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Review: orthogonal filters

Up to now: orthogonal wavelet transforms with filters of finite length
L + 1, based on pairs of filters

low-pass filter h = (h0, h1, . . . , hL)

high-pass filter g = (g0, g1, . . . , gL)

defining an orthogonal transform of signals (of finite length)

written in matrix form as

WN =

[
HN

GN

]
with W−1

N = W †
N
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Review: orthogonal filters
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Figure: Filter bank scheme of orthogonal WT
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Review: orthogonal filters

Orthogonality as specified by

IN = WN W †
N resp. IN = W †

N WN

is equivalent to three idenities

GN G †N = IN/2 = HN H†N

GN H†N = 0N/2 = HN G †N

IN = G †N GN + H†N HN

The third identity expresses the reconstruction property
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Review: orthogonal filters

Looking at the frequency picture:

|H(ω)|2 + |H(ω + π)|2 = 2

|G (ω)|2 + |G (ω + π)|2 = 2

H(ω)G (ω) + H(ω + π)G (ω + π) = 0

H(0) = G (π) =
√

2

H(π) = G (0) = 0

the last two equation expressing low-pass properties of h, resp. the
high-pass properties of g
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Biorthogonal filter pairs Motivation and setup

The reason to deviate from this standard scheme comes from the
following observations:

Symmetric filters (and wavelets) often give visually better
reconstruction results (e.g. when using wavelets for image compression)

Apart from the Haar-filter there are no other symmetric scaling filters
from which an orthogonal transform scheme (as above) can be built
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Biorthogonal filter pairs Motivation and setup

The idea to be able to use symmetric filters leads to a more general
approach:

Take two pairs of filters

one pair (h, h̃) of low-pass filters
one pair (g , g̃) of high-pass filters

length and index ranges of these filters are not yet specified –
but the filters shall have finite length
it is not required that h and g have the same length

This leads to the so-called bi-orthogonal set-up
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Biorthogonal filter pairs Motivation and setup

(?h[�n])� #2

(?g[�n])� #2

"2 �(?eh[n])
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HN
eH†

N

GN eG†
N

Figure: Filter bank scheme of a bi-orthogonal WT
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Biorthogonal filter pairs Transformation matrices and orthogonality

The transformation matrices for analysis and synthesis are given by

analysis: WN =

[
HN

GN

]
synthesis: W̃N =

[
H̃N

G̃N

]

and these matrices are required to be inverse to each other:

W−1
N = W̃ †

N

which means
WN W̃ †

N = W̃ †
N WN = IN

and in more detail

GN G̃ †N = IN/2 = HN H̃†N

GN H̃†N = 0N/2 = HN G̃ †N

IN = G̃ †N GN + H̃†N HN
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Biorthogonal filter pairs Transformation matrices and orthogonality

The different ways to express these requirements

transformation matrices↔ filter coefficients↔ frequency representation

(HN ,GN) (h, g) (H(ω),G (ω))

(H̃N , G̃N) (h̃, g̃) (H̃(ω), G̃ (ω))

HNH̃
†
N = IN/2 ⇔

∑

k

h̃khk−2m = δm,0

⇔ H̃(ω)H(ω) + H̃(ω + π)H(ω + π) = 2 (1)

GN G̃
†
N = IN/2 ⇔

∑

k

g̃kgk−2m = δm,0

⇔ G̃ (ω)G (ω) + G̃ (ω + π)G (ω + π) = 2 (2)

HN G̃
†
N = 0N/2 ⇔

∑

k

g̃khk−2m = 0

⇔ H̃(ω)G (ω) + H̃(ω + π)G (ω + π) = 0 (3)

GNH̃
†
N = 0N/2 ⇔

∑

k

h̃kgk−2m = 0

⇔ G̃ (ω)H(ω) + G̃ (ω + π)H(ω + π) = 0 (4)
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Biorthogonal filter pairs Transformation matrices and orthogonality

Definition

A pair (h, h̃) of (low-pass) filters of finite length is said to be a
biorthogonal filter pair if condition (1) holds

H̃(ω)H(ω) + H̃(ω + π)H(ω + π) = 2 (1)

Proposition

If (h, h̃) is a biorthogonal filter pair, i.e., (1) holds,
and if one defines a filter pair (g , g̃) by setting

G (ω) = e i(nω+b)H̃(ω + π) G̃ (ω) = e i(nω+b)H(ω + π)

with odd n ∈ Z and b ∈ R, the conditions (2), (3) und (4) and
reconstructibility are automatically satisfied
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Biorthogonal filter pairs Transformation matrices and orthogonality

For the filter coefficients these setting give

gk = −e ib(−1)k h̃n−k , g̃k = −e ib(−1)khn−k .

One usually puts b = π ( in order to have real filter coefficients!) and
n = 1, so that

gk = (−1)k h̃1−k , g̃k = (−1)kh1−k

Note: filter h determines filter g̃ – in particular: they have the same
length – and similarly filter h̃ determines the filter g
Filters h and h̃ do not need to have the same length, but their choice
is not completely arbitrary – see the following proposition
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

Example

h =

√
2

4
(−2, 4, 3,−2, 1) = (h−2, . . . , h2)

h̃ =

√
2

4
(1, 2, 1) = (h̃−1, h̃0, h̃1)

frequency representation

H(ω) =

√
2

4
(−2e−2iω + · · ·+ 1e2iω)

H̃(ω) =

√
2

4
(e−iω + 2 + e iω)

check that

H(0) = H̃(0) =
√

2

H(π) = H̃(π) = 0

H̃(ω)H(ω) =
1

8
(e−3iω + 8 + 9e iω − 2e3iω)

H̃(ω + π)H(ω + π) =
1

8
(−e−3iω + 8− 9e iω + 2e3iω)
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

... which gives

H̃(ω)H(ω) + H̃(ω + π)H(ω + π) = 2

so that the necessary requirement (1) is satisfied

As for the filters g and g̃ :

g =

√
2

4
(1,−2, 1) = (g0, g1, g2)

g̃ =

√
2

4
(−1,−2,−3, 4, 2) = (g̃−1, . . . , g̃3)
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Biorthogonal filter pairs Example: a biorthogonal (5,3) filter pair

Transformation matrices for signals of length 8:
analysis transform

W8 =

[
H8

G8

]
=




h0 h1 h2 0 0 0 h−2 h−1

h−2 h−1 h0 h1 h2 0 0 0
0 0 h−2 h−1 h0 h1 h2 0
h2 0 0 0 h−2 h−1 h0 h1

g0 g1 g2 0 0 0 0 0
0 0 g0 g1 g2 0 0 0
0 0 0 0 g0 g1 g2 0
g2 0 0 0 0 0 g0 g1




synthesis transform

W̃8 =

[
H̃8

G̃8

]
=




h̃0 h̃1 0 0 0 0 0 h̃−1

0 h̃−1 h̃0 h̃1 0 0 0 0

0 0 0 h̃−1 h̃0 h̃1 0 0

0 0 0 0 0 h̃−1 h̃0 h̃1

g̃0 g̃1 g̃2 g̃3 0 0 0 g̃−1

0 g̃−1 g̃0 g̃1 g̃2 g̃3 0 0
0 0 0 g̃−1 g̃0 g̃1 g̃2 g̃3

g̃2 g̃3 0 0 0 g̃−1 g̃0 g̃1
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Biorthogonal filter pairs Length and symmetry

Proposition

For a biorthogonal filter pair (h, h̃) with
h = (h`, . . . , hL) (i.e., length N = L− `+ 1) and

h̃ = (h̃˜̀, . . . , h̃L̃), (i.e., filter length Ñ = L̃− ˜̀+ 1)
the following holds:

1 The lengths N and Ñ have the same parity, i.e., N ≡ Ñ mod 2

2 If N and Ñ are both even, then L ≡ L̃ mod 2

3 If N and Ñ are both odd, then L 6≡ L̃ mod 2
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Biorthogonal filter pairs Length and symmetry

Definition

A filter h = (h`, . . . , hL) is said to be symmetric if

hk = h−k (k ∈ Z), if ` = −L (odd length), or if

hk = h1−k (k ∈ Z), if ` = −L + 1 (even length)

Proposition

If (h, h̃) is a biorthogonal filter pair with symmetric filters, where L < L̃,
then the orthogonality conditions can be written as

L∑

k=p

hk h̃k−2m = δ0,m (0 ≤ m ≤ L),

where p = −L (if N is even) or p = −L + 1 (if N is odd)
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Biorthogonal filter pairs Construction of a biorthogonal (2,6)-pair of symmetric filters

Example: Construction of a symmetric biorthogonal filter pair

h = (h0, h1) a symmetric filter of length 2, so h0 = h1, and

h̃ = (h̃−2, h̃−1, h̃0, h̃1, h̃2, h̃3) a symmetric filter of length 6,
which means h̃0 = h̃1, h̃−1 = h̃2, h̃−2 = h̃3

From the Fourier series

H(ω) = h0 + h1e
iω, H̃(ω) = h̃−2e

−2iω + · · ·+ h̃3e
3iω

the low-pass requirements imply conditions to be satisfied by the
coefficients:

H(0) = 2 h0
!

=
√

2 ⇒ h0 = h1 =
1√
2

H(π)
!

= 0 holds!

H̃(0)
!

=
√

2 ⇒ h̃1 + h̃2 + h̃3 =
1√
2

H(π)
!

= 0 ⇒ h̃3 − h̃2 + h̃1 − h̃1 + h̃2 − h̃3 = 0 holds!
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Biorthogonal filter pairs Construction of a biorthogonal (2,6)-pair of symmetric filters

Now about orthogonality

h0 h̃0 + h1 h̃1
!

= 1 ⇒ h̃0 = h̃1 =
1√
2

h0 h̃−2 + h1 h̃−1
!

= 0 ⇒ h̃−2 = −h̃−1 =
a√
2

with a parameter a 6= 0

This gives

h =
1√
2

(1, 1) h̃ =
1√
2

(a,−a, 1, 1,−a, a) �
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Biorthogonal filter pairs Outline of the filter construction method

To construct a biorthogonal filter pair (h, h̃) of low-pass filters of
finite length one can proceed as follows:

First choose a symmetric filter h̃ such that sufficiently many low-pass
requirements H̃(m)(π) = 0 (m = 0, 1, 2, . . .) are satisfied. These are
linear conditions imposed on the coefficients

Choose the length of the filter h, where the lengths of h and h̃ should

not differ too much, so that the synthesis filters h̃ and g̃ have similar
properties w.r.t. smoothness
Now try to solve the linear system (1) for the coefficients of h:

H̃(ω)H(ω) + H̃(ω + π)H(ω + π) = 2

Observe: Asking for symmetry reduces the number of variables to be
determined, but also reduces the chances of solvability!
If the linear system turns out not to be solvable, one has to increase
the proposed length of the filter h

Note that reconstruction quality (smoothness) increases with filter
length
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Spline filters Symmetric low-pass filters

Symmetric low-pass filters (of odd length)

For even N one has

cosN(ω/2) =
1

2N

N/2∑

k=−N/2

(
N

N/2 + k

)
e ikω

Hence
H(ω) =

√
2 cosN(ω/2)

is the Fourier series of a symmetric low-pass filter
(h−N/2, . . . , hN/2) of length N + 1
The coefficients are

hk =

√
2

2N

(
N

N/2 + k

)
−N/2 ≤ k ≤ N/2

hk−N/2 =

√
2

2N

(
N

k

)
0 ≤ k ≤ N
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Spline filters Symmetric low-pass filters

Symmetric low-passfilter (of even length)

For odd N one has

e iω/2 cosN(ω/2) =
1

2N

(N+1)/2∑

k=−(N−1)/2

(
N

(N − 1)/2 + k

)
e ikω

Hence
H(ω) =

√
2e iω/2 cosN(ω/2)

is the Fourier series of a symmetric low-pass filter
(h−(N−1)/2, . . . , h(N+1)/2) of length N + 1
The coefficients are

hk =

√
2

2N

(
N

(N − 1)/2 + k

)
−(N − 1)/2 ≤ k ≤ (N + 1)/2

hk−(N−1)/2 =

√
2

2N

(
N

k

)
0 ≤ k ≤ N
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Spline filters Spline functions

The spline functions BN(t) are defined inductively

B0(t) = χ[−1/2,1/2)(t)

BN+1(t) = B0(t) ? BN(t) =

∫ 1/2

−1/2
BN(t − s) ds

BN(t) is the N-fold convolution power of the basis function B0(t)

An important property of these functions: they satisfy a scaling
idenity:

BN(t) =
N+1∑

k=0

1

2N

(
N + 1

k

)
BN(2t + dN/2e − k + 1)

The scaling coefficients are (up to a constant factor) the filter
coefficients of the spline filters defined above — which explains the
naming
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Spline filters Spline functions

Graphical display of the spline functions B0(t),B1(t),B2(t),B3(t)
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Spline filters Daubechies biorthogonal filters

Taking (as above)

H(ω) =
√

2 cosN(ω/2) as the Fourier series of a symmetric spline filter
h = (h−`, . . . , h`) of odd length N + 1 = 2`+ 1 (for even N = 2`),
resp.
H(ω) =

√
2e iω/2 cosN(ω/2) as the Fourier series of a symmetric spline

filter h = (h−`, . . . , h`+1) of even length N + 1 = 2`+ 2 (for odd
N = 2`+ 1)
then orthogonal symmetric filters fitting to this choice can be
constructed using the Daubechies polynomials

PM(z) =
M∑

m=0

(
M + m

m

)
zm
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Spline filters Daubechies biorthogonal filters

Definition

Let Ñ and N have the same parity.

If N = 2` and Ñ = 2˜̀ are both even, then define a filter h̃ through its
Fourier series

H̃(ω) =
√

2 cosÑ(ω/2)P
`+˜̀−1

(sin2(ω/2))

If N = 2`+ 1 and Ñ = 2˜̀+ 1 are both odd, then define a filter h̃
through its Fourier series

H̃(ω) =
√

2e iω/2 cosÑ(ω/2)P
`+˜̀(sin2(ω/2))
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Spline filters Daubechies biorthogonal filters

Proposition

With the choice of the previous definition,
the following holds for the filter h̃:

1 filter h̃ has length length 2Ñ + N − 1

2 filter h̃ is symmetric

3 filter h̃ is a low-pass filter

4 filters h and h̃ are orthogonal
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Spline filters Daubechies biorthogonal filters

For the proof consider the case where N and Ñ are both even,
i.e. N = 2`, Ñ = 2˜̀. (The odd case can be treates similarly)

ad 1./2.

Write both factors cosÑ(ω/2) and P`+˜̀−1(sin2(ω/2)) as series in e iω,
then

cosÑ(ω/2) =

˜̀∑
k=−˜̀αke

ikω

where the sequence of coefficients (α−`, . . . , α`) is symmetric, since
the left-hand side is an even function of ω ist
Furthermore, for a similar reason,

P`+˜̀−1(sin2(ω/2)) =
`+˜̀−1∑

m=−`−˜̀+1

βme
imω

with a symmetric sequence of coefficients (β−`−˜̀+1, . . . , β`+˜̀−1)
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Spline filters Daubechies biorthogonal filters

ad 1./2. (seq.)

Therefore the product has the form

cosÑ(ω/2) · P`+˜̀−1(sin2(ω/2)) =
2˜̀+`−1∑

n=−2˜̀−`+1

γne
inω

with a symmetric sequence of coefficients (γ−2˜̀−`+1, . . . , γ2˜̀+`−1),
because the convolution of symmetric sequences is again symmetric
The length is 2(2˜̀+ `− 1) + 1 = 2Ñ + N − 1
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Spline filters Daubechies biorthogonal filters

ad 3.
Obviously H̃(0) =

√
2 and H̃(π) = 0

ad 4.
Setting z = e iω and y = sin2(ω/2) one has

H(ω)H̃(ω) = 2 cosN+Ñ(ω/2)P`+˜̀−1(sin2(ω/2))

= 2(1− y)`+˜̀
P`+˜̀−1(y)

= 2P̂N+Ñ−1(z) = 2P̂N+Ñ−1(e iω)

Reminder: an important property of the Daubechies polynomials is

P̂2M−1(z) + P̂2M−1(−z) = 1

As desired, one gets

H(ω)H̃(ω) + H(ω + π)H̃(ω + π)

= 2(P̂N+Ñ−1(z) + P̂N+Ñ−1(−z)) = 2

NB: Complex conjugation does not show up because the filters are real
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Spline filters Daubechies biorthogonal filters

Figure: Frequency representations of the Bspline filters of length 2,3,4,9
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners K1,1,K3,1,K5,1,K7,1
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners K2,2,K2,4,K2,6,K2,8
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners K1,3,K3,3,K5,3,K7,3
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Spline filters Daubechies biorthogonal filters

Figure: Bspline filter partners K4,2,K4,4,K4,6,K4,8
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Spline filters Daubechies biorthogonal filters

Figure: (7,9) Bspline filter pair
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

The Daubechies polynomials

PM(z) =
M∑

m=0

(
M + m

m

)
zm

satisfy the fundamental identity

(1− z)M+1PM(z) + zM+1PM(1− z) = 1

The polynomials (1− z)M+1 and zM+1 have no common roots
(obviously!), hence do not have a proper common divisor.

Reading the above identity as a Bezout identity for polynomials shows
that q1(z) = PM(z) and q2(z) = PM(1− z) are the uniquely
determined polynomials q1(z) and q2(z) with degrees ≤ M for which
a Bezout identity

(1− z)M+1 q1(z) + zM+1 q2(z) = 1

holds
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

But these are, even without bounding the degrees, this is the only
solutions of this equation!

For any solution (q1(z), q2(z)) one must have the relation
q2(z) = q1(1− z)
(Write down the Bezout identity again, but with z replaced by 1− z ,
and then subtract both identities)
From

(1− z)M+1 q(z) + zM+1 q(1− z) = 1,

one has

q(z) = PM(z) + a(z) zM+1, q(1− z) = PM(1− z)− a(z)(1− z)M+1,

for some polynomial a(z),
which only holds for the zero polynomial
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Cohen-Daubechies-Feauveau filters Daubechies polynomials again

Now write the Bezout identity in the following way

PM(z) = (1− z)−M−1 −
(

z

1− z

)M+1

· PM(1− z),

and take the series development

(1− z)−M−1 =
∑

m≥0

(
M + m

m

)
zm

into account. By developing both sides one gets the explicit form of
the Daubechies polynomials because on the left-hand side one has a
polynomial of degree ≤ M, and the second term on the right-had side
only contributes to z-powers of degrees > M
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Cohen-Daubechies-Feauveau filters Symmetric filters of odd length

Construction of symmetric filters of odd length

Let h = (h−L, . . . , hL) be a symmetric filter of length 2L + 1, so that

its Fourier series H(ω) =
∑L

k=−L hke
ikω is an even function

H(ω) = h0 + 2
L∑

k=1

hk cos(kω)

For k ∈ Z the term cos(kω) can be written as a polynomial of degree k
in cos(ω), thus H(ω) is a polynomial of degree L in cos(ω)
From the low-pass condition

H(0) =
√

2,H(π) = H ′(π) = . . . = H(`)(π) = 0,H(`+1) 6= 0

one gets
H(ω) =

√
2 (1 + cos(ω))` q(cos(ω)),

where q(z) is a polynomial of degree L− ` which satisfies
q(cos(π)) = q(−1) 6= 0
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Cohen-Daubechies-Feauveau filters Symmetric filters of odd length

Construction of symmetric filters of odd length (seq.)

From H(0) =
√

2 one gets q(1) = 2−`

Replacing now 1 + cos(ω) by 2 cos2(ω/2), one obtains

H(ω) =
√

2 cos2`(ω/2) p(cos(ω)),

where p(z) is a polynomial of degree L− ` with p(1) = 1 and
p(−1) 6= 0
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Cohen-Daubechies-Feauveau filters Symmetric filters of odd length

Proposition

If h and h̃ are symmetric filters of odd length with Fourier series

H(ω) =
√

2 cos2`(ω/2) p(cos(ω)),

H̃(ω) =
√

2 cos2˜̀(ω/2) p̃(cos(ω)),

satisfying the orthogonality condition

H(ω) H̃(ω) + H(ω + π) H̃(ω + π) = 2,

then (with K = `+ ˜̀) one has

p(cos(ω)) · p̃(cos(ω)) = PK−1(sin2(ω/2))
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Cohen-Daubechies-Feauveau filters Symmetric filters of odd length

About the proof:

Substituting into the orthogonality condition gives

cos2K (ω/2) p(cos(ω)) p̃(cos(ω))

+ sin2K (ω/2) p(− cos(ω)) p̃(− cos(ω)) = 2

Set P(z) = p(z) p̃(z), then P(cos(ω)) is a polynomial in

y = sin2(ω/2), so that writing P̂(y) for P(cos(ω)) the orthogonality
relation turns into

(1− y)K P̂(y) + yK P̂(1− y) = 1,

which identifies P̂(y) as a Daubechies polynomial

WTBV Biorthogonal Filter Pairs und Wavelets January 20, 2016 44 / 50



Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair

Constructing the Cohen-Daubechies-Feauveau-7/9 filter pair

Start with the Daubechies polynomial

P3(z) =

(
3

0

)
+

(
4

1

)
z +

(
5

2

)
z2 +

(
6

3

)
z3 = 1 + 4z + 10z2 + 20z3

The 3 complex roots of this polynomial can be determined exactly

z1 =
1

6


−1− 72/3

3

√
5
(
3
√

15− 10
) +

3

√
7
(
3
√

15− 10
)

52/3




z2 = −1

6
+

72/3
(
1 + i

√
3
)

12 3

√
5
(
3
√

15− 10
) −

(
1− i

√
3
)

3

√
7
(
3
√

15− 10
)

12 52/3

z3 = −1

6
+

72/3
(
1− i

√
3
)

12 3

√
5
(
3
√

15− 10
) −

(
1 + i

√
3
)

3

√
7
(
3
√

15− 10
)

12 52/3
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Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair

It suffices to take approximate values

z1 ≈ −0.342384

z2 ≈ −0.078808 + 0.373931i

z3 ≈ −0.078808− 0.373931i

The polynomial P3(z) factors into two polynomials

p(z) = a · (z − z1)

p̃(z) =
1

a
· (z − z2)(z − z3)

where the constant a has to be determined
In terms of approximate values

p(z) ≈ a · (z + 0.342384)

p̃(z) ≈ 1

a
(z + 0.078808− 0.373931i)(z + 0.078808 + 0.373931i)

≈ 1

a
(2.9207 + 3.15232z + 20z2)
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Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair

The two filters h = (hj)j=−3..3 and h̃ = (h̃j)j=−4..4 are defined

through their frequency representations (note that K = 4, ` = ˜̀= 2)

H(ω) =
√

2 cos(ω/2)4p(sin(ω/2)2)

= a ·
√

2 cos(ω/2)4
(
0.342384 + sin(ω/2)2

)

H̃(ω) =
√

2 cos(ω/2)4p̃(sin(ω/2)2)

=
1

a
cos(ω/2)4

(
4.13049 + 4.45805 sin(ω/2)2 + 20

√
2 sin(ω/2)4

)

Now the value of a can be fixed by requiring H(0) =
√

2 (and also
H̃(0) =

√
2), which gives

a = 2.9207

so that

H(ω) = 4.13049 cos(ω/2)4
(
0.342384 + sin(ω/2)2

)

H̃(ω) = cos(ω/2)4
(
1.41421 + 1.52637 sin(ω/2)2 + 9.68408 sin(ω/2)4

)
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Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair

Converting the sin- and cos-expressions into exponentials then gives
the filter coefficients

(hj)j=−3..3 =




−0.0645388826
−0.0406894175

0.4180922731
0.7884856164
0.4180922731
−0.0406894175
−0.0645388826




(h̃j)j=−4..4 =




0.0378284555
−0.0238494650
−0.1106244044

0.3774028555
0.8526986788
0.3774028555
−0.1106244044
−0.0238494650

0.0378284555




Low-pass properties: from the definition it is clear that both filters
h = (hj)j=−3..3 and h̃ = (h̃j)j=−4..4 have 4 vanishing moments, i.e.,
they have very good smoothness properties for reconstruction
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Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair

Figure: Frequency picture of the Cohen-Daubechies-Feauveau-(7,9) filter pair
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Cohen-Daubechies-Feauveau filters The Cohen-Daubechies-Feauveau-(7,9) filter pair
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Figure: Scaling and wavelet functions for the CDF-7 filter
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Figure: Scaling and wavelet functions for the CDF-9 filter
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