(-1,-2,-3,4,2)=\left(\widetilde{g}_{-1}, \ldots, \widetilde{g}_{3}\right)
\end{aligned}
$$

Transformation matrices for signals of length 8:

- analysis transform

$$
W_{8}=\left[\begin{array}{l}
H_{8} \\
G_{8}
\end{array}\right]=\left[\begin{array}{cccccccc}
h_{0} & h_{1} & h_{2} & 0 & 0 & 0 & h_{-2} & h_{-1} \\
h_{-2} & h_{-1} & h_{0} & h_{1} & h_{2} & 0 & 0 & 0 \\
0 & 0 & h_{-2} & h_{-1} & h_{0} & h_{1} & h_{2} & 0 \\
h_{2} & 0 & 0 & 0 & h_{-2} & h_{-1} & h_{0} & h_{1} \\
g_{0} & g_{1} & g_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{0} & g_{1} & g_{2} & 0 \\
g_{2} & 0 & 0 & 0 & 0 & 0 & g_{0} & g_{1}
\end{array}\right]
$$

- synthesis transform

$$
\widetilde{W}_{8}=\left[\begin{array}{c}
\widetilde{H}_{8} \\
\widetilde{G}_{8}
\end{array}\right]=\left[\begin{array}{cccccccc}
\widetilde{h}_{0} & \widetilde{h}_{1} & 0 & 0 & 0 & 0 & 0 & \widetilde{h}_{-1} \\
0 & \widetilde{h}_{-1} & \widetilde{h}_{0} & \widetilde{h}_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \widetilde{h}_{-1} & \widetilde{h}_{0} & \widetilde{h}_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \widetilde{h}_{-1} & \widetilde{h}_{0} & \widetilde{h}_{1} \\
\widetilde{g}_{0} & \widetilde{g}_{1} & \widetilde{g}_{2} & \widetilde{g}_{3} & 0 & 0 & 0 & \widetilde{g}_{-1} \\
0 & \widetilde{g}_{-1} & \widetilde{g}_{0} & \widetilde{g}_{1} & \widetilde{g}_{2} & \widetilde{g}_{3} & 0 & 0 \\
0 & 0 & 0 & \widetilde{g}_{-1} & \widetilde{g}_{0} & \widetilde{g}_{1} & \widetilde{g}_{2} & \widetilde{g}_{3} \\
\widetilde{g}_{2} & \widetilde{g}_{3} & 0 & 0 & 0 & \widetilde{g}_{-1} & \widetilde{g}_{0} & \widetilde{g}_{1}
\end{array}\right]
$$

## Proposition

For a biorthogonal filter pair $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ with $\underset{\sim}{\boldsymbol{h}}=\left(\boldsymbol{h}_{\ell}, \ldots, h_{L}\right)$ (i.e., length $N=L-\ell+1$ ) and
$\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{\widetilde{\ell}}, \ldots, \widetilde{h}_{\tilde{L}}\right)$, (i.e., filter length $\left.\widetilde{N}=\widetilde{L}-\widetilde{\ell}+1\right)$
the following holds:
(1) The lengths $N$ and $\widetilde{N}$ have the same parity, i.e., $N \equiv \widetilde{N} \bmod 2$
(2) If $N$ and $\widetilde{N}$ are both even, then $L \equiv \widetilde{L} \bmod 2$
(3) If $N$ and $\widetilde{N}$ are both odd, then $L \not \equiv \widetilde{L} \bmod 2$

## Definition

A filter $\boldsymbol{h}=\left(h_{\ell}, \ldots, h_{L}\right)$ is said to be symmetric if

- $h_{k}=h_{-k}(k \in \mathbb{Z})$, if $\ell=-L$ (odd length), or if
- $h_{k}=h_{1-k}(k \in \mathbb{Z})$, if $\ell=-L+1$ (even length)


## Proposition

If $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ is a biorthogonal filter pair with symmetric filters, where $L<\widetilde{L}$, then the orthogonality conditions can be written as

$$
\sum_{k=p}^{L} h_{k} \tilde{h}_{k-2 m}=\delta_{0, m} \quad(0 \leq m \leq L)
$$

where $p=-L$ (if $N$ is even) or $p=-L+1$ (if $N$ is odd)

Example: Construction of a symmetric biorthogonal filter pair

- $\boldsymbol{h}=\left(h_{0}, h_{1}\right)$ a symmetric filter of length 2 , so $h_{0}=h_{1}$, and $\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{-2}, \widetilde{h}_{-1}, \widetilde{h}_{0}, \widetilde{h}_{1}, \widetilde{h}_{2}, \widetilde{h}_{3}\right)$ a symmetric filter of length 6 , which means $\widetilde{h}_{0}=\widetilde{h}_{1}, \widetilde{h}_{-1}=\widetilde{h}_{2}, \widetilde{h}_{-2}=\widetilde{h}_{3}$
- From the Fourier series

$$
H(\omega)=h_{0}+h_{1} e^{i \omega}, \quad \widetilde{H}(\omega)=\widetilde{h}_{-2} e^{-2 i \omega}+\cdots+\widetilde{h}_{3} e^{3 i \omega}
$$

the low-pass requirements imply conditions to be satisfied by the coefficients:

$$
\begin{aligned}
& H(0)=2 h_{0} \stackrel{!}{=} \sqrt{2} \Rightarrow h_{0}=h_{1}=\frac{1}{\sqrt{2}} \\
& H(\pi) \stackrel{!}{=} 0 \text { holds! } \\
& \widetilde{H}(0) \stackrel{!}{=} \sqrt{2} \Rightarrow \widetilde{h}_{1}+\widetilde{h}_{2}+\widetilde{h}_{3}=\frac{1}{\sqrt{2}} \\
& H(\pi) \stackrel{!}{=} 0 \Rightarrow \widetilde{h}_{3}-\widetilde{h}_{2}+\widetilde{h}_{1}-\widetilde{h}_{1}+\widetilde{h}_{2}-\widetilde{h}_{3}=0 \text { holds! }
\end{aligned}
$$

- Now about orthogonality

$$
\begin{aligned}
h_{0} \widetilde{h}_{0}+h_{1} \widetilde{h}_{1} \stackrel{!}{=} 1 & \Rightarrow \widetilde{h}_{0}=\widetilde{h}_{1}=\frac{1}{\sqrt{2}} \\
h_{0} \widetilde{h}_{-2}+h_{1} \widetilde{h}_{-1} \stackrel{!}{=} 0 & \Rightarrow \widetilde{h}_{-2}=-\widetilde{h}_{-1}=\frac{a}{\sqrt{2}}
\end{aligned}
$$

with a parameter $a \neq 0$

- This gives

$$
\boldsymbol{h}=\frac{1}{\sqrt{2}}(1,1) \quad \tilde{\boldsymbol{h}}=\frac{1}{\sqrt{2}}(a,-a, 1,1,-a, a)
$$

- To construct a biorthogonal filter pair $(\boldsymbol{h}, \widetilde{\boldsymbol{h}})$ of low-pass filters of finite length one can proceed as follows:
- First choose a symmetric filter $\tilde{\boldsymbol{h}}$ such that sufficiently many low-pass requirements $\widetilde{H}^{(m)}(\pi)=0(m=0,1,2, \ldots)$ are satisfied. These are linear conditions imposed on the coefficients
- Choose the length of the filter $\boldsymbol{h}$, where the lengths of $\boldsymbol{h}$ and $\tilde{\boldsymbol{h}}$ should not differ too much, so that the synthesis filters $\widetilde{\boldsymbol{h}}$ and $\widetilde{\boldsymbol{g}}$ have similar properties w.r.t. smoothness
- Now try to solve the linear system (1) for the coefficients of $\boldsymbol{h}$ :

$$
\widetilde{H}(\omega) \bar{H}(\omega)+\widetilde{H}(\omega+\pi) \bar{H}(\omega+\pi)=2
$$

- Observe: Asking for symmetry reduces the number of variables to be determined, but also reduces the chances of solvability!
- If the linear system turns out not to be solvable, one has to increase the proposed length of the filter $\boldsymbol{h}$
- Note that reconstruction quality (smoothness) increases with filter length
- Symmetric low-pass filters (of odd length)
- For even $N$ one has

$$
\cos ^{N}(\omega / 2)=\frac{1}{2^{N}} \sum_{k=-N / 2}^{N / 2}\binom{N}{N / 2+k} e^{i k \omega}
$$

- Hence

$$
H(\omega)=\sqrt{2} \cos ^{N}(\omega / 2)
$$

is the Fourier series of a symmetric low-pass filter
( $h_{-N / 2}, \ldots, h_{N / 2}$ ) of length $N+1$

- The coefficients are

$$
\begin{array}{rlrl}
h_{k} & =\frac{\sqrt{2}}{2^{N}}\binom{N}{N / 2+k} & -N / 2 \leq k \leq N / 2 \\
h_{k-N / 2} & =\frac{\sqrt{2}}{2^{N}}\binom{N}{k} & 0 & \leq k \leq N
\end{array}
$$

- Symmetric low-passfilter (of even length)
- For odd $N$ one has

$$
e^{i \omega / 2} \cos ^{N}(\omega / 2)=\frac{1}{2^{N}} \sum_{k=-(N-1) / 2}^{(N+1) / 2}\binom{N}{(N-1) / 2+k} e^{i k \omega}
$$

- Hence

$$
H(\omega)=\sqrt{2} e^{i \omega / 2} \cos ^{N}(\omega / 2)
$$

is the Fourier series of a symmetric low-pass filter
$\left(h_{-(N-1) / 2}, \ldots, h_{(N+1) / 2}\right)$ of length $N+1$

- The coefficients are

$$
\begin{array}{rlr}
h_{k} & =\frac{\sqrt{2}}{2^{N}}\binom{N}{(N-1) / 2+k} & -(N-1) / 2 \leq k \leq(N+1) / 2 \\
h_{k-(N-1) / 2} & =\frac{\sqrt{2}}{2^{N}}\binom{N}{k} & 0 \leq k \leq N
\end{array}
$$

- The spline functions $B_{N}(t)$ are defined inductively

$$
\begin{aligned}
B_{0}(t) & =\chi_{[-1 / 2,1 / 2)}(t) \\
B_{N+1}(t) & =B_{0}(t) \star B_{N}(t)=\int_{-1 / 2}^{1 / 2} B_{N}(t-s) d s
\end{aligned}
$$

$B_{N}(t)$ is the $N$-fold convolution power of the basis function $B_{0}(t)$

- An important property of these functions: they satisfy a scaling idenity:

$$
B_{N}(t)=\sum_{k=0}^{N+1} \frac{1}{2^{N}}\binom{N+1}{k} B_{N}(2 t+\lceil N / 2\rceil-k+1)
$$

- The scaling coefficients are (up to a constant factor) the filter coefficients of the spline filters defined above - which explains the naming

Graphical display of the spline functions $B_{0}(t), B_{1}(t), B_{2}(t), B_{3}(t)$


- Taking (as above)
- $H(\omega)=\sqrt{2} \cos ^{N}(\omega / 2)$ as the Fourier series of a symmetric spline filter $\boldsymbol{h}=\left(h_{-\ell}, \ldots, h_{\ell}\right)$ of odd length $N+1=2 \ell+1$ (for even $N=2 \ell$ ), resp.
- $H(\omega)=\sqrt{2} e^{i \omega / 2} \cos ^{N}(\omega / 2)$ as the Fourier series of a symmetric spline filter $\boldsymbol{h}=\left(h_{-\ell}, \ldots, h_{\ell+1}\right)$ of even length $N+1=2 \ell+2$ (for odd $N=2 \ell+1)$
- then orthogonal symmetric filters fitting to this choice can be constructed using the Daubechies polynomials

$$
P_{M}(z)=\sum_{m=0}^{M}\binom{M+m}{m} z^{m}
$$

## Definition

Let $\widetilde{N}$ and $N$ have the same parity.

- If $N=2 \ell$ and $\widetilde{N}=2 \widetilde{\ell}$ are both even, then define a filter $\widetilde{\boldsymbol{h}}$ through its Fourier series

$$
\widetilde{H}(\omega)=\sqrt{2} \cos ^{\widetilde{N}}(\omega / 2) P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)
$$

- If $N=2 \ell+1$ and $\widetilde{N}=2 \widetilde{\ell}+1$ are both odd, then define a filter $\widetilde{\boldsymbol{h}}$ through its Fourier series

$$
\widetilde{H}(\omega)=\sqrt{2} e^{i \omega / 2} \cos ^{\widetilde{N}}(\omega / 2) P_{\ell+\widetilde{\ell}}\left(\sin ^{2}(\omega / 2)\right)
$$

## Proposition

With the choice of the previous definition, the following holds for the filter $\boldsymbol{h}$ :
(1) filter $\widetilde{\boldsymbol{h}}$ has length length $2 \widetilde{N}+N-1$
(2) filter $\widetilde{\boldsymbol{h}}$ is symmetric
(3) filter $\tilde{\boldsymbol{h}}$ is a low-pass filter
(9) filters $\boldsymbol{h}$ and $\tilde{\boldsymbol{h}}$ are orthogonal

For the proof consider the case where $N$ and $\widetilde{N}$ are both even, i.e. $N=2 \ell, \widetilde{N}=2 \widetilde{\ell}$. (The odd case can be treates similarly)

- ad 1./2.
- Write both factors $\cos ^{\tilde{N}}(\omega / 2)$ and $P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)$ as series in $e^{i \omega}$, then

$$
\cos ^{\widetilde{N}}(\omega / 2)=\sum_{k=-\widetilde{\ell}}^{\tilde{\ell}} \alpha_{k} e^{i k \omega}
$$

where the sequence of coefficients $\left(\alpha_{-\ell}, \ldots, \alpha_{\ell}\right)$ is symmetric, since the left-hand side is an even function of $\omega$ ist

- Furthermore, for a similar reason,

$$
P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)=\sum_{m=-\ell-\tilde{\ell}+1}^{\ell+\tilde{\ell}-1} \beta_{m} e^{i m \omega}
$$

with a symmetric sequence of coefficients $\left(\beta_{-\ell-\tilde{\ell}+1}, \ldots, \beta_{\ell+\tilde{\ell}-1}\right)$

- ad 1./2. (seq.)
- Therefore the product has the form

$$
\cos ^{\tilde{N}}(\omega / 2) \cdot P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right)=\sum_{n=-2 \tilde{\ell}-\ell+1}^{2 \tilde{\ell}+\ell-1} \gamma_{n} e^{i n \omega}
$$

with a symmetric sequence of coefficients $\left(\gamma_{-2 \tilde{\ell}-\ell+1}, \ldots, \gamma_{2 \tilde{\ell}+\ell-1}\right)$, because the convolution of symmetric sequences is again symmetric

- The length is $2(2 \widetilde{\ell}+\ell-1)+1=2 \widetilde{N}+N-1$
- ad 3.
- Obviously $\widetilde{H}(0)=\sqrt{2}$ and $\widetilde{H}(\pi)=0$
- ad 4.
- Setting $z=e^{i \omega}$ and $y=\sin ^{2}(\omega / 2)$ one has

$$
\begin{aligned}
H(\omega) \widetilde{H}(\omega) & =2 \cos ^{N+\widetilde{N}}(\omega / 2) P_{\ell+\tilde{\ell}-1}\left(\sin ^{2}(\omega / 2)\right) \\
& =2(1-y)^{\ell+\widetilde{\ell}} P_{\ell+\tilde{\ell}-1}(y) \\
& =2 \widehat{P}_{N+\widetilde{N}-1}(z)=2 \widehat{P}_{N+\widetilde{N}-1}\left(e^{i \omega}\right)
\end{aligned}
$$

- Reminder: an important property of the Daubechies polynomials is

$$
\widehat{P}_{2 M-1}(z)+\widehat{P}_{2 M-1}(-z)=1
$$

- As desired, one gets

$$
\begin{aligned}
H(\omega) \widetilde{H}(\omega)+H(\omega+\pi) \widetilde{H}(\omega & +\pi) \\
& =2\left(\widehat{P}_{N+\widetilde{N}-1}(z)+\widehat{P}_{N+\widetilde{N}-1}(-z)\right)=2
\end{aligned}
$$

- NB: Complex conjugation does not show up because the filters are real


Figure: Frequency representations of the Bspline filters of length 2,3,4,9


Figure: Bspline filter partners $K_{1,1}, K_{3,1}, K_{5,1}, K_{7,1}$


Figure: Bspline filter partners $K_{2,2}, K_{2,4}, K_{2,6}, K_{2,8}$


Figure: Bspline filter partners $K_{1,3}, K_{3,3}, K_{5,3}, K_{7,3}$


Figure: Bspline filter partners $K_{4,2}, K_{4,4}, K_{4,6}, K_{4,8}$


Figure: $(7,9)$ Bspline filter pair

- The Daubechies polynomials

$$
P_{M}(z)=\sum_{m=0}^{M}\binom{M+m}{m} z^{m}
$$

satisfy the fundamental identity

$$
(1-z)^{M+1} P_{M}(z)+z^{M+1} P_{M}(1-z)=1
$$

- The polynomials $(1-z)^{M+1}$ and $z^{M+1}$ have no common roots (obviously!), hence do not have a proper common divisor.
Reading the above identity as a Bezout identity for polynomials shows that $q_{1}(z)=P_{M}(z)$ and $q_{2}(z)=P_{M}(1-z)$ are the uniquely determined polynomials $q_{1}(z)$ and $q_{2}(z)$ with degrees $\leq M$ for which a Bezout identity

$$
(1-z)^{M+1} q_{1}(z)+z^{M+1} q_{2}(z)=1
$$

holds

- But these are, even without bounding the degrees, this is the only solutions of this equation!
- For any solution $\left(q_{1}(z), q_{2}(z)\right)$ one must have the relation $q_{2}(z)=q_{1}(1-z)$
(Write down the Bezout identity again, but with $z$ replaced by $1-z$, and then subtract both identities)
- From

$$
(1-z)^{M+1} q(z)+z^{M+1} q(1-z)=1,
$$

one has

$$
q(z)=P_{M}(z)+a(z) z^{M+1}, \quad q(1-z)=P_{M}(1-z)-a(z)(1-z)^{M+1},
$$

for some polynomial $a(z)$,

- which only holds for the zero polynomial
- Now write the Bezout identity in the following way

$$
P_{M}(z)=(1-z)^{-M-1}-\left(\frac{z}{1-z}\right)^{M+1} \cdot P_{M}(1-z)
$$

and take the series development

$$
(1-z)^{-M-1}=\sum_{m \geq 0}\binom{M+m}{m} z^{m}
$$

into account. By developing both sides one gets the explicit form of the Daubechies polynomials because on the left-hand side one has a polynomial of degree $\leq M$, and the second term on the right-had side only contributes to $z$-powers of degrees $>M$

- Construction of symmetric filters of odd length
- Let $\boldsymbol{h}=\left(h_{-L}, \ldots, h_{L}\right)$ be a symmetric filter of length $2 L+1$, so that its Fourier series $H(\omega)=\sum_{k=-L}^{L} h_{k} e^{i k \omega}$ is an even function

$$
H(\omega)=h_{0}+2 \sum_{k=1}^{L} h_{k} \cos (k \omega)
$$

- For $k \in \mathbb{Z}$ the term $\cos (k \omega)$ can be written as a polynomial of degree $k$ in $\cos (\omega)$, thus $H(\omega)$ is a polynomial of degree $L$ in $\cos (\omega)$
- From the low-pass condition

$$
H(0)=\sqrt{2}, H(\pi)=H^{\prime}(\pi)=\ldots=H^{(\ell)}(\pi)=0, H^{(\ell+1)} \neq 0
$$

one gets

$$
H(\omega)=\sqrt{2}(1+\cos (\omega))^{\ell} q(\cos (\omega))
$$

where $q(z)$ is a polynomial of degree $L-\ell$ which satisfies $q(\cos (\pi))=q(-1) \neq 0$

- Construction of symmetric filters of odd length (seq.)
- From $H(0)=\sqrt{2}$ one gets $q(1)=2^{-\ell}$
- Replacing now $1+\cos (\omega)$ by $2 \cos ^{2}(\omega / 2)$, one obtains

$$
H(\omega)=\sqrt{2} \cos ^{2 \ell}(\omega / 2) p(\cos (\omega))
$$

where $p(z)$ is a polynomial of degree $L-\ell$ with $p(1)=1$ and $p(-1) \neq 0$

Proposition
If $\boldsymbol{h}$ and $\widetilde{\boldsymbol{h}}$ are symmetric filters of odd length with Fourier series

$$
\begin{aligned}
& H(\omega)=\sqrt{2} \cos ^{2 \ell}(\omega / 2) p(\cos (\omega)), \\
& \widetilde{H}(\omega)=\sqrt{2} \cos ^{2 \widetilde{\ell}}(\omega / 2) \widetilde{p}(\cos (\omega)),
\end{aligned}
$$

satisfying the orthogonality condition

$$
H(\omega) \widetilde{H}(\omega)+H(\omega+\pi) \widetilde{H}(\omega+\pi)=2
$$

then (with $K=\ell+\widetilde{\ell}$ ) one has

$$
p(\cos (\omega)) \cdot \widetilde{p}(\cos (\omega))=P_{K-1}\left(\sin ^{2}(\omega / 2)\right)
$$

- About the proof:
- Substituting into the orthogonality condition gives

$$
\begin{aligned}
\cos ^{2 K}(\omega / 2) p(\cos (\omega)) & \widetilde{p}( \\
& \cos (\omega)) \\
& +\sin ^{2 K}(\omega / 2) p(-\cos (\omega)) \widetilde{p}(-\cos (\omega))=2
\end{aligned}
$$

- Set $P(z)=p(z) \widetilde{p}(z)$, then $P(\cos (\omega))$ is a polynomial in $y=\sin ^{2}(\omega / 2)$, so that writing $\widehat{P}(y)$ for $P(\cos (\omega))$ the orthogonality relation turns into

$$
(1-y)^{K} \widehat{P}(y)+y^{K} \widehat{P}(1-y)=1
$$

which identifies $\widehat{P}(y)$ as a Daubechies polynomial

Constructing the Cohen-Daubechies-Feauveau-7/9 filter pair

- Start with the Daubechies polynomial

$$
P_{3}(z)=\binom{3}{0}+\binom{4}{1} z+\binom{5}{2} z^{2}+\binom{6}{3} z^{3}=1+4 z+10 z^{2}+20 z^{3}
$$

- The 3 complex roots of this polynomial can be determined exactly

$$
\begin{aligned}
& z_{1}=\frac{1}{6}\left(-1-\frac{7^{2 / 3}}{\sqrt[3]{5(3 \sqrt{15}-10)}}+\frac{\sqrt[3]{7(3 \sqrt{15}-10)}}{5^{2 / 3}}\right) \\
& z_{2}=-\frac{1}{6}+\frac{7^{2 / 3}(1+i \sqrt{3})}{12 \sqrt[3]{5(3 \sqrt{15}-10)}}-\frac{(1-i \sqrt{3}) \sqrt[3]{7(3 \sqrt{15}-10)}}{125^{2 / 3}} \\
& z_{3}=-\frac{1}{6}+\frac{7^{2 / 3}(1-i \sqrt{3})}{12 \sqrt[3]{5(3 \sqrt{15}-10)}}-\frac{(1+i \sqrt{3}) \sqrt[3]{7(3 \sqrt{15}-10)}}{125^{2 / 3}}
\end{aligned}
$$

- It suffices to take approximate values

$$
\begin{aligned}
& z_{1} \approx-0.342384 \\
& z_{2} \approx-0.078808+0.373931 i \\
& z_{3} \approx-0.078808-0.373931 i
\end{aligned}
$$

- The polynomial $P_{3}(z)$ factors into two polynomials

$$
\begin{aligned}
& p(z)=a \cdot\left(z-z_{1}\right) \\
& \widetilde{p}(z)=\frac{1}{a} \cdot\left(z-z_{2}\right)\left(z-z_{3}\right)
\end{aligned}
$$

where the constant $a$ has to be determined

- In terms of approximate values

$$
\begin{aligned}
p(z) & \approx a \cdot(z+0.342384) \\
\widetilde{p}(z) & \approx \frac{1}{a}(z+0.078808-0.373931 i)(z+0.078808+0.373931 i) \\
& \approx \frac{1}{a}\left(2.9207+3.15232 z+20 z^{2}\right)
\end{aligned}
$$

- The two filters $\boldsymbol{h}=\left(h_{j}\right)_{j=-3.3}$ and $\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{j}\right)_{j=-4 . .4}$ are defined through their frequency representations (note that $K=4, \ell=\widetilde{\ell}=2$ )

$$
\begin{aligned}
H(\omega) & =\sqrt{2} \cos (\omega / 2)^{4} p\left(\sin (\omega / 2)^{2}\right) \\
& =a \cdot \sqrt{2} \cos (\omega / 2)^{4}\left(0.342384+\sin (\omega / 2)^{2}\right) \\
\widetilde{H}(\omega) & =\sqrt{2} \cos (\omega / 2)^{4} \widetilde{p}\left(\sin (\omega / 2)^{2}\right) \\
& =\frac{1}{a} \cos (\omega / 2)^{4}\left(4.13049+4.45805 \sin (\omega / 2)^{2}+20 \sqrt{2} \sin (\omega / 2)^{4}\right)
\end{aligned}
$$

- Now the value of a can be fixed by requiring $H(0)=\sqrt{2}$ (and also $\widetilde{H}(0)=\sqrt{2})$, which gives

$$
a=2.9207
$$

- so that

$$
\begin{aligned}
& H(\omega)=4.13049 \cos (\omega / 2)^{4}\left(0.342384+\sin (\omega / 2)^{2}\right) \\
& \widetilde{H}(\omega)=\cos (\omega / 2)^{4}\left(1.41421+1.52637 \sin (\omega / 2)^{2}+9.68408 \sin (\omega / 2)^{4}\right)
\end{aligned}
$$

- Converting the sin- and cos-expressions into exponentials then gives the filter coefficients


$$
\left(\widetilde{h}_{j}\right)_{j=-4 . .4}=\left[\begin{array}{r}
0.0378284555 \\
-0.0238494650 \\
-0.1106244044 \\
0.3774028555 \\
0.8526986788 \\
0.3774028555 \\
-0.1106244044 \\
-0.0238494650 \\
0.0378284555
\end{array}\right]
$$

- Low-pass properties: from the definition it is clear that both filters $\boldsymbol{h}=\left(h_{j}\right)_{j=-3 . .3}$ and $\widetilde{\boldsymbol{h}}=\left(\widetilde{h}_{j}\right)_{j=-4 . .4}$ have 4 vanishing moments, i.e., they have very good smoothness properties for reconstruction


Figure: Frequency picture of the Cohen-Daubechies-Feauveau-(7,9) filter pair



Figure: Scaling and wavelet functions for the CDF-7 filter


Figure: Scaling and wavelet functions for the CDF-9 filter

