Exercises for Pattern Recognition Sebastian Käppler, Nooshin Haji Ghassemi Assignment 2, 2/3.11.2015

General Information:

Exercises (1 SWS):	Mo $12:15 - 13:30$ (H10 lecture hall building) and Tue $08:45 - 10$ (0.151-113)
Certificate:	Oral exam at the end of the semester
Contact:	sebastian.kaeppler@fau.de, nooshin.haji@fau.de

Maximum Likelihood Estimation

Exercise 1 Let $x_1 \dots x_k$ be a set of observations according to the exponential density

 $p(x;\lambda) = \lambda \exp(-\lambda x)$ for x > 0.

The observed samples are considered i.i.d. (independent and identically distributed).

- (a) Derive the log-likelihood function $L(\lambda)$ for the parameter λ based on a given set of observations.
- (b) Determine the Maximum Likelihood estimate for λ .
- **Exercise 2** Create a logistic regression classifier for the toolbox. Assume a decision boundary that is affine in the original variables $F(\boldsymbol{x}) = \boldsymbol{\theta}^T \boldsymbol{x}$, where $\boldsymbol{x} = (x_1, x_2, \dots, 1)^T$. Create a new m-file, and modify Classification.txt and contents.m.
 - (a) What are the training formulas for the logistic regression?
 - (b) Implement the training step using the Newton-Raphson algorithm. Use the modeled posterior probabilities to compute the classification result.
 - (c) The shape of the decision boundary is linear. What does this imply for the class-conditional densities? How can you achieve nonlinear decision bound-aries?